onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (584) hide show
  1. onnx/__init__.py +10 -10
  2. onnx/backend/base.py +13 -14
  3. onnx/backend/sample/ops/abs.py +1 -1
  4. onnx/backend/test/case/model/__init__.py +0 -1
  5. onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
  6. onnx/backend/test/case/node/averagepool.py +15 -30
  7. onnx/backend/test/case/node/cast.py +88 -11
  8. onnx/backend/test/case/node/dequantizelinear.py +155 -0
  9. onnx/backend/test/case/node/groupnormalization.py +13 -9
  10. onnx/backend/test/case/node/gru.py +2 -2
  11. onnx/backend/test/case/node/isinf.py +4 -4
  12. onnx/backend/test/case/node/isnan.py +2 -2
  13. onnx/backend/test/case/node/lppool.py +8 -16
  14. onnx/backend/test/case/node/lstm.py +1 -1
  15. onnx/backend/test/case/node/maxpool.py +40 -34
  16. onnx/backend/test/case/node/pow.py +1 -1
  17. onnx/backend/test/case/node/qlinearmatmul.py +143 -109
  18. onnx/backend/test/case/node/quantizelinear.py +298 -7
  19. onnx/backend/test/case/node/reducemax.py +26 -0
  20. onnx/backend/test/case/node/rnn.py +1 -1
  21. onnx/backend/test/case/node/scan.py +6 -2
  22. onnx/backend/test/case/node/scatterelements.py +1 -1
  23. onnx/backend/test/case/node/topk.py +1 -1
  24. onnx/backend/test/case/utils.py +1 -3
  25. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
  26. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
  27. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
  28. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
  29. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
  30. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
  31. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  32. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  33. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  34. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  35. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  36. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  37. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
  38. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  39. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  40. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
  41. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  42. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  43. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
  44. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  45. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  46. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
  47. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  48. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
  49. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
  50. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
  51. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
  52. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
  53. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
  54. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  55. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  56. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  57. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  58. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  59. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  60. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  61. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  62. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  63. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  64. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  65. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  66. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  67. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  68. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  69. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  70. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  71. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  72. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  73. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  74. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  75. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  76. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  77. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  78. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  79. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  80. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  81. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  82. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  83. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  84. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  85. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  86. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  87. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  88. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  89. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  90. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  91. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  92. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  93. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
  94. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
  95. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
  96. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  97. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
  98. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
  99. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
  100. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
  101. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  102. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  103. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
  104. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
  105. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  106. onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
  107. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
  108. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
  109. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  110. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
  111. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  112. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  113. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
  114. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  115. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  116. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
  117. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
  118. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
  119. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  120. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
  121. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  122. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  123. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
  124. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  125. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  126. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
  127. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  128. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  129. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
  130. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  131. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  132. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  133. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  134. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  135. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  136. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  137. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  138. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  139. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  140. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  141. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  142. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  143. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  144. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  145. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  146. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  147. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  148. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  149. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  150. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  151. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  152. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  153. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  154. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  155. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  156. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  157. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  158. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  159. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  160. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  161. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  162. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  163. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  164. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  165. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  166. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  167. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  168. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  169. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  170. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  171. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  172. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  173. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  174. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  175. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  176. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  177. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  178. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  179. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  180. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  181. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  182. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  183. onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
  184. onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
  185. onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
  186. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  187. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  188. onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
  189. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
  190. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
  191. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
  192. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
  193. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  194. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
  195. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
  196. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  197. onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
  198. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
  199. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
  200. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
  201. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
  202. onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
  203. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
  204. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
  205. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
  206. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
  207. onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
  208. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
  209. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
  210. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
  211. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
  212. onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
  213. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
  214. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
  215. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
  216. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
  217. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  218. onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
  219. onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
  220. onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
  221. onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
  222. onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
  223. onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
  224. onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
  225. onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
  226. onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
  228. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
  229. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
  230. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
  231. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
  232. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
  233. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
  234. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
  235. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
  236. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
  237. onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
  238. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
  239. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
  240. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
  241. onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
  242. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
  243. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
  244. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
  245. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  246. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  247. onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
  248. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
  250. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
  251. onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
  252. onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
  253. onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
  254. onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
  255. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
  256. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
  257. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
  258. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
  259. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
  260. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
  261. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
  262. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
  263. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
  264. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
  265. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
  266. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
  267. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
  268. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
  269. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
  270. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
  271. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
  272. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
  273. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
  274. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
  275. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
  276. onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
  277. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
  278. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
  279. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
  280. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
  281. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
  282. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
  283. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
  284. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
  285. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
  286. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
  287. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
  288. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
  289. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
  290. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
  291. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
  292. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
  293. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
  294. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
  295. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
  296. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
  297. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
  298. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
  299. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
  300. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
  301. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
  302. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
  303. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
  304. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
  305. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
  306. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
  307. onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
  308. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
  309. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
  310. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
  311. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
  312. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
  313. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
  314. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
  315. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
  316. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
  317. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  318. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  319. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
  320. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
  321. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
  322. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
  323. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
  324. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
  325. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
  326. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
  327. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
  328. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  329. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
  330. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  331. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  332. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
  333. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  334. onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
  335. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
  336. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
  337. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
  338. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
  339. onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
  340. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
  341. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
  342. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
  343. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
  344. onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
  345. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
  346. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
  347. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
  348. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
  349. onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
  350. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
  351. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
  352. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
  353. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
  354. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  355. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  356. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  357. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  359. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  360. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  361. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  362. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  364. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  365. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  366. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  367. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  368. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  369. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  370. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  371. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  372. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  373. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  374. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  375. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  376. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  377. onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
  379. onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
  380. onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
  381. onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
  382. onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
  383. onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
  384. onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
  385. onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
  386. onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
  387. onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
  389. onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
  390. onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
  391. onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
  392. onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
  393. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  394. onnx/backend/test/loader/__init__.py +0 -1
  395. onnx/backend/test/runner/__init__.py +43 -15
  396. onnx/checker.cc +104 -99
  397. onnx/checker.h +23 -3
  398. onnx/checker.py +56 -20
  399. onnx/common/assertions.cc +10 -5
  400. onnx/common/common.h +19 -0
  401. onnx/common/file_utils.h +3 -1
  402. onnx/common/interned_strings.h +7 -1
  403. onnx/common/ir.h +30 -7
  404. onnx/common/ir_pb_converter.cc +6 -0
  405. onnx/common/path.h +18 -2
  406. onnx/common/proto_util.h +43 -0
  407. onnx/common/version.h +1 -1
  408. onnx/cpp2py_export.cc +88 -56
  409. onnx/defs/__init__.py +29 -8
  410. onnx/defs/controlflow/defs.cc +16 -16
  411. onnx/defs/controlflow/old.cc +177 -0
  412. onnx/defs/data_propagators.h +2 -0
  413. onnx/defs/data_type_utils.cc +2 -0
  414. onnx/defs/generator/defs.cc +6 -4
  415. onnx/defs/generator/old.cc +115 -0
  416. onnx/defs/math/defs.cc +37 -142
  417. onnx/defs/math/old.cc +96 -12
  418. onnx/defs/math/utils.cc +127 -0
  419. onnx/defs/math/utils.h +8 -0
  420. onnx/defs/nn/defs.cc +72 -59
  421. onnx/defs/nn/old.cc +181 -2
  422. onnx/defs/object_detection/defs.cc +2 -2
  423. onnx/defs/object_detection/old.cc +2 -2
  424. onnx/defs/operator_sets.h +51 -0
  425. onnx/defs/operator_sets_ml.h +14 -0
  426. onnx/defs/parser.cc +112 -54
  427. onnx/defs/parser.h +14 -2
  428. onnx/defs/printer.cc +14 -7
  429. onnx/defs/quantization/defs.cc +111 -44
  430. onnx/defs/quantization/old.cc +130 -1
  431. onnx/defs/schema.cc +62 -18
  432. onnx/defs/schema.h +194 -48
  433. onnx/defs/shape_inference.cc +28 -19
  434. onnx/defs/shape_inference.h +2 -0
  435. onnx/defs/tensor/defs.cc +54 -96
  436. onnx/defs/tensor/old.cc +939 -34
  437. onnx/defs/tensor/utils.cc +6 -3
  438. onnx/defs/tensor/utils.h +5 -1
  439. onnx/defs/tensor_proto_util.cc +2 -0
  440. onnx/defs/tensor_util.cc +2 -0
  441. onnx/defs/traditionalml/defs.cc +273 -117
  442. onnx/defs/traditionalml/old.cc +329 -14
  443. onnx/defs/traditionalml/utils.h +27 -0
  444. onnx/external_data_helper.py +12 -26
  445. onnx/helper.py +242 -169
  446. onnx/hub.py +104 -70
  447. onnx/inliner/inliner.cc +89 -31
  448. onnx/inliner/inliner.h +5 -0
  449. onnx/inliner.py +2 -0
  450. onnx/mapping.py +9 -0
  451. onnx/model_container.py +346 -0
  452. onnx/numpy_helper.py +100 -38
  453. onnx/onnx-ml.proto +50 -13
  454. onnx/onnx.in.proto +50 -13
  455. onnx/onnx.proto +50 -13
  456. onnx/onnx_cpp2py_export/__init__.pyi +5 -0
  457. onnx/onnx_cpp2py_export/checker.pyi +21 -0
  458. onnx/onnx_cpp2py_export/defs.pyi +202 -0
  459. onnx/onnx_cpp2py_export/inliner.pyi +19 -0
  460. onnx/onnx_cpp2py_export/parser.pyi +32 -0
  461. onnx/onnx_cpp2py_export/printer.pyi +3 -0
  462. onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
  463. onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
  464. onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
  465. onnx/onnx_data_pb2.pyi +146 -0
  466. onnx/onnx_ml_pb2.py +52 -52
  467. onnx/onnx_ml_pb2.pyi +663 -0
  468. onnx/onnx_operators_ml_pb2.pyi +67 -0
  469. onnx/reference/__init__.py +2 -0
  470. onnx/reference/custom_element_types.py +2 -0
  471. onnx/reference/op_run.py +166 -121
  472. onnx/reference/ops/_op.py +27 -50
  473. onnx/reference/ops/_op_list.py +36 -24
  474. onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
  475. onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
  476. onnx/reference/ops/aionnxml/_op_list.py +16 -8
  477. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
  478. onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
  479. onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
  480. onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
  481. onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
  482. onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
  483. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
  484. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
  485. onnx/reference/ops/experimental/_op_list.py +15 -8
  486. onnx/reference/ops/op_blackman_window.py +5 -6
  487. onnx/reference/ops/op_cast.py +22 -0
  488. onnx/reference/ops/op_cast_like.py +6 -0
  489. onnx/reference/ops/op_clip.py +5 -8
  490. onnx/reference/ops/op_col2im.py +1 -3
  491. onnx/reference/ops/op_constant.py +7 -1
  492. onnx/reference/ops/op_dequantize_linear.py +43 -40
  493. onnx/reference/ops/op_det.py +1 -1
  494. onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
  495. onnx/reference/ops/op_grid_sample.py +2 -4
  496. onnx/reference/ops/op_hamming_window.py +3 -6
  497. onnx/reference/ops/op_hann_window.py +3 -6
  498. onnx/reference/ops/op_if.py +4 -3
  499. onnx/reference/ops/op_loop.py +7 -9
  500. onnx/reference/ops/op_matmul.py +1 -2
  501. onnx/reference/ops/op_max_pool.py +5 -0
  502. onnx/reference/ops/op_optional.py +1 -1
  503. onnx/reference/ops/op_pool_common.py +3 -6
  504. onnx/reference/ops/op_qlinear_matmul.py +2 -2
  505. onnx/reference/ops/op_quantize_linear.py +166 -71
  506. onnx/reference/ops/op_resize.py +25 -21
  507. onnx/reference/ops/op_rnn.py +20 -12
  508. onnx/reference/ops/op_scan.py +23 -15
  509. onnx/reference/ops/op_scatter_elements.py +7 -6
  510. onnx/reference/ops/op_stft.py +3 -5
  511. onnx/reference/ops/op_string_normalizer.py +7 -7
  512. onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
  513. onnx/reference/ops/op_topk.py +9 -11
  514. onnx/reference/ops/op_unique.py +1 -1
  515. onnx/reference/reference_evaluator.py +119 -63
  516. onnx/shape_inference/implementation.cc +160 -127
  517. onnx/shape_inference.py +11 -10
  518. onnx/subbyte.py +72 -0
  519. onnx/test/__init__.pyi +6 -0
  520. onnx/test/checker_test.py +21 -1
  521. onnx/test/compose_test.py +26 -74
  522. onnx/test/cpp/inliner_test.cc +76 -1
  523. onnx/test/cpp/ir_test.cc +60 -0
  524. onnx/test/cpp/parser_test.cc +106 -0
  525. onnx/test/function_test.py +1 -3
  526. onnx/test/helper_test.py +64 -4
  527. onnx/test/model_container_refeval_test.py +139 -0
  528. onnx/test/model_container_test.py +136 -0
  529. onnx/test/model_inference_test.py +44 -0
  530. onnx/test/reference_evaluator_ml_test.py +448 -47
  531. onnx/test/reference_evaluator_model_test.py +130 -0
  532. onnx/test/reference_evaluator_test.py +901 -14
  533. onnx/test/schema_test.py +166 -1
  534. onnx/test/shape_inference_test.py +285 -6
  535. onnx/test/symbolic_shape_test.py +3 -8
  536. onnx/test/test_backend_onnxruntime.py +238 -224
  537. onnx/test/test_backend_reference.py +11 -0
  538. onnx/test/test_external_data.py +51 -2
  539. onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
  540. onnx/test/version_converter/automatic_upgrade_test.py +12 -10
  541. onnx/test/version_converter_test.py +166 -0
  542. onnx/tools/replace_constants.py +23 -26
  543. onnx/tools/update_model_dims.py +1 -2
  544. onnx/version.py +2 -2
  545. onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
  546. onnx/version_converter/adapters/q_dq_21_20.h +77 -0
  547. onnx/version_converter/convert.h +67 -2
  548. onnx/version_converter.py +6 -142
  549. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
  550. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
  551. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
  552. onnx/examples/Protobufs.ipynb +0 -639
  553. onnx/examples/check_model.ipynb +0 -128
  554. onnx/examples/load_model.ipynb +0 -116
  555. onnx/examples/make_model.ipynb +0 -176
  556. onnx/examples/np_array_tensorproto.ipynb +0 -136
  557. onnx/examples/resources/single_relu.onnx +0 -12
  558. onnx/examples/resources/single_relu_new.onnx +0 -12
  559. onnx/examples/resources/tensor.pb +0 -0
  560. onnx/examples/resources/two_transposes.onnx +0 -0
  561. onnx/examples/save_model.ipynb +0 -56
  562. onnx/examples/shape_inference.ipynb +0 -111
  563. onnx/test/reference_evaluator_backend_test.py +0 -876
  564. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
  565. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
  566. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
  567. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
  568. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
  569. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
  570. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
  571. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
  572. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
  573. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
  574. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
  575. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
  576. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
  577. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
  578. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
  579. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
  580. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
  581. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
  582. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
  583. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
  584. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
onnx/defs/printer.cc CHANGED
@@ -11,8 +11,7 @@
11
11
 
12
12
  namespace ONNX_NAMESPACE {
13
13
 
14
- using MetaDataProp = StringStringEntryProto;
15
- using MetaDataProps = google::protobuf::RepeatedPtrField<StringStringEntryProto>;
14
+ using StringStringEntryProtos = google::protobuf::RepeatedPtrField<StringStringEntryProto>;
16
15
 
17
16
  class ProtoPrinter {
18
17
  public:
@@ -58,11 +57,11 @@ class ProtoPrinter {
58
57
 
59
58
  void print(const OpsetIdList& opsets);
60
59
 
61
- void print(const MetaDataProps& metadataprops) {
62
- printSet("[", ", ", "]", metadataprops);
60
+ void print(const StringStringEntryProtos& stringStringProtos) {
61
+ printSet("[", ", ", "]", stringStringProtos);
63
62
  }
64
63
 
65
- void print(const MetaDataProp& metadata) {
64
+ void print(const StringStringEntryProto& metadata) {
66
65
  printQuoted(metadata.key());
67
66
  output_ << ": ";
68
67
  printQuoted(metadata.value());
@@ -197,8 +196,10 @@ void ProtoPrinter::print(const TensorProto& tensor, bool is_initializer) {
197
196
  if (is_initializer) {
198
197
  output_ << " = ";
199
198
  }
200
- // TODO: does not yet handle all types or externally stored data.
201
- if (tensor.has_raw_data()) {
199
+ // TODO: does not yet handle all types
200
+ if (tensor.has_data_location() && tensor.data_location() == TensorProto_DataLocation_EXTERNAL) {
201
+ print(tensor.external_data());
202
+ } else if (tensor.has_raw_data()) {
202
203
  switch (static_cast<TensorProto::DataType>(tensor.data_type())) {
203
204
  case TensorProto::DataType::TensorProto_DataType_INT32:
204
205
  printSet(" {", ",", "}", ParseData<int32_t>(&tensor));
@@ -335,6 +336,8 @@ void ProtoPrinter::print(const NodeProto& node) {
335
336
  if (node.domain() != "")
336
337
  output_ << node.domain() << ".";
337
338
  output_ << node.op_type();
339
+ if (node.overload() != "")
340
+ output_ << ":" << node.overload();
338
341
  bool has_subgraph = false;
339
342
  for (auto attr : node.attribute())
340
343
  if (attr.has_g() || (attr.graphs_size() > 0))
@@ -414,6 +417,10 @@ void ProtoPrinter::print(const FunctionProto& fn) {
414
417
  output_ << "<\n";
415
418
  output_ << " "
416
419
  << "domain: \"" << fn.domain() << "\",\n";
420
+ if (!fn.overload().empty())
421
+ output_ << " "
422
+ << "overload: \"" << fn.overload() << "\",\n";
423
+
417
424
  output_ << " "
418
425
  << "opset_import: ";
419
426
  printSet("[", ",", "]", fn.opset_import());
@@ -7,40 +7,59 @@
7
7
 
8
8
  namespace ONNX_NAMESPACE {
9
9
 
10
- static const char* QuantizeLinear_ver19_doc = R"DOC(
11
- The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
12
- The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
13
- The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`.
14
- For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
15
- For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
16
- 'y_zero_point' and 'y' must have same type.
17
- 'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz,
18
- but the quantization formula remains the same for consistency and
19
- the type of the attribute 'y_zero_point' still determines the quantization type.
10
+ static const char* QuantizeLinear_ver21_doc = R"DOC(
11
+ The linear quantization operator consumes a high-precision tensor, a scale, and a zero point to compute the
12
+ low-precision/quantized tensor. The scale factor and zero point must have the same shape, determining the quantization
13
+ granularity. The quantization formula is `y = saturate((x / y_scale) + y_zero_point)`.
14
+
15
+ Saturation is done according to:
16
+ - uint16: [0, 65535]
17
+ - int16: [-32768, 32767]
18
+ - uint8: [0, 255]
19
+ - int8: [-128, 127]
20
+ - uint4: [0, 15]
21
+ - int4: [-8, 7]
22
+
23
+ For `(x / y_scale)`, it rounds to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
24
+
25
+ `y_zero_point` and `y` must have the same type. `y_zero_point` is usually not used for quantization to float8 types, but the quantization
26
+ formula remains the same for consistency, and the type of the attribute `y_zero_point` still determines the quantization type.
27
+
28
+ There are three supported quantization granularities, determined by the shape of `y_scale`.
29
+ In all cases, `y_zero_point` must have the same shape as `y_scale`.
30
+ - Per-tensor (per-layer) quantization: `y_scale` is a scalar.
31
+ - Per-axis quantization: The scale must be a 1-D tensor, with the length of the quantization axis. For an input shape
32
+ `(D0, ..., Di, ..., Dn)` and `axis=i`, `y_scale` is a 1-D tensor of length `Di`.
33
+ - Blocked quantization: The scale's shape is identical to the input's shape, except for one dimension, in which
34
+ blocking is performed. Given `x` shape `(D0, ..., Di, ..., Dn)`, `axis=i`, and block size `B`: `y_scale` shape is
35
+ `(D0, ..., ceil(Di/B), ..., Dn)`.
20
36
  )DOC";
21
37
 
22
38
  ONNX_OPERATOR_SET_SCHEMA(
23
39
  QuantizeLinear,
24
- 19,
40
+ 21,
25
41
  OpSchema()
26
42
  .Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
27
43
  .Input(
28
44
  1,
29
45
  "y_scale",
30
- "Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
31
- "or a 1-D Tensor for per-axis quantization.",
46
+ "Scale for doing quantization to get `y`. For per-tensor/layer quantization the scale is a scalar, for "
47
+ "per-axis quantization it is a 1-D Tensor and for blocked quantization it has the same shape as the "
48
+ "input, except for one dimension in which blocking is performed.",
32
49
  "T1")
33
50
  .Input(
34
51
  2,
35
52
  "y_zero_point",
36
- "Zero point for doing quantization to get 'y'. Shape must match y_scale. "
53
+ "Zero point for doing quantization to get `y`. Shape must match `y_scale`."
37
54
  "Default is uint8 with zero point of 0 if it's not specified.",
38
55
  "T2",
39
56
  OpSchema::Optional)
40
- .Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2")
57
+ .Output(0, "y", "N-D quantized output tensor. It has same shape as input `x`.", "T2")
41
58
  .Attr(
42
59
  "axis",
43
- "(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
60
+ "(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
61
+ "quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
62
+ "where `r = rank(input)`.",
44
63
  AttributeProto::INT,
45
64
  static_cast<int64_t>(1))
46
65
  .Attr(
@@ -51,23 +70,56 @@ ONNX_OPERATOR_SET_SCHEMA(
51
70
  "All cases are fully described in two tables inserted in the operator description.",
52
71
  AttributeProto::INT,
53
72
  static_cast<int64_t>(1))
73
+ .Attr(
74
+ "block_size",
75
+ "(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
76
+ "blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
77
+ "`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
78
+ "`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
79
+ AttributeProto::INT,
80
+ static_cast<int64_t>(0))
81
+ .Attr(
82
+ "output_dtype",
83
+ "(Optional) The output data type. If not supplied, the output data type is inferred from `y_zero_point` data type (`T2`). "
84
+ "If neither `output_dtype` nor `y_zero_point` are supplied, output data type is uint8. "
85
+ "If both `output_dtype` and `y_zero_point` are specified, `output_dtype` must be `T2`.",
86
+ AttributeProto::INT,
87
+ static_cast<int64_t>(0))
54
88
  .TypeConstraint(
55
89
  "T1",
56
90
  {"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
57
- "Constrain 'x' to float, float16, bfloat16 or int32 tensor.")
91
+ "The type of the input 'x'.")
58
92
  .TypeConstraint(
59
93
  "T2",
60
94
  {"tensor(int8)",
61
95
  "tensor(uint8)",
96
+ "tensor(int16)",
97
+ "tensor(uint16)",
62
98
  "tensor(float8e4m3fn)",
63
99
  "tensor(float8e4m3fnuz)",
64
100
  "tensor(float8e5m2)",
65
- "tensor(float8e5m2fnuz)"},
66
- "Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.")
67
- .SetDoc(QuantizeLinear_ver19_doc)
101
+ "tensor(float8e5m2fnuz)",
102
+ "tensor(uint4)",
103
+ "tensor(int4)"},
104
+ "The type of the input `y_zero_point` and the output `y`.")
105
+ .SetDoc(QuantizeLinear_ver21_doc)
68
106
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
69
- if (ctx.hasInput(2)) {
107
+ auto const zp_type = ctx.hasInput(2) ? ctx.getInputType(2) : nullptr;
108
+ auto const output_dtype =
109
+ static_cast<TensorProto_DataType>(getAttribute(ctx, "output_dtype", TensorProto::UNDEFINED));
110
+ if (zp_type != nullptr) {
111
+ auto const zp_elem_type = static_cast<TensorProto_DataType>(getTensorElementType(*zp_type));
112
+ if (output_dtype != TensorProto::UNDEFINED && output_dtype != zp_elem_type) {
113
+ fail_type_inference(
114
+ "output_dtype ",
115
+ TensorProto_DataType_Name(output_dtype),
116
+ " does not match y_zero_point type ",
117
+ TensorProto_DataType_Name(zp_elem_type),
118
+ ".");
119
+ }
70
120
  propagateElemTypeFromInputToOutput(ctx, 2, 0);
121
+ } else if (output_dtype != TensorProto::UNDEFINED) {
122
+ propagateElemTypeFromAttributeToOutput(ctx, "output_dtype", 0);
71
123
  } else {
72
124
  updateOutputElemType(ctx, 0, TensorProto::UINT8);
73
125
  }
@@ -79,63 +131,78 @@ ONNX_OPERATOR_SET_SCHEMA(
79
131
  updateOutputShape(ctx, 0, input_shape);
80
132
  }));
81
133
 
82
- static const char* DequantizeLinear_ver19_doc = R"DOC(
83
- The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
84
- The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
85
- for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
86
- `x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
87
- there's no zero point (zero point is supposed to be 0).
88
- `zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization,
89
- but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type.
134
+ static const char* DequantizeLinear_ver21_doc = R"DOC(
135
+ The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the
136
+ full-precision tensor. The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point`
137
+ must have the same shape, determining the quantization's granularity: a scalar for per-tensor/per-layer quantization,
138
+ a 1-D tensor for per-axis quantization, or have a rank identical to the input for blocked quantization.
139
+ See QuantizeLinear for details on quantization granularity.
140
+
141
+ `x_zero_point` and `x` must have the same type. `x` and `y` must have the same shape. In the case of dequantizing
142
+ `int32`, there's no zero point (zero point is supposed to be 0).
143
+ `zero-point` is usually not used in the case of float8 types quantization, but the dequantization formula remains the same
144
+ for consistency, and `x_scale` still determines the output type.
90
145
  )DOC";
91
146
 
92
147
  ONNX_OPERATOR_SET_SCHEMA(
93
148
  DequantizeLinear,
94
- 19,
149
+ 21,
95
150
  OpSchema()
96
151
  .Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
97
152
  .Input(
98
153
  1,
99
154
  "x_scale",
100
- "Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
101
- "or a 1-D tensor for per-axis dequantization.",
155
+ "Scale for input `x`. For per-tensor/layer dequantization the scale is a scalar, for "
156
+ "per per-axis dequantization it is a 1-D Tensor and for blocked dequantization it has the same shape as "
157
+ "the input, except for one dimension in which blocking is performed.",
102
158
  "T2")
103
159
  .Input(
104
160
  2,
105
161
  "x_zero_point",
106
- "Zero point for input 'x'. Shape must match x_scale. "
162
+ "Zero point for input `x`. Shape must match x_scale. "
107
163
  "It's optional. Zero point is 0 when it's not specified.",
108
164
  "T1",
109
165
  OpSchema::Optional)
110
- .Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2")
166
+ .Output(0, "y", "N-D full precision output tensor. It has same shape as input `x`.", "T2")
111
167
  .Attr(
112
168
  "axis",
113
- "(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
169
+ "(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
170
+ "quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
171
+ "where `r = rank(input)`.",
114
172
  AttributeProto::INT,
115
173
  static_cast<int64_t>(1))
174
+ .Attr(
175
+ "block_size",
176
+ "(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
177
+ "blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
178
+ "`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
179
+ "`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
180
+ AttributeProto::INT,
181
+ static_cast<int64_t>(0))
116
182
  .TypeConstraint(
117
183
  "T1",
118
184
  {"tensor(int8)",
119
185
  "tensor(uint8)",
186
+ "tensor(int16)",
187
+ "tensor(uint16)",
120
188
  "tensor(int32)",
121
189
  "tensor(float8e4m3fn)",
122
190
  "tensor(float8e4m3fnuz)",
123
191
  "tensor(float8e5m2)",
124
- "tensor(float8e5m2fnuz)"},
125
- "Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.")
192
+ "tensor(float8e5m2fnuz)",
193
+ "tensor(uint4)",
194
+ "tensor(int4)"},
195
+ "The type of the inputs 'x_zero_point' and 'x'.")
126
196
  .TypeConstraint(
127
197
  "T2",
128
198
  {"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
129
199
  "'x_scale' determines the output type.")
130
- .SetDoc(DequantizeLinear_ver19_doc)
200
+ .SetDoc(DequantizeLinear_ver21_doc)
131
201
  .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
132
- auto y_type = ctx.getOutputType(0);
133
- // only float is supported
134
- y_type->mutable_tensor_type()->set_elem_type(ONNX_NAMESPACE::TensorProto::FLOAT);
135
-
136
- if (!hasInputShape(ctx, 0))
202
+ propagateElemTypeFromInputToOutput(ctx, 1, 0);
203
+ if (!hasInputShape(ctx, 0)) {
137
204
  return;
138
-
205
+ }
139
206
  auto& input_shape = getInputShape(ctx, 0);
140
207
  updateOutputShape(ctx, 0, input_shape);
141
208
  }));
@@ -7,6 +7,136 @@
7
7
 
8
8
  namespace ONNX_NAMESPACE {
9
9
 
10
+ static const char* QuantizeLinear_ver19_doc = R"DOC(
11
+ The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
12
+ The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
13
+ The quantization formula is `y = saturate ((x / y_scale) + y_zero_point)`.
14
+ For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8.
15
+ For (x / y_scale), it's rounding to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
16
+ 'y_zero_point' and 'y' must have same type.
17
+ 'y_zero_point' is usually not used for quantization to float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz,
18
+ but the quantization formula remains the same for consistency and
19
+ the type of the attribute 'y_zero_point' still determines the quantization type.
20
+ )DOC";
21
+
22
+ ONNX_OPERATOR_SET_SCHEMA(
23
+ QuantizeLinear,
24
+ 19,
25
+ OpSchema()
26
+ .Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
27
+ .Input(
28
+ 1,
29
+ "y_scale",
30
+ "Scale for doing quantization to get 'y'. It can be a scalar, which means per-tensor/layer quantization, "
31
+ "or a 1-D Tensor for per-axis quantization.",
32
+ "T1")
33
+ .Input(
34
+ 2,
35
+ "y_zero_point",
36
+ "Zero point for doing quantization to get 'y'. Shape must match y_scale. "
37
+ "Default is uint8 with zero point of 0 if it's not specified.",
38
+ "T2",
39
+ OpSchema::Optional)
40
+ .Output(0, "y", "N-D quantized output tensor. It has same shape as input 'x'.", "T2")
41
+ .Attr(
42
+ "axis",
43
+ "(Optional) The axis of the quantization dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
44
+ AttributeProto::INT,
45
+ static_cast<int64_t>(1))
46
+ .Attr(
47
+ "saturate",
48
+ "The parameter defines how the conversion behaves if an input value is out of "
49
+ "range of the destination type. It only applies for float 8 quantization "
50
+ "(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
51
+ "All cases are fully described in two tables inserted in the operator description.",
52
+ AttributeProto::INT,
53
+ static_cast<int64_t>(1))
54
+ .TypeConstraint(
55
+ "T1",
56
+ {"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
57
+ "Constrain 'x' to float, float16, bfloat16 or int32 tensor.")
58
+ .TypeConstraint(
59
+ "T2",
60
+ {"tensor(int8)",
61
+ "tensor(uint8)",
62
+ "tensor(float8e4m3fn)",
63
+ "tensor(float8e4m3fnuz)",
64
+ "tensor(float8e5m2)",
65
+ "tensor(float8e5m2fnuz)"},
66
+ "Constrain 'y_zero_point' and 'y' to 8-bit integer/float tensor.")
67
+ .SetDoc(QuantizeLinear_ver19_doc)
68
+ .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
69
+ if (ctx.hasInput(2)) {
70
+ propagateElemTypeFromInputToOutput(ctx, 2, 0);
71
+ } else {
72
+ updateOutputElemType(ctx, 0, TensorProto::UINT8);
73
+ }
74
+ if (!hasInputShape(ctx, 0)) {
75
+ return;
76
+ }
77
+
78
+ auto& input_shape = getInputShape(ctx, 0);
79
+ updateOutputShape(ctx, 0, input_shape);
80
+ }));
81
+
82
+ static const char* DequantizeLinear_ver19_doc = R"DOC(
83
+ The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor.
84
+ The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` must have same shape, and can be either a scalar
85
+ for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
86
+ `x_zero_point` and `x` must have same type. `x` and `y` must have same shape. In the case of dequantizing int32,
87
+ there's no zero point (zero point is supposed to be 0).
88
+ `zero-point` is usually not used in the case of float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz quantization,
89
+ but the dequantization formula remains the same for consistency and 'x_scale' still determines the output type.
90
+ )DOC";
91
+
92
+ ONNX_OPERATOR_SET_SCHEMA(
93
+ DequantizeLinear,
94
+ 19,
95
+ OpSchema()
96
+ .Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
97
+ .Input(
98
+ 1,
99
+ "x_scale",
100
+ "Scale for input 'x'. It can be a scalar, which means a per-tensor/layer dequantization, "
101
+ "or a 1-D tensor for per-axis dequantization.",
102
+ "T2")
103
+ .Input(
104
+ 2,
105
+ "x_zero_point",
106
+ "Zero point for input 'x'. Shape must match x_scale. "
107
+ "It's optional. Zero point is 0 when it's not specified.",
108
+ "T1",
109
+ OpSchema::Optional)
110
+ .Output(0, "y", "N-D full precision output tensor. It has same shape as input 'x'.", "T2")
111
+ .Attr(
112
+ "axis",
113
+ "(Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
114
+ AttributeProto::INT,
115
+ static_cast<int64_t>(1))
116
+ .TypeConstraint(
117
+ "T1",
118
+ {"tensor(int8)",
119
+ "tensor(uint8)",
120
+ "tensor(int32)",
121
+ "tensor(float8e4m3fn)",
122
+ "tensor(float8e4m3fnuz)",
123
+ "tensor(float8e5m2)",
124
+ "tensor(float8e5m2fnuz)"},
125
+ "Constrain 'x_zero_point' and 'x' to 8-bit integer or float, or /32-bit integer tensor.")
126
+ .TypeConstraint(
127
+ "T2",
128
+ {"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
129
+ "'x_scale' determines the output type.")
130
+ .SetDoc(DequantizeLinear_ver19_doc)
131
+ .TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
132
+ propagateElemTypeFromInputToOutput(ctx, 1, 0);
133
+ if (!hasInputShape(ctx, 0)) {
134
+ return;
135
+ }
136
+ auto& input_shape = getInputShape(ctx, 0);
137
+ updateOutputShape(ctx, 0, input_shape);
138
+ }));
139
+
10
140
  static const char* QuantizeLinear_ver13_doc = R"DOC(
11
141
  The linear quantization operator. It consumes a high precision tensor, a scale, and a zero point to compute the low precision / quantized tensor.
12
142
  The scale factor and zero point must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization.
@@ -54,7 +184,6 @@ ONNX_OPERATOR_SET_SCHEMA(
54
184
  if (!hasInputShape(ctx, 0)) {
55
185
  return;
56
186
  }
57
-
58
187
  auto& input_shape = getInputShape(ctx, 0);
59
188
  updateOutputShape(ctx, 0, input_shape);
60
189
  }));
onnx/defs/schema.cc CHANGED
@@ -30,8 +30,31 @@ constexpr int OpSchema::kUninitializedSinceVersion;
30
30
 
31
31
  // By default if opset_version_to_load=0, it registers all opset schema for all opset versions
32
32
  // Otherwise, it only registers the latest schema according to opset_version_to_load
33
- void RegisterSchema(OpSchema schema, int opset_version_to_load, bool fail_duplicate_schema) {
34
- OpSchemaRegistry::OpSchemaRegisterOnce ONNX_UNUSED registration(schema, opset_version_to_load, fail_duplicate_schema);
33
+ void RegisterSchema(
34
+ const OpSchema& schema,
35
+ int opset_version_to_load,
36
+ bool fail_duplicate_schema,
37
+ bool fail_with_exception) {
38
+ RegisterSchema(OpSchema(schema), opset_version_to_load, fail_duplicate_schema, fail_with_exception);
39
+ }
40
+ void RegisterSchema(
41
+ OpSchema&& schema,
42
+ int opset_version_to_load,
43
+ bool fail_duplicate_schema,
44
+ bool fail_with_exception) {
45
+ if (fail_with_exception) {
46
+ OpSchemaRegistry::OpSchemaRegisterOnce::OpSchemaRegisterImpl(
47
+ std::move(schema), opset_version_to_load, fail_duplicate_schema);
48
+ } else {
49
+ OpSchemaRegistry::OpSchemaRegisterOnce::OpSchemaRegisterNoExcept(
50
+ std::move(schema), opset_version_to_load, fail_duplicate_schema);
51
+ }
52
+ }
53
+
54
+ // The (name, version, domain) must match the target exactly
55
+ // Otherwise will raise an SchemaError
56
+ void DeregisterSchema(const std::string& op_type, int version, const std::string& domain) {
57
+ OpSchemaRegistry::OpSchemaDeregister(op_type, version, domain);
35
58
  }
36
59
 
37
60
  #ifndef NDEBUG
@@ -84,6 +107,30 @@ OpSchemaRegistry* OpSchemaRegistry::Instance() {
84
107
 
85
108
  void OpSchema::CheckInputOutputType(struct InferenceContext& ctx) const {
86
109
  std::unordered_map<std::string, std::string> type_constraints;
110
+ if (inputs_.empty() && ctx.getNumInputs() > 0) {
111
+ fail_check(
112
+ "Node (",
113
+ domain(),
114
+ "::",
115
+ Name(),
116
+ ":",
117
+ since_version(),
118
+ ") takes zero inputs, but got ",
119
+ ctx.getNumInputs(),
120
+ " in graph");
121
+ }
122
+ if (outputs_.empty() && ctx.getNumOutputs() > 0) {
123
+ fail_check(
124
+ "Node (",
125
+ domain(),
126
+ "::",
127
+ Name(),
128
+ ":",
129
+ since_version(),
130
+ ") yields zero outputs, but got ",
131
+ ctx.getNumOutputs(),
132
+ " in graph");
133
+ }
87
134
  // check all input types
88
135
  for (size_t in_idx = 0; in_idx < ctx.getNumInputs(); ++in_idx) {
89
136
  // If the last input is Variadic by definition, checker still needs to check the rest of actual input's type
@@ -262,7 +309,14 @@ void OpSchema::Verify(const NodeProto& node) const {
262
309
 
263
310
  // Type would be UNDEFINED if not set
264
311
  if (attr_proto.type() != expected_type) {
265
- fail_check("Mismatched attribute type in '", node.name() + " : " + name, "'");
312
+ fail_check(
313
+ "Mismatched attribute type in '",
314
+ node.name() + " : " + name,
315
+ "'. Expected: '",
316
+ AttributeProto_AttributeType_Name(expected_type),
317
+ "', actual: '",
318
+ AttributeProto_AttributeType_Name(attr_proto.type()),
319
+ "'");
266
320
  }
267
321
 
268
322
  // ref_attr_name is only valid when non-empty
@@ -438,21 +492,6 @@ OpSchema& OpSchema::Attr(std::string name, std::string description, AttributePro
438
492
  return *this;
439
493
  }
440
494
 
441
- OpSchema& OpSchema::Attr(
442
- std::string name,
443
- std::string description,
444
- std::string conditionExplanation,
445
- AttributeProto::AttributeType attr_type) {
446
- AttributeProto a;
447
- a.set_name(name);
448
- a.set_type(attr_type);
449
- if (attr_type == AttributeProto_AttributeType_UNDEFINED) {
450
- a.mutable_t()->set_data_type(TensorProto_DataType_UNDEFINED);
451
- }
452
- a.mutable_doc_string()->assign(std::move(conditionExplanation));
453
- return Attr(Attribute{std::move(name), std::move(description), std::move(a)});
454
- }
455
-
456
495
  OpSchema& OpSchema::Attr(const char* name, const char* description, AttributeProto::AttributeType type, bool required) {
457
496
  return Attr(std::string(name), std::string(description), type, required);
458
497
  }
@@ -927,6 +966,11 @@ void OpSchema::Finalize() {
927
966
  // all inputs or std::numeric_limits<int>::max() (if the last input is
928
967
  // variadic).
929
968
 
969
+ max_input_ = 0;
970
+ min_input_ = 0;
971
+ min_output_ = 0;
972
+ max_output_ = 0;
973
+
930
974
  // Flag indicates whether an optional input is trailing one (there's no single
931
975
  // or variadic input behind).
932
976
  for (size_t i = 0; i < inputs_.size(); ++i) {