onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +10 -10
- onnx/backend/base.py +13 -14
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/case/model/__init__.py +0 -1
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
- onnx/backend/test/case/node/averagepool.py +15 -30
- onnx/backend/test/case/node/cast.py +88 -11
- onnx/backend/test/case/node/dequantizelinear.py +155 -0
- onnx/backend/test/case/node/groupnormalization.py +13 -9
- onnx/backend/test/case/node/gru.py +2 -2
- onnx/backend/test/case/node/isinf.py +4 -4
- onnx/backend/test/case/node/isnan.py +2 -2
- onnx/backend/test/case/node/lppool.py +8 -16
- onnx/backend/test/case/node/lstm.py +1 -1
- onnx/backend/test/case/node/maxpool.py +40 -34
- onnx/backend/test/case/node/pow.py +1 -1
- onnx/backend/test/case/node/qlinearmatmul.py +143 -109
- onnx/backend/test/case/node/quantizelinear.py +298 -7
- onnx/backend/test/case/node/reducemax.py +26 -0
- onnx/backend/test/case/node/rnn.py +1 -1
- onnx/backend/test/case/node/scan.py +6 -2
- onnx/backend/test/case/node/scatterelements.py +1 -1
- onnx/backend/test/case/node/topk.py +1 -1
- onnx/backend/test/case/utils.py +1 -3
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +0 -1
- onnx/backend/test/runner/__init__.py +43 -15
- onnx/checker.cc +104 -99
- onnx/checker.h +23 -3
- onnx/checker.py +56 -20
- onnx/common/assertions.cc +10 -5
- onnx/common/common.h +19 -0
- onnx/common/file_utils.h +3 -1
- onnx/common/interned_strings.h +7 -1
- onnx/common/ir.h +30 -7
- onnx/common/ir_pb_converter.cc +6 -0
- onnx/common/path.h +18 -2
- onnx/common/proto_util.h +43 -0
- onnx/common/version.h +1 -1
- onnx/cpp2py_export.cc +88 -56
- onnx/defs/__init__.py +29 -8
- onnx/defs/controlflow/defs.cc +16 -16
- onnx/defs/controlflow/old.cc +177 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +2 -0
- onnx/defs/generator/defs.cc +6 -4
- onnx/defs/generator/old.cc +115 -0
- onnx/defs/math/defs.cc +37 -142
- onnx/defs/math/old.cc +96 -12
- onnx/defs/math/utils.cc +127 -0
- onnx/defs/math/utils.h +8 -0
- onnx/defs/nn/defs.cc +72 -59
- onnx/defs/nn/old.cc +181 -2
- onnx/defs/object_detection/defs.cc +2 -2
- onnx/defs/object_detection/old.cc +2 -2
- onnx/defs/operator_sets.h +51 -0
- onnx/defs/operator_sets_ml.h +14 -0
- onnx/defs/parser.cc +112 -54
- onnx/defs/parser.h +14 -2
- onnx/defs/printer.cc +14 -7
- onnx/defs/quantization/defs.cc +111 -44
- onnx/defs/quantization/old.cc +130 -1
- onnx/defs/schema.cc +62 -18
- onnx/defs/schema.h +194 -48
- onnx/defs/shape_inference.cc +28 -19
- onnx/defs/shape_inference.h +2 -0
- onnx/defs/tensor/defs.cc +54 -96
- onnx/defs/tensor/old.cc +939 -34
- onnx/defs/tensor/utils.cc +6 -3
- onnx/defs/tensor/utils.h +5 -1
- onnx/defs/tensor_proto_util.cc +2 -0
- onnx/defs/tensor_util.cc +2 -0
- onnx/defs/traditionalml/defs.cc +273 -117
- onnx/defs/traditionalml/old.cc +329 -14
- onnx/defs/traditionalml/utils.h +27 -0
- onnx/external_data_helper.py +12 -26
- onnx/helper.py +242 -169
- onnx/hub.py +104 -70
- onnx/inliner/inliner.cc +89 -31
- onnx/inliner/inliner.h +5 -0
- onnx/inliner.py +2 -0
- onnx/mapping.py +9 -0
- onnx/model_container.py +346 -0
- onnx/numpy_helper.py +100 -38
- onnx/onnx-ml.proto +50 -13
- onnx/onnx.in.proto +50 -13
- onnx/onnx.proto +50 -13
- onnx/onnx_cpp2py_export/__init__.pyi +5 -0
- onnx/onnx_cpp2py_export/checker.pyi +21 -0
- onnx/onnx_cpp2py_export/defs.pyi +202 -0
- onnx/onnx_cpp2py_export/inliner.pyi +19 -0
- onnx/onnx_cpp2py_export/parser.pyi +32 -0
- onnx/onnx_cpp2py_export/printer.pyi +3 -0
- onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
- onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
- onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +146 -0
- onnx/onnx_ml_pb2.py +52 -52
- onnx/onnx_ml_pb2.pyi +663 -0
- onnx/onnx_operators_ml_pb2.pyi +67 -0
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +2 -0
- onnx/reference/op_run.py +166 -121
- onnx/reference/ops/_op.py +27 -50
- onnx/reference/ops/_op_list.py +36 -24
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
- onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
- onnx/reference/ops/aionnxml/_op_list.py +16 -8
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
- onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
- onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
- onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
- onnx/reference/ops/experimental/_op_list.py +15 -8
- onnx/reference/ops/op_blackman_window.py +5 -6
- onnx/reference/ops/op_cast.py +22 -0
- onnx/reference/ops/op_cast_like.py +6 -0
- onnx/reference/ops/op_clip.py +5 -8
- onnx/reference/ops/op_col2im.py +1 -3
- onnx/reference/ops/op_constant.py +7 -1
- onnx/reference/ops/op_dequantize_linear.py +43 -40
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
- onnx/reference/ops/op_grid_sample.py +2 -4
- onnx/reference/ops/op_hamming_window.py +3 -6
- onnx/reference/ops/op_hann_window.py +3 -6
- onnx/reference/ops/op_if.py +4 -3
- onnx/reference/ops/op_loop.py +7 -9
- onnx/reference/ops/op_matmul.py +1 -2
- onnx/reference/ops/op_max_pool.py +5 -0
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_pool_common.py +3 -6
- onnx/reference/ops/op_qlinear_matmul.py +2 -2
- onnx/reference/ops/op_quantize_linear.py +166 -71
- onnx/reference/ops/op_resize.py +25 -21
- onnx/reference/ops/op_rnn.py +20 -12
- onnx/reference/ops/op_scan.py +23 -15
- onnx/reference/ops/op_scatter_elements.py +7 -6
- onnx/reference/ops/op_stft.py +3 -5
- onnx/reference/ops/op_string_normalizer.py +7 -7
- onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
- onnx/reference/ops/op_topk.py +9 -11
- onnx/reference/ops/op_unique.py +1 -1
- onnx/reference/reference_evaluator.py +119 -63
- onnx/shape_inference/implementation.cc +160 -127
- onnx/shape_inference.py +11 -10
- onnx/subbyte.py +72 -0
- onnx/test/__init__.pyi +6 -0
- onnx/test/checker_test.py +21 -1
- onnx/test/compose_test.py +26 -74
- onnx/test/cpp/inliner_test.cc +76 -1
- onnx/test/cpp/ir_test.cc +60 -0
- onnx/test/cpp/parser_test.cc +106 -0
- onnx/test/function_test.py +1 -3
- onnx/test/helper_test.py +64 -4
- onnx/test/model_container_refeval_test.py +139 -0
- onnx/test/model_container_test.py +136 -0
- onnx/test/model_inference_test.py +44 -0
- onnx/test/reference_evaluator_ml_test.py +448 -47
- onnx/test/reference_evaluator_model_test.py +130 -0
- onnx/test/reference_evaluator_test.py +901 -14
- onnx/test/schema_test.py +166 -1
- onnx/test/shape_inference_test.py +285 -6
- onnx/test/symbolic_shape_test.py +3 -8
- onnx/test/test_backend_onnxruntime.py +238 -224
- onnx/test/test_backend_reference.py +11 -0
- onnx/test/test_external_data.py +51 -2
- onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
- onnx/test/version_converter/automatic_upgrade_test.py +12 -10
- onnx/test/version_converter_test.py +166 -0
- onnx/tools/replace_constants.py +23 -26
- onnx/tools/update_model_dims.py +1 -2
- onnx/version.py +2 -2
- onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
- onnx/version_converter/adapters/q_dq_21_20.h +77 -0
- onnx/version_converter/convert.h +67 -2
- onnx/version_converter.py +6 -142
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
- onnx/examples/Protobufs.ipynb +0 -639
- onnx/examples/check_model.ipynb +0 -128
- onnx/examples/load_model.ipynb +0 -116
- onnx/examples/make_model.ipynb +0 -176
- onnx/examples/np_array_tensorproto.ipynb +0 -136
- onnx/examples/resources/single_relu.onnx +0 -12
- onnx/examples/resources/single_relu_new.onnx +0 -12
- onnx/examples/resources/tensor.pb +0 -0
- onnx/examples/resources/two_transposes.onnx +0 -0
- onnx/examples/save_model.ipynb +0 -56
- onnx/examples/shape_inference.ipynb +0 -111
- onnx/test/reference_evaluator_backend_test.py +0 -876
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
onnx/defs/printer.cc
CHANGED
|
@@ -11,8 +11,7 @@
|
|
|
11
11
|
|
|
12
12
|
namespace ONNX_NAMESPACE {
|
|
13
13
|
|
|
14
|
-
using
|
|
15
|
-
using MetaDataProps = google::protobuf::RepeatedPtrField<StringStringEntryProto>;
|
|
14
|
+
using StringStringEntryProtos = google::protobuf::RepeatedPtrField<StringStringEntryProto>;
|
|
16
15
|
|
|
17
16
|
class ProtoPrinter {
|
|
18
17
|
public:
|
|
@@ -58,11 +57,11 @@ class ProtoPrinter {
|
|
|
58
57
|
|
|
59
58
|
void print(const OpsetIdList& opsets);
|
|
60
59
|
|
|
61
|
-
void print(const
|
|
62
|
-
printSet("[", ", ", "]",
|
|
60
|
+
void print(const StringStringEntryProtos& stringStringProtos) {
|
|
61
|
+
printSet("[", ", ", "]", stringStringProtos);
|
|
63
62
|
}
|
|
64
63
|
|
|
65
|
-
void print(const
|
|
64
|
+
void print(const StringStringEntryProto& metadata) {
|
|
66
65
|
printQuoted(metadata.key());
|
|
67
66
|
output_ << ": ";
|
|
68
67
|
printQuoted(metadata.value());
|
|
@@ -197,8 +196,10 @@ void ProtoPrinter::print(const TensorProto& tensor, bool is_initializer) {
|
|
|
197
196
|
if (is_initializer) {
|
|
198
197
|
output_ << " = ";
|
|
199
198
|
}
|
|
200
|
-
// TODO: does not yet handle all types
|
|
201
|
-
if (tensor.
|
|
199
|
+
// TODO: does not yet handle all types
|
|
200
|
+
if (tensor.has_data_location() && tensor.data_location() == TensorProto_DataLocation_EXTERNAL) {
|
|
201
|
+
print(tensor.external_data());
|
|
202
|
+
} else if (tensor.has_raw_data()) {
|
|
202
203
|
switch (static_cast<TensorProto::DataType>(tensor.data_type())) {
|
|
203
204
|
case TensorProto::DataType::TensorProto_DataType_INT32:
|
|
204
205
|
printSet(" {", ",", "}", ParseData<int32_t>(&tensor));
|
|
@@ -335,6 +336,8 @@ void ProtoPrinter::print(const NodeProto& node) {
|
|
|
335
336
|
if (node.domain() != "")
|
|
336
337
|
output_ << node.domain() << ".";
|
|
337
338
|
output_ << node.op_type();
|
|
339
|
+
if (node.overload() != "")
|
|
340
|
+
output_ << ":" << node.overload();
|
|
338
341
|
bool has_subgraph = false;
|
|
339
342
|
for (auto attr : node.attribute())
|
|
340
343
|
if (attr.has_g() || (attr.graphs_size() > 0))
|
|
@@ -414,6 +417,10 @@ void ProtoPrinter::print(const FunctionProto& fn) {
|
|
|
414
417
|
output_ << "<\n";
|
|
415
418
|
output_ << " "
|
|
416
419
|
<< "domain: \"" << fn.domain() << "\",\n";
|
|
420
|
+
if (!fn.overload().empty())
|
|
421
|
+
output_ << " "
|
|
422
|
+
<< "overload: \"" << fn.overload() << "\",\n";
|
|
423
|
+
|
|
417
424
|
output_ << " "
|
|
418
425
|
<< "opset_import: ";
|
|
419
426
|
printSet("[", ",", "]", fn.opset_import());
|
onnx/defs/quantization/defs.cc
CHANGED
|
@@ -7,40 +7,59 @@
|
|
|
7
7
|
|
|
8
8
|
namespace ONNX_NAMESPACE {
|
|
9
9
|
|
|
10
|
-
static const char*
|
|
11
|
-
The linear quantization operator
|
|
12
|
-
The scale factor and zero point must have same shape,
|
|
13
|
-
The quantization formula is `y = saturate
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
10
|
+
static const char* QuantizeLinear_ver21_doc = R"DOC(
|
|
11
|
+
The linear quantization operator consumes a high-precision tensor, a scale, and a zero point to compute the
|
|
12
|
+
low-precision/quantized tensor. The scale factor and zero point must have the same shape, determining the quantization
|
|
13
|
+
granularity. The quantization formula is `y = saturate((x / y_scale) + y_zero_point)`.
|
|
14
|
+
|
|
15
|
+
Saturation is done according to:
|
|
16
|
+
- uint16: [0, 65535]
|
|
17
|
+
- int16: [-32768, 32767]
|
|
18
|
+
- uint8: [0, 255]
|
|
19
|
+
- int8: [-128, 127]
|
|
20
|
+
- uint4: [0, 15]
|
|
21
|
+
- int4: [-8, 7]
|
|
22
|
+
|
|
23
|
+
For `(x / y_scale)`, it rounds to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
|
|
24
|
+
|
|
25
|
+
`y_zero_point` and `y` must have the same type. `y_zero_point` is usually not used for quantization to float8 types, but the quantization
|
|
26
|
+
formula remains the same for consistency, and the type of the attribute `y_zero_point` still determines the quantization type.
|
|
27
|
+
|
|
28
|
+
There are three supported quantization granularities, determined by the shape of `y_scale`.
|
|
29
|
+
In all cases, `y_zero_point` must have the same shape as `y_scale`.
|
|
30
|
+
- Per-tensor (per-layer) quantization: `y_scale` is a scalar.
|
|
31
|
+
- Per-axis quantization: The scale must be a 1-D tensor, with the length of the quantization axis. For an input shape
|
|
32
|
+
`(D0, ..., Di, ..., Dn)` and `axis=i`, `y_scale` is a 1-D tensor of length `Di`.
|
|
33
|
+
- Blocked quantization: The scale's shape is identical to the input's shape, except for one dimension, in which
|
|
34
|
+
blocking is performed. Given `x` shape `(D0, ..., Di, ..., Dn)`, `axis=i`, and block size `B`: `y_scale` shape is
|
|
35
|
+
`(D0, ..., ceil(Di/B), ..., Dn)`.
|
|
20
36
|
)DOC";
|
|
21
37
|
|
|
22
38
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
23
39
|
QuantizeLinear,
|
|
24
|
-
|
|
40
|
+
21,
|
|
25
41
|
OpSchema()
|
|
26
42
|
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
|
|
27
43
|
.Input(
|
|
28
44
|
1,
|
|
29
45
|
"y_scale",
|
|
30
|
-
"Scale for doing quantization to get
|
|
31
|
-
"
|
|
46
|
+
"Scale for doing quantization to get `y`. For per-tensor/layer quantization the scale is a scalar, for "
|
|
47
|
+
"per-axis quantization it is a 1-D Tensor and for blocked quantization it has the same shape as the "
|
|
48
|
+
"input, except for one dimension in which blocking is performed.",
|
|
32
49
|
"T1")
|
|
33
50
|
.Input(
|
|
34
51
|
2,
|
|
35
52
|
"y_zero_point",
|
|
36
|
-
"Zero point for doing quantization to get
|
|
53
|
+
"Zero point for doing quantization to get `y`. Shape must match `y_scale`."
|
|
37
54
|
"Default is uint8 with zero point of 0 if it's not specified.",
|
|
38
55
|
"T2",
|
|
39
56
|
OpSchema::Optional)
|
|
40
|
-
.Output(0, "y", "N-D quantized output tensor. It has same shape as input
|
|
57
|
+
.Output(0, "y", "N-D quantized output tensor. It has same shape as input `x`.", "T2")
|
|
41
58
|
.Attr(
|
|
42
59
|
"axis",
|
|
43
|
-
"(Optional) The axis of the
|
|
60
|
+
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
|
|
61
|
+
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
|
|
62
|
+
"where `r = rank(input)`.",
|
|
44
63
|
AttributeProto::INT,
|
|
45
64
|
static_cast<int64_t>(1))
|
|
46
65
|
.Attr(
|
|
@@ -51,23 +70,56 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
51
70
|
"All cases are fully described in two tables inserted in the operator description.",
|
|
52
71
|
AttributeProto::INT,
|
|
53
72
|
static_cast<int64_t>(1))
|
|
73
|
+
.Attr(
|
|
74
|
+
"block_size",
|
|
75
|
+
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
|
|
76
|
+
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
|
|
77
|
+
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
|
|
78
|
+
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
|
|
79
|
+
AttributeProto::INT,
|
|
80
|
+
static_cast<int64_t>(0))
|
|
81
|
+
.Attr(
|
|
82
|
+
"output_dtype",
|
|
83
|
+
"(Optional) The output data type. If not supplied, the output data type is inferred from `y_zero_point` data type (`T2`). "
|
|
84
|
+
"If neither `output_dtype` nor `y_zero_point` are supplied, output data type is uint8. "
|
|
85
|
+
"If both `output_dtype` and `y_zero_point` are specified, `output_dtype` must be `T2`.",
|
|
86
|
+
AttributeProto::INT,
|
|
87
|
+
static_cast<int64_t>(0))
|
|
54
88
|
.TypeConstraint(
|
|
55
89
|
"T1",
|
|
56
90
|
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
|
|
57
|
-
"
|
|
91
|
+
"The type of the input 'x'.")
|
|
58
92
|
.TypeConstraint(
|
|
59
93
|
"T2",
|
|
60
94
|
{"tensor(int8)",
|
|
61
95
|
"tensor(uint8)",
|
|
96
|
+
"tensor(int16)",
|
|
97
|
+
"tensor(uint16)",
|
|
62
98
|
"tensor(float8e4m3fn)",
|
|
63
99
|
"tensor(float8e4m3fnuz)",
|
|
64
100
|
"tensor(float8e5m2)",
|
|
65
|
-
"tensor(float8e5m2fnuz)"
|
|
66
|
-
|
|
67
|
-
|
|
101
|
+
"tensor(float8e5m2fnuz)",
|
|
102
|
+
"tensor(uint4)",
|
|
103
|
+
"tensor(int4)"},
|
|
104
|
+
"The type of the input `y_zero_point` and the output `y`.")
|
|
105
|
+
.SetDoc(QuantizeLinear_ver21_doc)
|
|
68
106
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
69
|
-
|
|
107
|
+
auto const zp_type = ctx.hasInput(2) ? ctx.getInputType(2) : nullptr;
|
|
108
|
+
auto const output_dtype =
|
|
109
|
+
static_cast<TensorProto_DataType>(getAttribute(ctx, "output_dtype", TensorProto::UNDEFINED));
|
|
110
|
+
if (zp_type != nullptr) {
|
|
111
|
+
auto const zp_elem_type = static_cast<TensorProto_DataType>(getTensorElementType(*zp_type));
|
|
112
|
+
if (output_dtype != TensorProto::UNDEFINED && output_dtype != zp_elem_type) {
|
|
113
|
+
fail_type_inference(
|
|
114
|
+
"output_dtype ",
|
|
115
|
+
TensorProto_DataType_Name(output_dtype),
|
|
116
|
+
" does not match y_zero_point type ",
|
|
117
|
+
TensorProto_DataType_Name(zp_elem_type),
|
|
118
|
+
".");
|
|
119
|
+
}
|
|
70
120
|
propagateElemTypeFromInputToOutput(ctx, 2, 0);
|
|
121
|
+
} else if (output_dtype != TensorProto::UNDEFINED) {
|
|
122
|
+
propagateElemTypeFromAttributeToOutput(ctx, "output_dtype", 0);
|
|
71
123
|
} else {
|
|
72
124
|
updateOutputElemType(ctx, 0, TensorProto::UINT8);
|
|
73
125
|
}
|
|
@@ -79,63 +131,78 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
79
131
|
updateOutputShape(ctx, 0, input_shape);
|
|
80
132
|
}));
|
|
81
133
|
|
|
82
|
-
static const char*
|
|
83
|
-
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the
|
|
84
|
-
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point`
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
134
|
+
static const char* DequantizeLinear_ver21_doc = R"DOC(
|
|
135
|
+
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the
|
|
136
|
+
full-precision tensor. The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point`
|
|
137
|
+
must have the same shape, determining the quantization's granularity: a scalar for per-tensor/per-layer quantization,
|
|
138
|
+
a 1-D tensor for per-axis quantization, or have a rank identical to the input for blocked quantization.
|
|
139
|
+
See QuantizeLinear for details on quantization granularity.
|
|
140
|
+
|
|
141
|
+
`x_zero_point` and `x` must have the same type. `x` and `y` must have the same shape. In the case of dequantizing
|
|
142
|
+
`int32`, there's no zero point (zero point is supposed to be 0).
|
|
143
|
+
`zero-point` is usually not used in the case of float8 types quantization, but the dequantization formula remains the same
|
|
144
|
+
for consistency, and `x_scale` still determines the output type.
|
|
90
145
|
)DOC";
|
|
91
146
|
|
|
92
147
|
ONNX_OPERATOR_SET_SCHEMA(
|
|
93
148
|
DequantizeLinear,
|
|
94
|
-
|
|
149
|
+
21,
|
|
95
150
|
OpSchema()
|
|
96
151
|
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
|
|
97
152
|
.Input(
|
|
98
153
|
1,
|
|
99
154
|
"x_scale",
|
|
100
|
-
"Scale for input
|
|
101
|
-
"
|
|
155
|
+
"Scale for input `x`. For per-tensor/layer dequantization the scale is a scalar, for "
|
|
156
|
+
"per per-axis dequantization it is a 1-D Tensor and for blocked dequantization it has the same shape as "
|
|
157
|
+
"the input, except for one dimension in which blocking is performed.",
|
|
102
158
|
"T2")
|
|
103
159
|
.Input(
|
|
104
160
|
2,
|
|
105
161
|
"x_zero_point",
|
|
106
|
-
"Zero point for input
|
|
162
|
+
"Zero point for input `x`. Shape must match x_scale. "
|
|
107
163
|
"It's optional. Zero point is 0 when it's not specified.",
|
|
108
164
|
"T1",
|
|
109
165
|
OpSchema::Optional)
|
|
110
|
-
.Output(0, "y", "N-D full precision output tensor. It has same shape as input
|
|
166
|
+
.Output(0, "y", "N-D full precision output tensor. It has same shape as input `x`.", "T2")
|
|
111
167
|
.Attr(
|
|
112
168
|
"axis",
|
|
113
|
-
"(Optional) The axis of the dequantizing dimension of the input tensor.
|
|
169
|
+
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
|
|
170
|
+
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
|
|
171
|
+
"where `r = rank(input)`.",
|
|
114
172
|
AttributeProto::INT,
|
|
115
173
|
static_cast<int64_t>(1))
|
|
174
|
+
.Attr(
|
|
175
|
+
"block_size",
|
|
176
|
+
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
|
|
177
|
+
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
|
|
178
|
+
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
|
|
179
|
+
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
|
|
180
|
+
AttributeProto::INT,
|
|
181
|
+
static_cast<int64_t>(0))
|
|
116
182
|
.TypeConstraint(
|
|
117
183
|
"T1",
|
|
118
184
|
{"tensor(int8)",
|
|
119
185
|
"tensor(uint8)",
|
|
186
|
+
"tensor(int16)",
|
|
187
|
+
"tensor(uint16)",
|
|
120
188
|
"tensor(int32)",
|
|
121
189
|
"tensor(float8e4m3fn)",
|
|
122
190
|
"tensor(float8e4m3fnuz)",
|
|
123
191
|
"tensor(float8e5m2)",
|
|
124
|
-
"tensor(float8e5m2fnuz)"
|
|
125
|
-
|
|
192
|
+
"tensor(float8e5m2fnuz)",
|
|
193
|
+
"tensor(uint4)",
|
|
194
|
+
"tensor(int4)"},
|
|
195
|
+
"The type of the inputs 'x_zero_point' and 'x'.")
|
|
126
196
|
.TypeConstraint(
|
|
127
197
|
"T2",
|
|
128
198
|
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
|
|
129
199
|
"'x_scale' determines the output type.")
|
|
130
|
-
.SetDoc(
|
|
200
|
+
.SetDoc(DequantizeLinear_ver21_doc)
|
|
131
201
|
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT);
|
|
135
|
-
|
|
136
|
-
if (!hasInputShape(ctx, 0))
|
|
202
|
+
propagateElemTypeFromInputToOutput(ctx, 1, 0);
|
|
203
|
+
if (!hasInputShape(ctx, 0)) {
|
|
137
204
|
return;
|
|
138
|
-
|
|
205
|
+
}
|
|
139
206
|
auto& input_shape = getInputShape(ctx, 0);
|
|
140
207
|
updateOutputShape(ctx, 0, input_shape);
|
|
141
208
|
}));
|
onnx/defs/quantization/old.cc
CHANGED
|
@@ -7,6 +7,136 @@
|
|
|
7
7
|
|
|
8
8
|
namespace ONNX_NAMESPACE {
|
|
9
9
|
|
|
10
|
+
static const char* QuantizeLinear_ver19_doc = R"DOC(
|
|
11
|
+
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
|
|
12
|
+
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
13
|
+
The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`.
|
|
14
|
+
For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
|
|
15
|
+
For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
|
|
16
|
+
'y_zero_point' and 'y' must have same type.
|
|
17
|
+
'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz,
|
|
18
|
+
but the quantization formula remains the same for consistency and
|
|
19
|
+
the type of the attribute 'y_zero_point' still determines the quantization type.
|
|
20
|
+
)DOC";
|
|
21
|
+
|
|
22
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
23
|
+
QuantizeLinear,
|
|
24
|
+
19,
|
|
25
|
+
OpSchema()
|
|
26
|
+
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
|
|
27
|
+
.Input(
|
|
28
|
+
1,
|
|
29
|
+
"y_scale",
|
|
30
|
+
"Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
|
|
31
|
+
"or a 1-D Tensor for per-axis quantization.",
|
|
32
|
+
"T1")
|
|
33
|
+
.Input(
|
|
34
|
+
2,
|
|
35
|
+
"y_zero_point",
|
|
36
|
+
"Zero point for doing quantization to get 'y'. Shape must match y_scale. "
|
|
37
|
+
"Default is uint8 with zero point of 0 if it's not specified.",
|
|
38
|
+
"T2",
|
|
39
|
+
OpSchema::Optional)
|
|
40
|
+
.Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2")
|
|
41
|
+
.Attr(
|
|
42
|
+
"axis",
|
|
43
|
+
"(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
44
|
+
AttributeProto::INT,
|
|
45
|
+
static_cast<int64_t>(1))
|
|
46
|
+
.Attr(
|
|
47
|
+
"saturate",
|
|
48
|
+
"The parameter defines how the conversion behaves if an input value is out of "
|
|
49
|
+
"range of the destination type. It only applies for float 8 quantization "
|
|
50
|
+
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
|
|
51
|
+
"All cases are fully described in two tables inserted in the operator description.",
|
|
52
|
+
AttributeProto::INT,
|
|
53
|
+
static_cast<int64_t>(1))
|
|
54
|
+
.TypeConstraint(
|
|
55
|
+
"T1",
|
|
56
|
+
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
|
|
57
|
+
"Constrain 'x' to float, float16, bfloat16 or int32 tensor.")
|
|
58
|
+
.TypeConstraint(
|
|
59
|
+
"T2",
|
|
60
|
+
{"tensor(int8)",
|
|
61
|
+
"tensor(uint8)",
|
|
62
|
+
"tensor(float8e4m3fn)",
|
|
63
|
+
"tensor(float8e4m3fnuz)",
|
|
64
|
+
"tensor(float8e5m2)",
|
|
65
|
+
"tensor(float8e5m2fnuz)"},
|
|
66
|
+
"Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.")
|
|
67
|
+
.SetDoc(QuantizeLinear_ver19_doc)
|
|
68
|
+
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
69
|
+
if (ctx.hasInput(2)) {
|
|
70
|
+
propagateElemTypeFromInputToOutput(ctx, 2, 0);
|
|
71
|
+
} else {
|
|
72
|
+
updateOutputElemType(ctx, 0, TensorProto::UINT8);
|
|
73
|
+
}
|
|
74
|
+
if (!hasInputShape(ctx, 0)) {
|
|
75
|
+
return;
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
auto& input_shape = getInputShape(ctx, 0);
|
|
79
|
+
updateOutputShape(ctx, 0, input_shape);
|
|
80
|
+
}));
|
|
81
|
+
|
|
82
|
+
static const char* DequantizeLinear_ver19_doc = R"DOC(
|
|
83
|
+
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
|
|
84
|
+
The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
|
|
85
|
+
for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
86
|
+
`x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
|
|
87
|
+
there's no zero point (zero point is supposed to be 0).
|
|
88
|
+
`zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization,
|
|
89
|
+
but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type.
|
|
90
|
+
)DOC";
|
|
91
|
+
|
|
92
|
+
ONNX_OPERATOR_SET_SCHEMA(
|
|
93
|
+
DequantizeLinear,
|
|
94
|
+
19,
|
|
95
|
+
OpSchema()
|
|
96
|
+
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
|
|
97
|
+
.Input(
|
|
98
|
+
1,
|
|
99
|
+
"x_scale",
|
|
100
|
+
"Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
|
|
101
|
+
"or a 1-D tensor for per-axis dequantization.",
|
|
102
|
+
"T2")
|
|
103
|
+
.Input(
|
|
104
|
+
2,
|
|
105
|
+
"x_zero_point",
|
|
106
|
+
"Zero point for input 'x'. Shape must match x_scale. "
|
|
107
|
+
"It's optional. Zero point is 0 when it's not specified.",
|
|
108
|
+
"T1",
|
|
109
|
+
OpSchema::Optional)
|
|
110
|
+
.Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2")
|
|
111
|
+
.Attr(
|
|
112
|
+
"axis",
|
|
113
|
+
"(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
|
|
114
|
+
AttributeProto::INT,
|
|
115
|
+
static_cast<int64_t>(1))
|
|
116
|
+
.TypeConstraint(
|
|
117
|
+
"T1",
|
|
118
|
+
{"tensor(int8)",
|
|
119
|
+
"tensor(uint8)",
|
|
120
|
+
"tensor(int32)",
|
|
121
|
+
"tensor(float8e4m3fn)",
|
|
122
|
+
"tensor(float8e4m3fnuz)",
|
|
123
|
+
"tensor(float8e5m2)",
|
|
124
|
+
"tensor(float8e5m2fnuz)"},
|
|
125
|
+
"Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.")
|
|
126
|
+
.TypeConstraint(
|
|
127
|
+
"T2",
|
|
128
|
+
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
|
|
129
|
+
"'x_scale' determines the output type.")
|
|
130
|
+
.SetDoc(DequantizeLinear_ver19_doc)
|
|
131
|
+
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
|
|
132
|
+
propagateElemTypeFromInputToOutput(ctx, 1, 0);
|
|
133
|
+
if (!hasInputShape(ctx, 0)) {
|
|
134
|
+
return;
|
|
135
|
+
}
|
|
136
|
+
auto& input_shape = getInputShape(ctx, 0);
|
|
137
|
+
updateOutputShape(ctx, 0, input_shape);
|
|
138
|
+
}));
|
|
139
|
+
|
|
10
140
|
static const char* QuantizeLinear_ver13_doc = R"DOC(
|
|
11
141
|
The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
|
|
12
142
|
The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
|
|
@@ -54,7 +184,6 @@ ONNX_OPERATOR_SET_SCHEMA(
|
|
|
54
184
|
if (!hasInputShape(ctx, 0)) {
|
|
55
185
|
return;
|
|
56
186
|
}
|
|
57
|
-
|
|
58
187
|
auto& input_shape = getInputShape(ctx, 0);
|
|
59
188
|
updateOutputShape(ctx, 0, input_shape);
|
|
60
189
|
}));
|
onnx/defs/schema.cc
CHANGED
|
@@ -30,8 +30,31 @@ constexpr int OpSchema::kUninitializedSinceVersion;
|
|
|
30
30
|
|
|
31
31
|
// By default if opset_version_to_load=0, it registers all opset schema for all opset versions
|
|
32
32
|
// Otherwise, it only registers the latest schema according to opset_version_to_load
|
|
33
|
-
void RegisterSchema(
|
|
34
|
-
|
|
33
|
+
void RegisterSchema(
|
|
34
|
+
const OpSchema& schema,
|
|
35
|
+
int opset_version_to_load,
|
|
36
|
+
bool fail_duplicate_schema,
|
|
37
|
+
bool fail_with_exception) {
|
|
38
|
+
RegisterSchema(OpSchema(schema), opset_version_to_load, fail_duplicate_schema, fail_with_exception);
|
|
39
|
+
}
|
|
40
|
+
void RegisterSchema(
|
|
41
|
+
OpSchema&& schema,
|
|
42
|
+
int opset_version_to_load,
|
|
43
|
+
bool fail_duplicate_schema,
|
|
44
|
+
bool fail_with_exception) {
|
|
45
|
+
if (fail_with_exception) {
|
|
46
|
+
OpSchemaRegistry::OpSchemaRegisterOnce::OpSchemaRegisterImpl(
|
|
47
|
+
std::move(schema), opset_version_to_load, fail_duplicate_schema);
|
|
48
|
+
} else {
|
|
49
|
+
OpSchemaRegistry::OpSchemaRegisterOnce::OpSchemaRegisterNoExcept(
|
|
50
|
+
std::move(schema), opset_version_to_load, fail_duplicate_schema);
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
// The (name, version, domain) must match the target exactly
|
|
55
|
+
// Otherwise will raise an SchemaError
|
|
56
|
+
void DeregisterSchema(const std::string& op_type, int version, const std::string& domain) {
|
|
57
|
+
OpSchemaRegistry::OpSchemaDeregister(op_type, version, domain);
|
|
35
58
|
}
|
|
36
59
|
|
|
37
60
|
#ifndef NDEBUG
|
|
@@ -84,6 +107,30 @@ OpSchemaRegistry* OpSchemaRegistry::Instance() {
|
|
|
84
107
|
|
|
85
108
|
void OpSchema::CheckInputOutputType(struct InferenceContext& ctx) const {
|
|
86
109
|
std::unordered_map<std::string, std::string> type_constraints;
|
|
110
|
+
if (inputs_.empty() && ctx.getNumInputs() > 0) {
|
|
111
|
+
fail_check(
|
|
112
|
+
"Node (",
|
|
113
|
+
domain(),
|
|
114
|
+
"::",
|
|
115
|
+
Name(),
|
|
116
|
+
":",
|
|
117
|
+
since_version(),
|
|
118
|
+
") takes zero inputs, but got ",
|
|
119
|
+
ctx.getNumInputs(),
|
|
120
|
+
" in graph");
|
|
121
|
+
}
|
|
122
|
+
if (outputs_.empty() && ctx.getNumOutputs() > 0) {
|
|
123
|
+
fail_check(
|
|
124
|
+
"Node (",
|
|
125
|
+
domain(),
|
|
126
|
+
"::",
|
|
127
|
+
Name(),
|
|
128
|
+
":",
|
|
129
|
+
since_version(),
|
|
130
|
+
") yields zero outputs, but got ",
|
|
131
|
+
ctx.getNumOutputs(),
|
|
132
|
+
" in graph");
|
|
133
|
+
}
|
|
87
134
|
// check all input types
|
|
88
135
|
for (size_t in_idx = 0; in_idx < ctx.getNumInputs(); ++in_idx) {
|
|
89
136
|
// If the last input is Variadic by definition, checker still needs to check the rest of actual input's type
|
|
@@ -262,7 +309,14 @@ void OpSchema::Verify(const NodeProto& node) const {
|
|
|
262
309
|
|
|
263
310
|
// Type would be UNDEFINED if not set
|
|
264
311
|
if (attr_proto.type() != expected_type) {
|
|
265
|
-
fail_check(
|
|
312
|
+
fail_check(
|
|
313
|
+
"Mismatched attribute type in '",
|
|
314
|
+
node.name() + " : " + name,
|
|
315
|
+
"'. Expected: '",
|
|
316
|
+
AttributeProto_AttributeType_Name(expected_type),
|
|
317
|
+
"', actual: '",
|
|
318
|
+
AttributeProto_AttributeType_Name(attr_proto.type()),
|
|
319
|
+
"'");
|
|
266
320
|
}
|
|
267
321
|
|
|
268
322
|
// ref_attr_name is only valid when non-empty
|
|
@@ -438,21 +492,6 @@ OpSchema& OpSchema::Attr(std::string name, std::string description, AttributePro
|
|
|
438
492
|
return *this;
|
|
439
493
|
}
|
|
440
494
|
|
|
441
|
-
OpSchema& OpSchema::Attr(
|
|
442
|
-
std::string name,
|
|
443
|
-
std::string description,
|
|
444
|
-
std::string conditionExplanation,
|
|
445
|
-
AttributeProto::AttributeType attr_type) {
|
|
446
|
-
AttributeProto a;
|
|
447
|
-
a.set_name(name);
|
|
448
|
-
a.set_type(attr_type);
|
|
449
|
-
if (attr_type == AttributeProto_AttributeType_UNDEFINED) {
|
|
450
|
-
a.mutable_t()->set_data_type(TensorProto_DataType_UNDEFINED);
|
|
451
|
-
}
|
|
452
|
-
a.mutable_doc_string()->assign(std::move(conditionExplanation));
|
|
453
|
-
return Attr(Attribute{std::move(name), std::move(description), std::move(a)});
|
|
454
|
-
}
|
|
455
|
-
|
|
456
495
|
OpSchema& OpSchema::Attr(const char* name, const char* description, AttributeProto::AttributeType type, bool required) {
|
|
457
496
|
return Attr(std::string(name), std::string(description), type, required);
|
|
458
497
|
}
|
|
@@ -927,6 +966,11 @@ void OpSchema::Finalize() {
|
|
|
927
966
|
// all inputs or std::numeric_limits<int>::max() (if the last input is
|
|
928
967
|
// variadic).
|
|
929
968
|
|
|
969
|
+
max_input_ = 0;
|
|
970
|
+
min_input_ = 0;
|
|
971
|
+
min_output_ = 0;
|
|
972
|
+
max_output_ = 0;
|
|
973
|
+
|
|
930
974
|
// Flag indicates whether an optional input is trailing one (there's no single
|
|
931
975
|
// or variadic input behind).
|
|
932
976
|
for (size_t i = 0; i < inputs_.size(); ++i) {
|