onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +10 -10
- onnx/backend/base.py +13 -14
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/case/model/__init__.py +0 -1
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
- onnx/backend/test/case/node/averagepool.py +15 -30
- onnx/backend/test/case/node/cast.py +88 -11
- onnx/backend/test/case/node/dequantizelinear.py +155 -0
- onnx/backend/test/case/node/groupnormalization.py +13 -9
- onnx/backend/test/case/node/gru.py +2 -2
- onnx/backend/test/case/node/isinf.py +4 -4
- onnx/backend/test/case/node/isnan.py +2 -2
- onnx/backend/test/case/node/lppool.py +8 -16
- onnx/backend/test/case/node/lstm.py +1 -1
- onnx/backend/test/case/node/maxpool.py +40 -34
- onnx/backend/test/case/node/pow.py +1 -1
- onnx/backend/test/case/node/qlinearmatmul.py +143 -109
- onnx/backend/test/case/node/quantizelinear.py +298 -7
- onnx/backend/test/case/node/reducemax.py +26 -0
- onnx/backend/test/case/node/rnn.py +1 -1
- onnx/backend/test/case/node/scan.py +6 -2
- onnx/backend/test/case/node/scatterelements.py +1 -1
- onnx/backend/test/case/node/topk.py +1 -1
- onnx/backend/test/case/utils.py +1 -3
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +0 -1
- onnx/backend/test/runner/__init__.py +43 -15
- onnx/checker.cc +104 -99
- onnx/checker.h +23 -3
- onnx/checker.py +56 -20
- onnx/common/assertions.cc +10 -5
- onnx/common/common.h +19 -0
- onnx/common/file_utils.h +3 -1
- onnx/common/interned_strings.h +7 -1
- onnx/common/ir.h +30 -7
- onnx/common/ir_pb_converter.cc +6 -0
- onnx/common/path.h +18 -2
- onnx/common/proto_util.h +43 -0
- onnx/common/version.h +1 -1
- onnx/cpp2py_export.cc +88 -56
- onnx/defs/__init__.py +29 -8
- onnx/defs/controlflow/defs.cc +16 -16
- onnx/defs/controlflow/old.cc +177 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +2 -0
- onnx/defs/generator/defs.cc +6 -4
- onnx/defs/generator/old.cc +115 -0
- onnx/defs/math/defs.cc +37 -142
- onnx/defs/math/old.cc +96 -12
- onnx/defs/math/utils.cc +127 -0
- onnx/defs/math/utils.h +8 -0
- onnx/defs/nn/defs.cc +72 -59
- onnx/defs/nn/old.cc +181 -2
- onnx/defs/object_detection/defs.cc +2 -2
- onnx/defs/object_detection/old.cc +2 -2
- onnx/defs/operator_sets.h +51 -0
- onnx/defs/operator_sets_ml.h +14 -0
- onnx/defs/parser.cc +112 -54
- onnx/defs/parser.h +14 -2
- onnx/defs/printer.cc +14 -7
- onnx/defs/quantization/defs.cc +111 -44
- onnx/defs/quantization/old.cc +130 -1
- onnx/defs/schema.cc +62 -18
- onnx/defs/schema.h +194 -48
- onnx/defs/shape_inference.cc +28 -19
- onnx/defs/shape_inference.h +2 -0
- onnx/defs/tensor/defs.cc +54 -96
- onnx/defs/tensor/old.cc +939 -34
- onnx/defs/tensor/utils.cc +6 -3
- onnx/defs/tensor/utils.h +5 -1
- onnx/defs/tensor_proto_util.cc +2 -0
- onnx/defs/tensor_util.cc +2 -0
- onnx/defs/traditionalml/defs.cc +273 -117
- onnx/defs/traditionalml/old.cc +329 -14
- onnx/defs/traditionalml/utils.h +27 -0
- onnx/external_data_helper.py +12 -26
- onnx/helper.py +242 -169
- onnx/hub.py +104 -70
- onnx/inliner/inliner.cc +89 -31
- onnx/inliner/inliner.h +5 -0
- onnx/inliner.py +2 -0
- onnx/mapping.py +9 -0
- onnx/model_container.py +346 -0
- onnx/numpy_helper.py +100 -38
- onnx/onnx-ml.proto +50 -13
- onnx/onnx.in.proto +50 -13
- onnx/onnx.proto +50 -13
- onnx/onnx_cpp2py_export/__init__.pyi +5 -0
- onnx/onnx_cpp2py_export/checker.pyi +21 -0
- onnx/onnx_cpp2py_export/defs.pyi +202 -0
- onnx/onnx_cpp2py_export/inliner.pyi +19 -0
- onnx/onnx_cpp2py_export/parser.pyi +32 -0
- onnx/onnx_cpp2py_export/printer.pyi +3 -0
- onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
- onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
- onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +146 -0
- onnx/onnx_ml_pb2.py +52 -52
- onnx/onnx_ml_pb2.pyi +663 -0
- onnx/onnx_operators_ml_pb2.pyi +67 -0
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +2 -0
- onnx/reference/op_run.py +166 -121
- onnx/reference/ops/_op.py +27 -50
- onnx/reference/ops/_op_list.py +36 -24
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
- onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
- onnx/reference/ops/aionnxml/_op_list.py +16 -8
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
- onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
- onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
- onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
- onnx/reference/ops/experimental/_op_list.py +15 -8
- onnx/reference/ops/op_blackman_window.py +5 -6
- onnx/reference/ops/op_cast.py +22 -0
- onnx/reference/ops/op_cast_like.py +6 -0
- onnx/reference/ops/op_clip.py +5 -8
- onnx/reference/ops/op_col2im.py +1 -3
- onnx/reference/ops/op_constant.py +7 -1
- onnx/reference/ops/op_dequantize_linear.py +43 -40
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
- onnx/reference/ops/op_grid_sample.py +2 -4
- onnx/reference/ops/op_hamming_window.py +3 -6
- onnx/reference/ops/op_hann_window.py +3 -6
- onnx/reference/ops/op_if.py +4 -3
- onnx/reference/ops/op_loop.py +7 -9
- onnx/reference/ops/op_matmul.py +1 -2
- onnx/reference/ops/op_max_pool.py +5 -0
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_pool_common.py +3 -6
- onnx/reference/ops/op_qlinear_matmul.py +2 -2
- onnx/reference/ops/op_quantize_linear.py +166 -71
- onnx/reference/ops/op_resize.py +25 -21
- onnx/reference/ops/op_rnn.py +20 -12
- onnx/reference/ops/op_scan.py +23 -15
- onnx/reference/ops/op_scatter_elements.py +7 -6
- onnx/reference/ops/op_stft.py +3 -5
- onnx/reference/ops/op_string_normalizer.py +7 -7
- onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
- onnx/reference/ops/op_topk.py +9 -11
- onnx/reference/ops/op_unique.py +1 -1
- onnx/reference/reference_evaluator.py +119 -63
- onnx/shape_inference/implementation.cc +160 -127
- onnx/shape_inference.py +11 -10
- onnx/subbyte.py +72 -0
- onnx/test/__init__.pyi +6 -0
- onnx/test/checker_test.py +21 -1
- onnx/test/compose_test.py +26 -74
- onnx/test/cpp/inliner_test.cc +76 -1
- onnx/test/cpp/ir_test.cc +60 -0
- onnx/test/cpp/parser_test.cc +106 -0
- onnx/test/function_test.py +1 -3
- onnx/test/helper_test.py +64 -4
- onnx/test/model_container_refeval_test.py +139 -0
- onnx/test/model_container_test.py +136 -0
- onnx/test/model_inference_test.py +44 -0
- onnx/test/reference_evaluator_ml_test.py +448 -47
- onnx/test/reference_evaluator_model_test.py +130 -0
- onnx/test/reference_evaluator_test.py +901 -14
- onnx/test/schema_test.py +166 -1
- onnx/test/shape_inference_test.py +285 -6
- onnx/test/symbolic_shape_test.py +3 -8
- onnx/test/test_backend_onnxruntime.py +238 -224
- onnx/test/test_backend_reference.py +11 -0
- onnx/test/test_external_data.py +51 -2
- onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
- onnx/test/version_converter/automatic_upgrade_test.py +12 -10
- onnx/test/version_converter_test.py +166 -0
- onnx/tools/replace_constants.py +23 -26
- onnx/tools/update_model_dims.py +1 -2
- onnx/version.py +2 -2
- onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
- onnx/version_converter/adapters/q_dq_21_20.h +77 -0
- onnx/version_converter/convert.h +67 -2
- onnx/version_converter.py +6 -142
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
- onnx/examples/Protobufs.ipynb +0 -639
- onnx/examples/check_model.ipynb +0 -128
- onnx/examples/load_model.ipynb +0 -116
- onnx/examples/make_model.ipynb +0 -176
- onnx/examples/np_array_tensorproto.ipynb +0 -136
- onnx/examples/resources/single_relu.onnx +0 -12
- onnx/examples/resources/single_relu_new.onnx +0 -12
- onnx/examples/resources/tensor.pb +0 -0
- onnx/examples/resources/two_transposes.onnx +0 -0
- onnx/examples/save_model.ipynb +0 -56
- onnx/examples/shape_inference.ipynb +0 -111
- onnx/test/reference_evaluator_backend_test.py +0 -876
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
onnx/__init__.py
CHANGED
|
@@ -16,6 +16,7 @@ __all__ = [
|
|
|
16
16
|
"IR_VERSION_2019_9_19",
|
|
17
17
|
"IR_VERSION_2020_5_8",
|
|
18
18
|
"IR_VERSION_2021_7_30",
|
|
19
|
+
"IR_VERSION_2023_5_5",
|
|
19
20
|
"EXPERIMENTAL",
|
|
20
21
|
"STABLE",
|
|
21
22
|
# Modules
|
|
@@ -93,6 +94,7 @@ from onnx.onnx_pb import (
|
|
|
93
94
|
IR_VERSION_2019_9_19,
|
|
94
95
|
IR_VERSION_2020_5_8,
|
|
95
96
|
IR_VERSION_2021_7_30,
|
|
97
|
+
IR_VERSION_2023_5_5,
|
|
96
98
|
ModelProto,
|
|
97
99
|
NodeProto,
|
|
98
100
|
OperatorSetIdProto,
|
|
@@ -186,7 +188,7 @@ def _get_serializer(
|
|
|
186
188
|
|
|
187
189
|
def load_model(
|
|
188
190
|
f: IO[bytes] | str | os.PathLike,
|
|
189
|
-
format: _SupportedFormat | None = None,
|
|
191
|
+
format: _SupportedFormat | None = None, # noqa: A002
|
|
190
192
|
load_external_data: bool = True,
|
|
191
193
|
) -> ModelProto:
|
|
192
194
|
"""Loads a serialized ModelProto into memory.
|
|
@@ -218,7 +220,7 @@ def load_model(
|
|
|
218
220
|
|
|
219
221
|
def load_tensor(
|
|
220
222
|
f: IO[bytes] | str | os.PathLike,
|
|
221
|
-
format: _SupportedFormat | None = None,
|
|
223
|
+
format: _SupportedFormat | None = None, # noqa: A002
|
|
222
224
|
) -> TensorProto:
|
|
223
225
|
"""Loads a serialized TensorProto into memory.
|
|
224
226
|
|
|
@@ -237,7 +239,7 @@ def load_tensor(
|
|
|
237
239
|
|
|
238
240
|
def load_model_from_string(
|
|
239
241
|
s: bytes | str,
|
|
240
|
-
format: _SupportedFormat = _DEFAULT_FORMAT,
|
|
242
|
+
format: _SupportedFormat = _DEFAULT_FORMAT, # noqa: A002
|
|
241
243
|
) -> ModelProto:
|
|
242
244
|
"""Loads a binary string (bytes) that contains serialized ModelProto.
|
|
243
245
|
|
|
@@ -256,7 +258,7 @@ def load_model_from_string(
|
|
|
256
258
|
|
|
257
259
|
def load_tensor_from_string(
|
|
258
260
|
s: bytes,
|
|
259
|
-
format: _SupportedFormat = _DEFAULT_FORMAT,
|
|
261
|
+
format: _SupportedFormat = _DEFAULT_FORMAT, # noqa: A002
|
|
260
262
|
) -> TensorProto:
|
|
261
263
|
"""Loads a binary string (bytes) that contains serialized TensorProto.
|
|
262
264
|
|
|
@@ -276,7 +278,7 @@ def load_tensor_from_string(
|
|
|
276
278
|
def save_model(
|
|
277
279
|
proto: ModelProto | bytes,
|
|
278
280
|
f: IO[bytes] | str | os.PathLike,
|
|
279
|
-
format: _SupportedFormat | None = None,
|
|
281
|
+
format: _SupportedFormat | None = None, # noqa: A002
|
|
280
282
|
*,
|
|
281
283
|
save_as_external_data: bool = False,
|
|
282
284
|
all_tensors_to_one_file: bool = True,
|
|
@@ -284,8 +286,7 @@ def save_model(
|
|
|
284
286
|
size_threshold: int = 1024,
|
|
285
287
|
convert_attribute: bool = False,
|
|
286
288
|
) -> None:
|
|
287
|
-
"""
|
|
288
|
-
Saves the ModelProto to the specified path and optionally, serialize tensors with raw data as external data before saving.
|
|
289
|
+
"""Saves the ModelProto to the specified path and optionally, serialize tensors with raw data as external data before saving.
|
|
289
290
|
|
|
290
291
|
Args:
|
|
291
292
|
proto: should be a in-memory ModelProto
|
|
@@ -330,10 +331,9 @@ def save_model(
|
|
|
330
331
|
def save_tensor(
|
|
331
332
|
proto: TensorProto,
|
|
332
333
|
f: IO[bytes] | str | os.PathLike,
|
|
333
|
-
format: _SupportedFormat | None = None,
|
|
334
|
+
format: _SupportedFormat | None = None, # noqa: A002
|
|
334
335
|
) -> None:
|
|
335
|
-
"""
|
|
336
|
-
Saves the TensorProto to the specified path.
|
|
336
|
+
"""Saves the TensorProto to the specified path.
|
|
337
337
|
|
|
338
338
|
Args:
|
|
339
339
|
proto: should be a in-memory TensorProto
|
onnx/backend/base.py
CHANGED
|
@@ -14,9 +14,7 @@ from onnx import IR_VERSION, ModelProto, NodeProto
|
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
class DeviceType:
|
|
17
|
-
"""
|
|
18
|
-
Describes device type.
|
|
19
|
-
"""
|
|
17
|
+
"""Describes device type."""
|
|
20
18
|
|
|
21
19
|
_Type = NewType("_Type", int)
|
|
22
20
|
CPU: _Type = _Type(0)
|
|
@@ -24,8 +22,7 @@ class DeviceType:
|
|
|
24
22
|
|
|
25
23
|
|
|
26
24
|
class Device:
|
|
27
|
-
"""
|
|
28
|
-
Describes device type and device id
|
|
25
|
+
"""Describes device type and device id
|
|
29
26
|
syntax: device_type:device_id(optional)
|
|
30
27
|
example: 'CPU', 'CUDA', 'CUDA:1'
|
|
31
28
|
"""
|
|
@@ -56,8 +53,7 @@ def namedtupledict(
|
|
|
56
53
|
|
|
57
54
|
|
|
58
55
|
class BackendRep:
|
|
59
|
-
"""
|
|
60
|
-
BackendRep is the handle that a Backend returns after preparing to execute
|
|
56
|
+
"""BackendRep is the handle that a Backend returns after preparing to execute
|
|
61
57
|
a model repeatedly. Users will then pass inputs to the run function of
|
|
62
58
|
BackendRep to retrieve the corresponding results.
|
|
63
59
|
"""
|
|
@@ -68,8 +64,7 @@ class BackendRep:
|
|
|
68
64
|
|
|
69
65
|
|
|
70
66
|
class Backend:
|
|
71
|
-
"""
|
|
72
|
-
Backend is the entity that will take an ONNX model with inputs,
|
|
67
|
+
"""Backend is the entity that will take an ONNX model with inputs,
|
|
73
68
|
perform a computation, and then return the output.
|
|
74
69
|
|
|
75
70
|
For one-off execution, users can use run_node and run_model to obtain results quickly.
|
|
@@ -112,11 +107,16 @@ class Backend:
|
|
|
112
107
|
**kwargs: Dict[str, Any],
|
|
113
108
|
) -> Optional[Tuple[Any, ...]]:
|
|
114
109
|
"""Simple run one operator and return the results.
|
|
110
|
+
|
|
115
111
|
Args:
|
|
112
|
+
node: The node proto.
|
|
113
|
+
inputs: Inputs to the node.
|
|
114
|
+
device: The device to run on.
|
|
116
115
|
outputs_info: a list of tuples, which contains the element type and
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
116
|
+
shape of each output. First element of the tuple is the dtype, and
|
|
117
|
+
the second element is the shape. More use case can be found in
|
|
118
|
+
https://github.com/onnx/onnx/blob/main/onnx/backend/test/runner/__init__.py
|
|
119
|
+
kwargs: Other keyword arguments.
|
|
120
120
|
"""
|
|
121
121
|
# TODO Remove Optional from return type
|
|
122
122
|
if "opset_version" in kwargs:
|
|
@@ -131,8 +131,7 @@ class Backend:
|
|
|
131
131
|
|
|
132
132
|
@classmethod
|
|
133
133
|
def supports_device(cls, device: str) -> bool:
|
|
134
|
-
"""
|
|
135
|
-
Checks whether the backend is compiled with particular device support.
|
|
134
|
+
"""Checks whether the backend is compiled with particular device support.
|
|
136
135
|
In particular it's used in the testing suite.
|
|
137
136
|
"""
|
|
138
137
|
return True
|
onnx/backend/sample/ops/abs.py
CHANGED
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
import onnx
|
|
8
|
+
from onnx.backend.test.case.base import Base
|
|
9
|
+
from onnx.backend.test.case.node import expect
|
|
10
|
+
from onnx.helper import make_tensor
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class TreeEnsemble(Base):
|
|
14
|
+
@staticmethod
|
|
15
|
+
def export_tree_ensemble_single_tree() -> None:
|
|
16
|
+
node = onnx.helper.make_node(
|
|
17
|
+
"TreeEnsemble",
|
|
18
|
+
["X"],
|
|
19
|
+
["Y"],
|
|
20
|
+
domain="ai.onnx.ml",
|
|
21
|
+
n_targets=2,
|
|
22
|
+
membership_values=None,
|
|
23
|
+
nodes_missing_value_tracks_true=None,
|
|
24
|
+
nodes_hitrates=None,
|
|
25
|
+
aggregate_function=1,
|
|
26
|
+
post_transform=0,
|
|
27
|
+
tree_roots=[0],
|
|
28
|
+
nodes_modes=make_tensor(
|
|
29
|
+
"nodes_modes",
|
|
30
|
+
onnx.TensorProto.UINT8,
|
|
31
|
+
(3,),
|
|
32
|
+
np.array([0, 0, 0], dtype=np.uint8),
|
|
33
|
+
),
|
|
34
|
+
nodes_featureids=[0, 0, 0],
|
|
35
|
+
nodes_splits=make_tensor(
|
|
36
|
+
"nodes_splits",
|
|
37
|
+
onnx.TensorProto.DOUBLE,
|
|
38
|
+
(3,),
|
|
39
|
+
np.array([3.14, 1.2, 4.2], dtype=np.float64),
|
|
40
|
+
),
|
|
41
|
+
nodes_truenodeids=[1, 0, 1],
|
|
42
|
+
nodes_trueleafs=[0, 1, 1],
|
|
43
|
+
nodes_falsenodeids=[2, 2, 3],
|
|
44
|
+
nodes_falseleafs=[0, 1, 1],
|
|
45
|
+
leaf_targetids=[0, 1, 0, 1],
|
|
46
|
+
leaf_weights=make_tensor(
|
|
47
|
+
"leaf_weights",
|
|
48
|
+
onnx.TensorProto.DOUBLE,
|
|
49
|
+
(4,),
|
|
50
|
+
np.array([5.23, 12.12, -12.23, 7.21], dtype=np.float64),
|
|
51
|
+
),
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
x = np.array([1.2, 3.4, -0.12, 1.66, 4.14, 1.77], np.float64).reshape(3, 2)
|
|
55
|
+
y = np.array([[5.23, 0], [5.23, 0], [0, 12.12]], dtype=np.float64)
|
|
56
|
+
expect(
|
|
57
|
+
node,
|
|
58
|
+
inputs=[x],
|
|
59
|
+
outputs=[y],
|
|
60
|
+
name="test_ai_onnx_ml_tree_ensemble_single_tree",
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
@staticmethod
|
|
64
|
+
def export_tree_ensemble_set_membership() -> None:
|
|
65
|
+
node = onnx.helper.make_node(
|
|
66
|
+
"TreeEnsemble",
|
|
67
|
+
["X"],
|
|
68
|
+
["Y"],
|
|
69
|
+
domain="ai.onnx.ml",
|
|
70
|
+
n_targets=4,
|
|
71
|
+
aggregate_function=1,
|
|
72
|
+
membership_values=make_tensor(
|
|
73
|
+
"membership_values",
|
|
74
|
+
onnx.TensorProto.FLOAT,
|
|
75
|
+
(8,),
|
|
76
|
+
[1.2, 3.7, 8, 9, np.nan, 12, 7, np.nan],
|
|
77
|
+
),
|
|
78
|
+
nodes_missing_value_tracks_true=None,
|
|
79
|
+
nodes_hitrates=None,
|
|
80
|
+
post_transform=0,
|
|
81
|
+
tree_roots=[0],
|
|
82
|
+
nodes_modes=make_tensor(
|
|
83
|
+
"nodes_modes",
|
|
84
|
+
onnx.TensorProto.UINT8,
|
|
85
|
+
(3,),
|
|
86
|
+
np.array([0, 6, 6], dtype=np.uint8),
|
|
87
|
+
),
|
|
88
|
+
nodes_featureids=[0, 0, 0],
|
|
89
|
+
nodes_splits=make_tensor(
|
|
90
|
+
"nodes_splits",
|
|
91
|
+
onnx.TensorProto.FLOAT,
|
|
92
|
+
(3,),
|
|
93
|
+
np.array([11, 232344.0, np.nan], dtype=np.float32),
|
|
94
|
+
),
|
|
95
|
+
nodes_trueleafs=[0, 1, 1],
|
|
96
|
+
nodes_truenodeids=[1, 0, 1],
|
|
97
|
+
nodes_falseleafs=[1, 0, 1],
|
|
98
|
+
nodes_falsenodeids=[2, 2, 3],
|
|
99
|
+
leaf_targetids=[0, 1, 2, 3],
|
|
100
|
+
leaf_weights=make_tensor(
|
|
101
|
+
"leaf_weights", onnx.TensorProto.FLOAT, (4,), [1, 10, 1000, 100]
|
|
102
|
+
),
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
x = np.array([1.2, 3.4, -0.12, np.nan, 12, 7], np.float32).reshape(-1, 1)
|
|
106
|
+
expected = np.array(
|
|
107
|
+
[
|
|
108
|
+
[1, 0, 0, 0],
|
|
109
|
+
[0, 0, 0, 100],
|
|
110
|
+
[0, 0, 0, 100],
|
|
111
|
+
[0, 0, 1000, 0],
|
|
112
|
+
[0, 0, 1000, 0],
|
|
113
|
+
[0, 10, 0, 0],
|
|
114
|
+
],
|
|
115
|
+
dtype=np.float32,
|
|
116
|
+
)
|
|
117
|
+
expect(
|
|
118
|
+
node,
|
|
119
|
+
inputs=[x],
|
|
120
|
+
outputs=[expected],
|
|
121
|
+
name="test_ai_onnx_ml_tree_ensemble_set_membership",
|
|
122
|
+
)
|
|
@@ -18,8 +18,7 @@ from onnx.reference.ops.op_pool_common import (
|
|
|
18
18
|
class AveragePool(Base):
|
|
19
19
|
@staticmethod
|
|
20
20
|
def export_averagepool_2d_precomputed_pads() -> None:
|
|
21
|
-
"""
|
|
22
|
-
input_shape: [1, 1, 5, 5]
|
|
21
|
+
"""input_shape: [1, 1, 5, 5]
|
|
23
22
|
output_shape: [1, 1, 5, 5]
|
|
24
23
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
25
24
|
"""
|
|
@@ -63,8 +62,7 @@ class AveragePool(Base):
|
|
|
63
62
|
|
|
64
63
|
@staticmethod
|
|
65
64
|
def export_averagepool_2d_precomputed_pads_count_include_pad() -> None:
|
|
66
|
-
"""
|
|
67
|
-
input_shape: [1, 1, 5, 5]
|
|
65
|
+
"""input_shape: [1, 1, 5, 5]
|
|
68
66
|
output_shape: [1, 1, 5, 5]
|
|
69
67
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
70
68
|
"""
|
|
@@ -112,8 +110,7 @@ class AveragePool(Base):
|
|
|
112
110
|
|
|
113
111
|
@staticmethod
|
|
114
112
|
def export_averagepool_2d_precomputed_strides() -> None:
|
|
115
|
-
"""
|
|
116
|
-
input_shape: [1, 1, 5, 5]
|
|
113
|
+
"""input_shape: [1, 1, 5, 5]
|
|
117
114
|
output_shape: [1, 1, 2, 2]
|
|
118
115
|
"""
|
|
119
116
|
node = onnx.helper.make_node(
|
|
@@ -147,8 +144,7 @@ class AveragePool(Base):
|
|
|
147
144
|
|
|
148
145
|
@staticmethod
|
|
149
146
|
def export_averagepool_2d_precomputed_same_upper() -> None:
|
|
150
|
-
"""
|
|
151
|
-
input_shape: [1, 1, 5, 5]
|
|
147
|
+
"""input_shape: [1, 1, 5, 5]
|
|
152
148
|
output_shape: [1, 1, 3, 3]
|
|
153
149
|
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
|
|
154
150
|
"""
|
|
@@ -186,8 +182,7 @@ class AveragePool(Base):
|
|
|
186
182
|
|
|
187
183
|
@staticmethod
|
|
188
184
|
def export_averagepool_1d_default() -> None:
|
|
189
|
-
"""
|
|
190
|
-
input_shape: [1, 3, 32]
|
|
185
|
+
"""input_shape: [1, 3, 32]
|
|
191
186
|
output_shape: [1, 3, 31]
|
|
192
187
|
"""
|
|
193
188
|
node = onnx.helper.make_node(
|
|
@@ -211,8 +206,7 @@ class AveragePool(Base):
|
|
|
211
206
|
|
|
212
207
|
@staticmethod
|
|
213
208
|
def export_averagepool_2d_default() -> None:
|
|
214
|
-
"""
|
|
215
|
-
input_shape: [1, 3, 32, 32]
|
|
209
|
+
"""input_shape: [1, 3, 32, 32]
|
|
216
210
|
output_shape: [1, 3, 31, 31]
|
|
217
211
|
"""
|
|
218
212
|
node = onnx.helper.make_node(
|
|
@@ -236,8 +230,7 @@ class AveragePool(Base):
|
|
|
236
230
|
|
|
237
231
|
@staticmethod
|
|
238
232
|
def export_averagepool_3d_default() -> None:
|
|
239
|
-
"""
|
|
240
|
-
input_shape: [1, 3, 32, 32, 32]
|
|
233
|
+
"""input_shape: [1, 3, 32, 32, 32]
|
|
241
234
|
output_shape: [1, 3, 31, 31, 31]
|
|
242
235
|
"""
|
|
243
236
|
node = onnx.helper.make_node(
|
|
@@ -261,8 +254,7 @@ class AveragePool(Base):
|
|
|
261
254
|
|
|
262
255
|
@staticmethod
|
|
263
256
|
def export_averagepool_2d_same_upper() -> None:
|
|
264
|
-
"""
|
|
265
|
-
input_shape: [1, 3, 32, 32]
|
|
257
|
+
"""input_shape: [1, 3, 32, 32]
|
|
266
258
|
output_shape: [1, 3, 32, 32]
|
|
267
259
|
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
|
|
268
260
|
"""
|
|
@@ -300,8 +292,7 @@ class AveragePool(Base):
|
|
|
300
292
|
|
|
301
293
|
@staticmethod
|
|
302
294
|
def export_averagepool_2d_same_lower() -> None:
|
|
303
|
-
"""
|
|
304
|
-
input_shape: [1, 3, 32, 32]
|
|
295
|
+
"""input_shape: [1, 3, 32, 32]
|
|
305
296
|
output_shape: [1, 3, 32, 32]
|
|
306
297
|
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
|
|
307
298
|
"""
|
|
@@ -339,8 +330,7 @@ class AveragePool(Base):
|
|
|
339
330
|
|
|
340
331
|
@staticmethod
|
|
341
332
|
def export_averagepool_2d_pads() -> None:
|
|
342
|
-
"""
|
|
343
|
-
input_shape: [1, 3, 28, 28]
|
|
333
|
+
"""input_shape: [1, 3, 28, 28]
|
|
344
334
|
output_shape: [1, 3, 30, 30]
|
|
345
335
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
346
336
|
"""
|
|
@@ -375,8 +365,7 @@ class AveragePool(Base):
|
|
|
375
365
|
|
|
376
366
|
@staticmethod
|
|
377
367
|
def export_averagepool_2d_pads_count_include_pad() -> None:
|
|
378
|
-
"""
|
|
379
|
-
input_shape: [1, 3, 28, 28]
|
|
368
|
+
"""input_shape: [1, 3, 28, 28]
|
|
380
369
|
output_shape: [1, 3, 30, 30]
|
|
381
370
|
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
|
|
382
371
|
"""
|
|
@@ -427,8 +416,7 @@ class AveragePool(Base):
|
|
|
427
416
|
|
|
428
417
|
@staticmethod
|
|
429
418
|
def export_averagepool_2d_strides() -> None:
|
|
430
|
-
"""
|
|
431
|
-
input_shape: [1, 3, 32, 32]
|
|
419
|
+
"""input_shape: [1, 3, 32, 32]
|
|
432
420
|
output_shape: [1, 3, 10, 10]
|
|
433
421
|
"""
|
|
434
422
|
node = onnx.helper.make_node(
|
|
@@ -452,8 +440,7 @@ class AveragePool(Base):
|
|
|
452
440
|
|
|
453
441
|
@staticmethod
|
|
454
442
|
def export_averagepool_2d_ceil() -> None:
|
|
455
|
-
"""
|
|
456
|
-
input_shape: [1, 1, 4, 4]
|
|
443
|
+
"""input_shape: [1, 1, 4, 4]
|
|
457
444
|
output_shape: [1, 1, 2, 2]
|
|
458
445
|
"""
|
|
459
446
|
node = onnx.helper.make_node(
|
|
@@ -482,8 +469,7 @@ class AveragePool(Base):
|
|
|
482
469
|
|
|
483
470
|
@staticmethod
|
|
484
471
|
def export_averagepool_2d_dilations() -> None:
|
|
485
|
-
"""
|
|
486
|
-
input_shape: [1, 1, 4, 4]
|
|
472
|
+
"""input_shape: [1, 1, 4, 4]
|
|
487
473
|
output_shape: [1, 1, 2, 2]
|
|
488
474
|
"""
|
|
489
475
|
node = onnx.helper.make_node(
|
|
@@ -516,8 +502,7 @@ class AveragePool(Base):
|
|
|
516
502
|
|
|
517
503
|
@staticmethod
|
|
518
504
|
def export_averagepool_3d_dilations() -> None:
|
|
519
|
-
"""
|
|
520
|
-
input_shape: [1, 1, 4, 4]
|
|
505
|
+
"""input_shape: [1, 1, 4, 4]
|
|
521
506
|
output_shape: [1, 1, 2, 2]
|
|
522
507
|
"""
|
|
523
508
|
node = onnx.helper.make_node(
|
|
@@ -7,7 +7,8 @@ import sys
|
|
|
7
7
|
import numpy as np
|
|
8
8
|
|
|
9
9
|
import onnx
|
|
10
|
-
|
|
10
|
+
import onnx.reference.custom_element_types as custom
|
|
11
|
+
from onnx import TensorProto, helper, subbyte
|
|
11
12
|
from onnx.backend.test.case.base import Base
|
|
12
13
|
from onnx.backend.test.case.node import expect
|
|
13
14
|
from onnx.helper import (
|
|
@@ -50,10 +51,27 @@ class Cast(Base):
|
|
|
50
51
|
("FLOAT8E5M2", "FLOAT16"),
|
|
51
52
|
("FLOAT8E5M2FNUZ", "FLOAT"),
|
|
52
53
|
("FLOAT8E5M2FNUZ", "FLOAT16"),
|
|
54
|
+
("FLOAT", "UINT4"),
|
|
55
|
+
("FLOAT16", "UINT4"),
|
|
56
|
+
("FLOAT", "INT4"),
|
|
57
|
+
("FLOAT16", "INT4"),
|
|
58
|
+
("UINT4", "FLOAT"),
|
|
59
|
+
("UINT4", "FLOAT16"),
|
|
60
|
+
("UINT4", "UINT8"),
|
|
61
|
+
("INT4", "FLOAT"),
|
|
62
|
+
("INT4", "FLOAT16"),
|
|
63
|
+
("INT4", "INT8"),
|
|
53
64
|
]
|
|
54
65
|
|
|
55
66
|
vect_float32_to_float8e4m3 = np.vectorize(float32_to_float8e4m3)
|
|
56
67
|
vect_float32_to_float8e5m2 = np.vectorize(float32_to_float8e5m2)
|
|
68
|
+
vect_float32_to_uint4 = np.vectorize(
|
|
69
|
+
lambda x: subbyte.float32_to_4bit_unpacked(x, signed=False)
|
|
70
|
+
)
|
|
71
|
+
vect_float32_to_int4 = np.vectorize(
|
|
72
|
+
lambda x: subbyte.float32_to_4bit_unpacked(x, signed=True)
|
|
73
|
+
)
|
|
74
|
+
|
|
57
75
|
f8_types = ("FLOAT8E4M3FN", "FLOAT8E4M3FNUZ", "FLOAT8E5M2", "FLOAT8E5M2FNUZ")
|
|
58
76
|
|
|
59
77
|
for from_type, to_type in test_cases:
|
|
@@ -124,6 +142,9 @@ class Cast(Base):
|
|
|
124
142
|
"INF",
|
|
125
143
|
"+INF",
|
|
126
144
|
"-INF",
|
|
145
|
+
"-0.0000001",
|
|
146
|
+
"0.0000001",
|
|
147
|
+
"-1000000",
|
|
127
148
|
],
|
|
128
149
|
dtype=np.float32,
|
|
129
150
|
)
|
|
@@ -131,33 +152,33 @@ class Cast(Base):
|
|
|
131
152
|
if from_type == "FLOAT":
|
|
132
153
|
input_values = np_fp32
|
|
133
154
|
input = make_tensor(
|
|
134
|
-
"x", TensorProto.FLOAT, [3,
|
|
155
|
+
"x", TensorProto.FLOAT, [3, 5], np_fp32.tolist()
|
|
135
156
|
)
|
|
136
157
|
elif from_type == "FLOAT16":
|
|
137
158
|
input_values = np_fp32.astype(np.float16).astype(np.float32)
|
|
138
159
|
input = make_tensor(
|
|
139
|
-
"x", TensorProto.FLOAT16, [3,
|
|
160
|
+
"x", TensorProto.FLOAT16, [3, 5], input_values.tolist()
|
|
140
161
|
)
|
|
141
162
|
elif from_type == "FLOAT8E4M3FN":
|
|
142
163
|
input_values = float8e4m3_to_float32(
|
|
143
164
|
vect_float32_to_float8e4m3(np_fp32)
|
|
144
165
|
)
|
|
145
166
|
input = make_tensor(
|
|
146
|
-
"x", TensorProto.FLOAT8E4M3FN, [3,
|
|
167
|
+
"x", TensorProto.FLOAT8E4M3FN, [3, 5], input_values.tolist()
|
|
147
168
|
)
|
|
148
169
|
elif from_type == "FLOAT8E4M3FNUZ":
|
|
149
170
|
input_values = float8e4m3_to_float32(
|
|
150
171
|
vect_float32_to_float8e4m3(np_fp32, uz=True), uz=True
|
|
151
172
|
)
|
|
152
173
|
input = make_tensor(
|
|
153
|
-
"x", TensorProto.FLOAT8E4M3FNUZ, [3,
|
|
174
|
+
"x", TensorProto.FLOAT8E4M3FNUZ, [3, 5], input_values.tolist()
|
|
154
175
|
)
|
|
155
176
|
elif from_type == "FLOAT8E5M2":
|
|
156
177
|
input_values = float8e5m2_to_float32(
|
|
157
178
|
vect_float32_to_float8e5m2(np_fp32)
|
|
158
179
|
)
|
|
159
180
|
input = make_tensor(
|
|
160
|
-
"x", TensorProto.FLOAT8E5M2, [3,
|
|
181
|
+
"x", TensorProto.FLOAT8E5M2, [3, 5], input_values.tolist()
|
|
161
182
|
)
|
|
162
183
|
elif from_type == "FLOAT8E5M2FNUZ":
|
|
163
184
|
input_values = float8e5m2_to_float32(
|
|
@@ -166,7 +187,7 @@ class Cast(Base):
|
|
|
166
187
|
uz=True,
|
|
167
188
|
)
|
|
168
189
|
input = make_tensor(
|
|
169
|
-
"x", TensorProto.FLOAT8E5M2FNUZ, [3,
|
|
190
|
+
"x", TensorProto.FLOAT8E5M2FNUZ, [3, 5], input_values.tolist()
|
|
170
191
|
)
|
|
171
192
|
else:
|
|
172
193
|
raise ValueError(
|
|
@@ -200,9 +221,62 @@ class Cast(Base):
|
|
|
200
221
|
"Conversion from {from_type} to {to_type} is not tested."
|
|
201
222
|
)
|
|
202
223
|
expected_tensor = make_tensor(
|
|
203
|
-
"x", getattr(TensorProto, to_type), [3,
|
|
224
|
+
"x", getattr(TensorProto, to_type), [3, 5], expected.tolist()
|
|
225
|
+
)
|
|
226
|
+
output = expected_tensor
|
|
227
|
+
elif from_type in ("UINT4", "INT4") or to_type in ("UINT4", "INT4"):
|
|
228
|
+
np_fp32 = np.arange(-9, 16).astype(np.float32)
|
|
229
|
+
input_shape = (5, 5)
|
|
230
|
+
if from_type == "FLOAT":
|
|
231
|
+
input_values = np_fp32
|
|
232
|
+
input = make_tensor(
|
|
233
|
+
"x", TensorProto.FLOAT, input_shape, input_values.tolist()
|
|
234
|
+
)
|
|
235
|
+
elif from_type == "FLOAT16":
|
|
236
|
+
input_values = np_fp32.astype(np.float16)
|
|
237
|
+
input = make_tensor(
|
|
238
|
+
"x", TensorProto.FLOAT16, input_shape, input_values.tolist()
|
|
239
|
+
)
|
|
240
|
+
elif from_type == "UINT4":
|
|
241
|
+
input_values = vect_float32_to_uint4(np_fp32)
|
|
242
|
+
input = make_tensor(
|
|
243
|
+
"x", TensorProto.UINT4, input_shape, input_values.tolist()
|
|
244
|
+
)
|
|
245
|
+
elif from_type == "INT4":
|
|
246
|
+
input_values = vect_float32_to_int4(np_fp32)
|
|
247
|
+
input = make_tensor(
|
|
248
|
+
"x", TensorProto.INT4, input_shape, input_values.tolist()
|
|
249
|
+
)
|
|
250
|
+
else:
|
|
251
|
+
raise ValueError(
|
|
252
|
+
"Conversion from {from_type} to {to_type} is not tested."
|
|
253
|
+
)
|
|
254
|
+
if to_type == "UINT4":
|
|
255
|
+
expected = vect_float32_to_uint4(input_values).astype(custom.uint4)
|
|
256
|
+
elif to_type == "INT4":
|
|
257
|
+
expected = vect_float32_to_int4(input_values).astype(custom.int4)
|
|
258
|
+
elif to_type == "FLOAT16":
|
|
259
|
+
expected = input_values.astype(np.float16)
|
|
260
|
+
elif to_type == "FLOAT":
|
|
261
|
+
expected = input_values
|
|
262
|
+
elif to_type == "UINT8":
|
|
263
|
+
expected = input_values.astype(np.uint8)
|
|
264
|
+
elif to_type == "INT8":
|
|
265
|
+
expected = input_values.astype(np.int8)
|
|
266
|
+
else:
|
|
267
|
+
raise ValueError(
|
|
268
|
+
"Conversion from {from_type} to {to_type} is not tested."
|
|
269
|
+
)
|
|
270
|
+
expected_tensor = make_tensor(
|
|
271
|
+
"y", getattr(TensorProto, to_type), input_shape, expected.tolist()
|
|
204
272
|
)
|
|
205
273
|
output = expected_tensor
|
|
274
|
+
input_type_proto = onnx.helper.make_tensor_type_proto(
|
|
275
|
+
getattr(TensorProto, from_type), input_shape
|
|
276
|
+
)
|
|
277
|
+
output_type_proto = onnx.helper.make_tensor_type_proto(
|
|
278
|
+
getattr(TensorProto, to_type), input_shape
|
|
279
|
+
)
|
|
206
280
|
|
|
207
281
|
elif from_type != "STRING":
|
|
208
282
|
input = np.random.random_sample(shape).astype(
|
|
@@ -295,17 +369,20 @@ class Cast(Base):
|
|
|
295
369
|
"INF",
|
|
296
370
|
"+INF",
|
|
297
371
|
"-INF",
|
|
372
|
+
"-0.0000001",
|
|
373
|
+
"0.0000001",
|
|
374
|
+
"-1000000",
|
|
298
375
|
],
|
|
299
376
|
dtype=np.float32,
|
|
300
377
|
)
|
|
301
378
|
|
|
302
379
|
if from_type == "FLOAT":
|
|
303
380
|
input_values = np_fp32
|
|
304
|
-
input = make_tensor("x", TensorProto.FLOAT, [3,
|
|
381
|
+
input = make_tensor("x", TensorProto.FLOAT, [3, 5], np_fp32.tolist())
|
|
305
382
|
elif from_type == "FLOAT16":
|
|
306
383
|
input_values = np_fp32.astype(np.float16).astype(np.float32)
|
|
307
384
|
input = make_tensor(
|
|
308
|
-
"x", TensorProto.FLOAT16, [3,
|
|
385
|
+
"x", TensorProto.FLOAT16, [3, 5], input_values.tolist()
|
|
309
386
|
)
|
|
310
387
|
else:
|
|
311
388
|
raise ValueError(
|
|
@@ -333,7 +410,7 @@ class Cast(Base):
|
|
|
333
410
|
tensor = TensorProto()
|
|
334
411
|
tensor.data_type = getattr(TensorProto, to_type)
|
|
335
412
|
tensor.name = "x"
|
|
336
|
-
tensor.dims.extend([3,
|
|
413
|
+
tensor.dims.extend([3, 5])
|
|
337
414
|
field = tensor_dtype_to_field(tensor.data_type)
|
|
338
415
|
getattr(tensor, field).extend(ivals)
|
|
339
416
|
|