onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +10 -10
- onnx/backend/base.py +13 -14
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/case/model/__init__.py +0 -1
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
- onnx/backend/test/case/node/averagepool.py +15 -30
- onnx/backend/test/case/node/cast.py +88 -11
- onnx/backend/test/case/node/dequantizelinear.py +155 -0
- onnx/backend/test/case/node/groupnormalization.py +13 -9
- onnx/backend/test/case/node/gru.py +2 -2
- onnx/backend/test/case/node/isinf.py +4 -4
- onnx/backend/test/case/node/isnan.py +2 -2
- onnx/backend/test/case/node/lppool.py +8 -16
- onnx/backend/test/case/node/lstm.py +1 -1
- onnx/backend/test/case/node/maxpool.py +40 -34
- onnx/backend/test/case/node/pow.py +1 -1
- onnx/backend/test/case/node/qlinearmatmul.py +143 -109
- onnx/backend/test/case/node/quantizelinear.py +298 -7
- onnx/backend/test/case/node/reducemax.py +26 -0
- onnx/backend/test/case/node/rnn.py +1 -1
- onnx/backend/test/case/node/scan.py +6 -2
- onnx/backend/test/case/node/scatterelements.py +1 -1
- onnx/backend/test/case/node/topk.py +1 -1
- onnx/backend/test/case/utils.py +1 -3
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +0 -1
- onnx/backend/test/runner/__init__.py +43 -15
- onnx/checker.cc +104 -99
- onnx/checker.h +23 -3
- onnx/checker.py +56 -20
- onnx/common/assertions.cc +10 -5
- onnx/common/common.h +19 -0
- onnx/common/file_utils.h +3 -1
- onnx/common/interned_strings.h +7 -1
- onnx/common/ir.h +30 -7
- onnx/common/ir_pb_converter.cc +6 -0
- onnx/common/path.h +18 -2
- onnx/common/proto_util.h +43 -0
- onnx/common/version.h +1 -1
- onnx/cpp2py_export.cc +88 -56
- onnx/defs/__init__.py +29 -8
- onnx/defs/controlflow/defs.cc +16 -16
- onnx/defs/controlflow/old.cc +177 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +2 -0
- onnx/defs/generator/defs.cc +6 -4
- onnx/defs/generator/old.cc +115 -0
- onnx/defs/math/defs.cc +37 -142
- onnx/defs/math/old.cc +96 -12
- onnx/defs/math/utils.cc +127 -0
- onnx/defs/math/utils.h +8 -0
- onnx/defs/nn/defs.cc +72 -59
- onnx/defs/nn/old.cc +181 -2
- onnx/defs/object_detection/defs.cc +2 -2
- onnx/defs/object_detection/old.cc +2 -2
- onnx/defs/operator_sets.h +51 -0
- onnx/defs/operator_sets_ml.h +14 -0
- onnx/defs/parser.cc +112 -54
- onnx/defs/parser.h +14 -2
- onnx/defs/printer.cc +14 -7
- onnx/defs/quantization/defs.cc +111 -44
- onnx/defs/quantization/old.cc +130 -1
- onnx/defs/schema.cc +62 -18
- onnx/defs/schema.h +194 -48
- onnx/defs/shape_inference.cc +28 -19
- onnx/defs/shape_inference.h +2 -0
- onnx/defs/tensor/defs.cc +54 -96
- onnx/defs/tensor/old.cc +939 -34
- onnx/defs/tensor/utils.cc +6 -3
- onnx/defs/tensor/utils.h +5 -1
- onnx/defs/tensor_proto_util.cc +2 -0
- onnx/defs/tensor_util.cc +2 -0
- onnx/defs/traditionalml/defs.cc +273 -117
- onnx/defs/traditionalml/old.cc +329 -14
- onnx/defs/traditionalml/utils.h +27 -0
- onnx/external_data_helper.py +12 -26
- onnx/helper.py +242 -169
- onnx/hub.py +104 -70
- onnx/inliner/inliner.cc +89 -31
- onnx/inliner/inliner.h +5 -0
- onnx/inliner.py +2 -0
- onnx/mapping.py +9 -0
- onnx/model_container.py +346 -0
- onnx/numpy_helper.py +100 -38
- onnx/onnx-ml.proto +50 -13
- onnx/onnx.in.proto +50 -13
- onnx/onnx.proto +50 -13
- onnx/onnx_cpp2py_export/__init__.pyi +5 -0
- onnx/onnx_cpp2py_export/checker.pyi +21 -0
- onnx/onnx_cpp2py_export/defs.pyi +202 -0
- onnx/onnx_cpp2py_export/inliner.pyi +19 -0
- onnx/onnx_cpp2py_export/parser.pyi +32 -0
- onnx/onnx_cpp2py_export/printer.pyi +3 -0
- onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
- onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
- onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +146 -0
- onnx/onnx_ml_pb2.py +52 -52
- onnx/onnx_ml_pb2.pyi +663 -0
- onnx/onnx_operators_ml_pb2.pyi +67 -0
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +2 -0
- onnx/reference/op_run.py +166 -121
- onnx/reference/ops/_op.py +27 -50
- onnx/reference/ops/_op_list.py +36 -24
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
- onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
- onnx/reference/ops/aionnxml/_op_list.py +16 -8
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
- onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
- onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
- onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
- onnx/reference/ops/experimental/_op_list.py +15 -8
- onnx/reference/ops/op_blackman_window.py +5 -6
- onnx/reference/ops/op_cast.py +22 -0
- onnx/reference/ops/op_cast_like.py +6 -0
- onnx/reference/ops/op_clip.py +5 -8
- onnx/reference/ops/op_col2im.py +1 -3
- onnx/reference/ops/op_constant.py +7 -1
- onnx/reference/ops/op_dequantize_linear.py +43 -40
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
- onnx/reference/ops/op_grid_sample.py +2 -4
- onnx/reference/ops/op_hamming_window.py +3 -6
- onnx/reference/ops/op_hann_window.py +3 -6
- onnx/reference/ops/op_if.py +4 -3
- onnx/reference/ops/op_loop.py +7 -9
- onnx/reference/ops/op_matmul.py +1 -2
- onnx/reference/ops/op_max_pool.py +5 -0
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_pool_common.py +3 -6
- onnx/reference/ops/op_qlinear_matmul.py +2 -2
- onnx/reference/ops/op_quantize_linear.py +166 -71
- onnx/reference/ops/op_resize.py +25 -21
- onnx/reference/ops/op_rnn.py +20 -12
- onnx/reference/ops/op_scan.py +23 -15
- onnx/reference/ops/op_scatter_elements.py +7 -6
- onnx/reference/ops/op_stft.py +3 -5
- onnx/reference/ops/op_string_normalizer.py +7 -7
- onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
- onnx/reference/ops/op_topk.py +9 -11
- onnx/reference/ops/op_unique.py +1 -1
- onnx/reference/reference_evaluator.py +119 -63
- onnx/shape_inference/implementation.cc +160 -127
- onnx/shape_inference.py +11 -10
- onnx/subbyte.py +72 -0
- onnx/test/__init__.pyi +6 -0
- onnx/test/checker_test.py +21 -1
- onnx/test/compose_test.py +26 -74
- onnx/test/cpp/inliner_test.cc +76 -1
- onnx/test/cpp/ir_test.cc +60 -0
- onnx/test/cpp/parser_test.cc +106 -0
- onnx/test/function_test.py +1 -3
- onnx/test/helper_test.py +64 -4
- onnx/test/model_container_refeval_test.py +139 -0
- onnx/test/model_container_test.py +136 -0
- onnx/test/model_inference_test.py +44 -0
- onnx/test/reference_evaluator_ml_test.py +448 -47
- onnx/test/reference_evaluator_model_test.py +130 -0
- onnx/test/reference_evaluator_test.py +901 -14
- onnx/test/schema_test.py +166 -1
- onnx/test/shape_inference_test.py +285 -6
- onnx/test/symbolic_shape_test.py +3 -8
- onnx/test/test_backend_onnxruntime.py +238 -224
- onnx/test/test_backend_reference.py +11 -0
- onnx/test/test_external_data.py +51 -2
- onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
- onnx/test/version_converter/automatic_upgrade_test.py +12 -10
- onnx/test/version_converter_test.py +166 -0
- onnx/tools/replace_constants.py +23 -26
- onnx/tools/update_model_dims.py +1 -2
- onnx/version.py +2 -2
- onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
- onnx/version_converter/adapters/q_dq_21_20.h +77 -0
- onnx/version_converter/convert.h +67 -2
- onnx/version_converter.py +6 -142
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
- onnx/examples/Protobufs.ipynb +0 -639
- onnx/examples/check_model.ipynb +0 -128
- onnx/examples/load_model.ipynb +0 -116
- onnx/examples/make_model.ipynb +0 -176
- onnx/examples/np_array_tensorproto.ipynb +0 -136
- onnx/examples/resources/single_relu.onnx +0 -12
- onnx/examples/resources/single_relu_new.onnx +0 -12
- onnx/examples/resources/tensor.pb +0 -0
- onnx/examples/resources/two_transposes.onnx +0 -0
- onnx/examples/save_model.ipynb +0 -56
- onnx/examples/shape_inference.ipynb +0 -111
- onnx/test/reference_evaluator_backend_test.py +0 -876
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
onnx/model_container.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
"""Implements function make_large_model to easily create and save models
|
|
5
|
+
bigger than 2 Gb.
|
|
6
|
+
"""
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
|
|
9
|
+
import os
|
|
10
|
+
import sys
|
|
11
|
+
from typing import Any, Iterable
|
|
12
|
+
|
|
13
|
+
import numpy as np
|
|
14
|
+
|
|
15
|
+
import onnx
|
|
16
|
+
import onnx.external_data_helper as ext_data
|
|
17
|
+
import onnx.helper
|
|
18
|
+
import onnx.onnx_cpp2py_export.checker as c_checker
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def _set_external_data(
|
|
22
|
+
tensor: onnx.TensorProto,
|
|
23
|
+
location: str,
|
|
24
|
+
offset: int | None = None,
|
|
25
|
+
length: int | None = None,
|
|
26
|
+
checksum: str | None = None,
|
|
27
|
+
basepath: str | None = None,
|
|
28
|
+
) -> None:
|
|
29
|
+
del tensor.external_data[:]
|
|
30
|
+
tensor.data_location = onnx.TensorProto.EXTERNAL
|
|
31
|
+
for k, v in {
|
|
32
|
+
"location": location,
|
|
33
|
+
"offset": offset,
|
|
34
|
+
"length": length,
|
|
35
|
+
"checksum": checksum,
|
|
36
|
+
"basepath": basepath,
|
|
37
|
+
}.items():
|
|
38
|
+
if v is not None:
|
|
39
|
+
entry = tensor.external_data.add()
|
|
40
|
+
entry.key = k
|
|
41
|
+
entry.value = str(v)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def _enumerate_subgraphs(graph):
|
|
45
|
+
for node in graph.node:
|
|
46
|
+
for att in node.attribute:
|
|
47
|
+
if att.g:
|
|
48
|
+
yield att.g
|
|
49
|
+
yield from _enumerate_subgraphs(att.g)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def make_large_tensor_proto(
|
|
53
|
+
location: str, tensor_name: str, tensor_type: int, shape: tuple[int, ...]
|
|
54
|
+
) -> onnx.TensorProto:
|
|
55
|
+
"""Create an external tensor.
|
|
56
|
+
|
|
57
|
+
Arguments:
|
|
58
|
+
location: unique identifier (not necessary a path)
|
|
59
|
+
tensor_name: tensor name in the graph
|
|
60
|
+
tensor_type: onnx type
|
|
61
|
+
shape: shape the of the initializer
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
the created tensor
|
|
65
|
+
"""
|
|
66
|
+
tensor_location = location
|
|
67
|
+
tensor = onnx.TensorProto()
|
|
68
|
+
tensor.name = tensor_name
|
|
69
|
+
_set_external_data(tensor, tensor_location)
|
|
70
|
+
tensor.data_type = tensor_type
|
|
71
|
+
tensor.dims.extend(shape)
|
|
72
|
+
return tensor
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class ModelContainer:
|
|
76
|
+
"""Implements an API to store large tensors outside the main ModelProto,
|
|
77
|
+
it avoids copying large initializers when defining the model and these initializers
|
|
78
|
+
are never serialized through protobuf.
|
|
79
|
+
No tensor is stored on disk until the user explicitly saves the model.
|
|
80
|
+
"""
|
|
81
|
+
|
|
82
|
+
def __init__(self):
|
|
83
|
+
self.model_proto_: onnx.ModelProto | None = None
|
|
84
|
+
self.large_initializers: dict[str, np.ndarray] = {}
|
|
85
|
+
|
|
86
|
+
def check_model(self):
|
|
87
|
+
if self.model_proto is not None:
|
|
88
|
+
onnx.checker.check_model(self.model_proto)
|
|
89
|
+
|
|
90
|
+
def __getitem__(self, name: str) -> np.ndarray:
|
|
91
|
+
"""Returns an external tensor given its name."""
|
|
92
|
+
if name not in self.large_initializers:
|
|
93
|
+
raise ValueError(
|
|
94
|
+
f"Unable to find large tensor {name!r} among {sorted(self.large_initializers)}."
|
|
95
|
+
)
|
|
96
|
+
return self.large_initializers[name]
|
|
97
|
+
|
|
98
|
+
@property
|
|
99
|
+
def model_proto(self) -> onnx.ModelProto:
|
|
100
|
+
if self.model_proto_ is None:
|
|
101
|
+
raise RuntimeError("ModelContainer is empty.")
|
|
102
|
+
return self.model_proto_
|
|
103
|
+
|
|
104
|
+
@model_proto.setter
|
|
105
|
+
def model_proto(self, model_proto: onnx.ModelProto):
|
|
106
|
+
self.model_proto_ = model_proto
|
|
107
|
+
self.graphs_ = list(self.enumerate_graph_protos())
|
|
108
|
+
|
|
109
|
+
def enumerate_graph_protos(self) -> Iterable[onnx.GraphProto]:
|
|
110
|
+
"""Enumerates all GraphProtos in a model."""
|
|
111
|
+
yield self.model_proto.graph
|
|
112
|
+
yield from _enumerate_subgraphs(self.model_proto.graph)
|
|
113
|
+
|
|
114
|
+
def is_in_memory_external_initializer(self, name: str) -> bool:
|
|
115
|
+
"""Tells if an initializer name is an external initializer stored in memory.
|
|
116
|
+
The name must start with '#' in that case.
|
|
117
|
+
"""
|
|
118
|
+
return name.startswith("#")
|
|
119
|
+
|
|
120
|
+
def set_large_initializers(self, large_initializers: dict[str, np.ndarray]):
|
|
121
|
+
"""Adds all large tensors (not stored in the model)."""
|
|
122
|
+
for k in large_initializers:
|
|
123
|
+
if not self.is_in_memory_external_initializer(k):
|
|
124
|
+
raise ValueError(
|
|
125
|
+
f"The location {k!r} must start with '#' to be ignored by check model."
|
|
126
|
+
)
|
|
127
|
+
self.large_initializers = large_initializers
|
|
128
|
+
|
|
129
|
+
def check_large_initializers(self):
|
|
130
|
+
for tensor in ext_data._get_all_tensors(self.model_proto):
|
|
131
|
+
if not ext_data.uses_external_data(tensor):
|
|
132
|
+
continue
|
|
133
|
+
prop: onnx.StringStringEntryProto | None = None
|
|
134
|
+
for ext in tensor.external_data: # type: ignore[assignment]
|
|
135
|
+
if ext.key == "location": # type: ignore[attr-defined]
|
|
136
|
+
prop = ext
|
|
137
|
+
if prop is None:
|
|
138
|
+
raise RuntimeError(
|
|
139
|
+
f"No location found for tensor name {tensor.name!r}."
|
|
140
|
+
)
|
|
141
|
+
if prop.value not in self.large_initializers:
|
|
142
|
+
raise RuntimeError(
|
|
143
|
+
f"Unable to find large tensor named {tensor.name!r} "
|
|
144
|
+
f"with location {prop.value!r} in "
|
|
145
|
+
f"{sorted(self.large_initializers)}."
|
|
146
|
+
)
|
|
147
|
+
|
|
148
|
+
def _save_external(
|
|
149
|
+
self, file_path: str, all_tensors_to_one_file: bool
|
|
150
|
+
) -> onnx.ModelProto:
|
|
151
|
+
"""Save the large model into a main onnx file and one file
|
|
152
|
+
per tensor. Follows the same format as :func:`write_external_data_tensors
|
|
153
|
+
<onnx.external_data_helper.write_external_data_tensors>`.
|
|
154
|
+
The main model needs to be modified to update the file location,
|
|
155
|
+
the function returns this modified copy.
|
|
156
|
+
|
|
157
|
+
Arguments:
|
|
158
|
+
file_path: model file
|
|
159
|
+
all_tensors_to_one_file: all tensors in one file
|
|
160
|
+
|
|
161
|
+
Returns:
|
|
162
|
+
modified main model proto
|
|
163
|
+
"""
|
|
164
|
+
|
|
165
|
+
def _clean_name(prefix: str, name: str, unique_names: dict[str, int]) -> str:
|
|
166
|
+
if prefix:
|
|
167
|
+
name = f"{prefix}-{name}"
|
|
168
|
+
for c in ":/\\;,!":
|
|
169
|
+
name = name.replace(c, "")
|
|
170
|
+
base_name = name
|
|
171
|
+
if name in unique_names:
|
|
172
|
+
i = unique_names[name] + 1
|
|
173
|
+
unique_names[name] = i
|
|
174
|
+
return f"{base_name}_{i}"
|
|
175
|
+
unique_names[name] = 1
|
|
176
|
+
return name
|
|
177
|
+
|
|
178
|
+
unique_names: dict[str, int] = {}
|
|
179
|
+
folder = os.path.dirname(file_path)
|
|
180
|
+
if not os.path.exists(folder):
|
|
181
|
+
raise FileNotFoundError(f"Folder {folder!r} does not exist.")
|
|
182
|
+
proto = self.model_proto.SerializeToString()
|
|
183
|
+
copy = onnx.ModelProto()
|
|
184
|
+
copy.ParseFromString(proto)
|
|
185
|
+
prefix = os.path.splitext(os.path.split(file_path)[-1])[0]
|
|
186
|
+
|
|
187
|
+
if all_tensors_to_one_file:
|
|
188
|
+
file_weight = f"{os.path.split(file_path)[1]}.weight"
|
|
189
|
+
full_file_weight = f"{file_path}.weight"
|
|
190
|
+
offset = 0
|
|
191
|
+
with open(full_file_weight, "wb") as f:
|
|
192
|
+
pass
|
|
193
|
+
|
|
194
|
+
for tensor in ext_data._get_all_tensors(copy):
|
|
195
|
+
if not ext_data.uses_external_data(tensor):
|
|
196
|
+
continue
|
|
197
|
+
prop: onnx.StringStringEntryProto | None = None
|
|
198
|
+
for ext in tensor.external_data: # type: ignore[assignment]
|
|
199
|
+
if ext.key == "location": # type: ignore[attr-defined]
|
|
200
|
+
prop = ext # type: ignore[assignment]
|
|
201
|
+
if prop is None:
|
|
202
|
+
raise RuntimeError(
|
|
203
|
+
f"No location found for tensor name {tensor.name!r}."
|
|
204
|
+
)
|
|
205
|
+
if prop.value not in self.large_initializers:
|
|
206
|
+
raise RuntimeError(
|
|
207
|
+
f"Unable to find large tensor named {tensor.name!r} "
|
|
208
|
+
f"with location {prop.value!r} in "
|
|
209
|
+
f"{sorted(self.large_initializers)}."
|
|
210
|
+
)
|
|
211
|
+
np_tensor = self.large_initializers[prop.value]
|
|
212
|
+
|
|
213
|
+
if sys.byteorder == "big":
|
|
214
|
+
# Convert endian from little to big
|
|
215
|
+
tensor_bytes = np_tensor.byteswap().tobytes()
|
|
216
|
+
else:
|
|
217
|
+
tensor_bytes = np_tensor.tobytes()
|
|
218
|
+
if all_tensors_to_one_file:
|
|
219
|
+
_set_external_data(
|
|
220
|
+
tensor,
|
|
221
|
+
location=file_weight,
|
|
222
|
+
offset=offset,
|
|
223
|
+
length=len(tensor_bytes),
|
|
224
|
+
)
|
|
225
|
+
offset += len(tensor_bytes)
|
|
226
|
+
with open(full_file_weight, "ab") as f:
|
|
227
|
+
f.write(tensor_bytes)
|
|
228
|
+
else:
|
|
229
|
+
name = f"{_clean_name(prefix, prop.value, unique_names)}.weight"
|
|
230
|
+
_set_external_data(tensor, location=name)
|
|
231
|
+
full_name = os.path.join(folder, name)
|
|
232
|
+
prop.value = name
|
|
233
|
+
with open(full_name, "wb") as f:
|
|
234
|
+
f.write(tensor_bytes)
|
|
235
|
+
|
|
236
|
+
with open(file_path, "wb") as f:
|
|
237
|
+
f.write(copy.SerializeToString())
|
|
238
|
+
return copy
|
|
239
|
+
|
|
240
|
+
def save(
|
|
241
|
+
self,
|
|
242
|
+
file_path: str,
|
|
243
|
+
all_tensors_to_one_file: bool = False,
|
|
244
|
+
) -> onnx.ModelProto:
|
|
245
|
+
"""Save the large model.
|
|
246
|
+
The function returns a ModelProto,
|
|
247
|
+
the current one if the model did not need any modification,
|
|
248
|
+
a modified copy of it if it required changes such as giving file names
|
|
249
|
+
to every external tensor.
|
|
250
|
+
|
|
251
|
+
Arguments:
|
|
252
|
+
file_path: model file
|
|
253
|
+
all_tensors_to_one_file: saves all large tensors in one file or
|
|
254
|
+
one file per lerge tensor
|
|
255
|
+
|
|
256
|
+
Returns:
|
|
257
|
+
the saved ModelProto
|
|
258
|
+
"""
|
|
259
|
+
return self._save_external(
|
|
260
|
+
file_path, all_tensors_to_one_file=all_tensors_to_one_file
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
def load(self, file_path: str, load_large_initializers: bool = True):
|
|
264
|
+
"""Load the large model.
|
|
265
|
+
|
|
266
|
+
Arguments:
|
|
267
|
+
file_path: model file
|
|
268
|
+
load_large_initializers: loads the large initializers,
|
|
269
|
+
if not done, the model is incomplete but it can be used to
|
|
270
|
+
look into the model without executing it and method
|
|
271
|
+
:meth:`_load_large_initializers` can be used to load them later
|
|
272
|
+
"""
|
|
273
|
+
self.model_proto_ = onnx.load_model(file_path, load_external_data=False)
|
|
274
|
+
if load_large_initializers:
|
|
275
|
+
self._load_large_initializers(file_path)
|
|
276
|
+
|
|
277
|
+
def _load_large_initializers(self, file_path):
|
|
278
|
+
"""Loads large initializers.
|
|
279
|
+
|
|
280
|
+
Arguments:
|
|
281
|
+
file_path: model file, the weight are expected to be in the same folder as this file
|
|
282
|
+
"""
|
|
283
|
+
if self.model_proto_ is None:
|
|
284
|
+
raise RuntimeError("A model must be loaded before loading the weights.")
|
|
285
|
+
self.large_initializers = {}
|
|
286
|
+
base_dir = os.path.dirname(file_path)
|
|
287
|
+
for i, tensor in enumerate(ext_data._get_all_tensors(self.model_proto_)):
|
|
288
|
+
if not ext_data.uses_external_data(tensor):
|
|
289
|
+
continue
|
|
290
|
+
|
|
291
|
+
info = ext_data.ExternalDataInfo(tensor)
|
|
292
|
+
external_data_file_path = c_checker._resolve_external_data_location( # type: ignore[attr-defined]
|
|
293
|
+
base_dir, info.location, tensor.name
|
|
294
|
+
)
|
|
295
|
+
key = f"#t{i}"
|
|
296
|
+
_set_external_data(tensor, location=key)
|
|
297
|
+
|
|
298
|
+
with open(external_data_file_path, "rb") as data_file:
|
|
299
|
+
if info.offset:
|
|
300
|
+
data_file.seek(info.offset)
|
|
301
|
+
|
|
302
|
+
raw_data = (
|
|
303
|
+
data_file.read(info.length) if info.length else data_file.read()
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
dtype = onnx.helper.tensor_dtype_to_np_dtype(tensor.data_type)
|
|
307
|
+
shape = tuple(tensor.dims)
|
|
308
|
+
|
|
309
|
+
if sys.byteorder == "big":
|
|
310
|
+
np_tensor = (
|
|
311
|
+
np.frombuffer(raw_data, dtype=dtype).byteswap().reshape(shape)
|
|
312
|
+
)
|
|
313
|
+
else:
|
|
314
|
+
np_tensor = np.frombuffer(raw_data, dtype=dtype).reshape(shape)
|
|
315
|
+
|
|
316
|
+
self.large_initializers[key] = np_tensor
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def make_large_model(
|
|
320
|
+
graph: onnx.GraphProto,
|
|
321
|
+
large_initializers: dict[str, np.ndarray] | None = None,
|
|
322
|
+
**kwargs: Any,
|
|
323
|
+
) -> ModelContainer:
|
|
324
|
+
"""Construct a ModelContainer
|
|
325
|
+
|
|
326
|
+
C API and Python API of protobuf do not operate without serializing
|
|
327
|
+
the protos. This function uses the Python API of ModelContainer.
|
|
328
|
+
|
|
329
|
+
Arguments:
|
|
330
|
+
graph: *make_graph* returns
|
|
331
|
+
large_initializers: dictionary `name: large tensor`,
|
|
332
|
+
large tensor is any python object supporting the DLPack protocol,
|
|
333
|
+
the ownership the tensor is transferred to the ModelContainer,
|
|
334
|
+
the tensor must define method `tobytes` like numpy tensors
|
|
335
|
+
**kwargs: any attribute to add to the returned instance
|
|
336
|
+
|
|
337
|
+
Returns:
|
|
338
|
+
ModelContainer
|
|
339
|
+
"""
|
|
340
|
+
model = onnx.helper.make_model(graph, **kwargs)
|
|
341
|
+
large_model = ModelContainer()
|
|
342
|
+
large_model.model_proto = model
|
|
343
|
+
if large_initializers:
|
|
344
|
+
large_model.set_large_initializers(large_initializers)
|
|
345
|
+
large_model.check_large_initializers()
|
|
346
|
+
return large_model
|
onnx/numpy_helper.py
CHANGED
|
@@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
8
8
|
|
|
9
9
|
import numpy as np
|
|
10
10
|
|
|
11
|
-
from onnx import MapProto, OptionalProto, SequenceProto, TensorProto, helper
|
|
11
|
+
from onnx import MapProto, OptionalProto, SequenceProto, TensorProto, helper, subbyte
|
|
12
12
|
from onnx.external_data_helper import load_external_data_for_tensor, uses_external_data
|
|
13
13
|
|
|
14
14
|
|
|
@@ -22,10 +22,15 @@ def bfloat16_to_float32(
|
|
|
22
22
|
) -> np.ndarray:
|
|
23
23
|
"""Converts ndarray of bf16 (as uint32) to f32 (as uint32).
|
|
24
24
|
|
|
25
|
-
:
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
25
|
+
Args:
|
|
26
|
+
data: A numpy array, empty dimensions are allowed if dims is
|
|
27
|
+
None.
|
|
28
|
+
dims: If specified, the function reshapes the results.
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
A numpy array of float32 with the same dimension if dims is
|
|
32
|
+
None, or reshaped to dims if specified
|
|
33
|
+
"""
|
|
29
34
|
shift = lambda x: x << 16 # noqa: E731
|
|
30
35
|
if dims is None:
|
|
31
36
|
if len(data.shape) == 0:
|
|
@@ -88,14 +93,17 @@ def float8e4m3_to_float32(
|
|
|
88
93
|
) -> np.ndarray:
|
|
89
94
|
"""Converts ndarray of float8, e4m3 (as uint32) to f32 (as uint32).
|
|
90
95
|
|
|
91
|
-
:param data: a numpy array, empty dimensions are allowed if dims is None
|
|
92
|
-
:param dims: if specified, the function reshapes the results
|
|
93
|
-
:param fn: no infinite values
|
|
94
|
-
:param uz: no negative zero
|
|
95
|
-
:return: a numpy array of float32 with the same dimension if dims is None,
|
|
96
|
-
or reshaped to dims if specified.
|
|
97
|
-
|
|
98
96
|
See :ref:`onnx-detail-float8` for technical details.
|
|
97
|
+
|
|
98
|
+
Args:
|
|
99
|
+
data: A numpy array, empty dimensions are allowed if dims is None.
|
|
100
|
+
dims: If specified, the function reshapes the results.
|
|
101
|
+
fn: No infinite values.
|
|
102
|
+
uz: No negative zero.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
A numpy array of float32 with the same dimension if dims is None,
|
|
106
|
+
or reshaped to dims if specified.
|
|
99
107
|
"""
|
|
100
108
|
if not fn:
|
|
101
109
|
raise NotImplementedError(
|
|
@@ -159,18 +167,57 @@ def float8e5m2_to_float32(
|
|
|
159
167
|
) -> np.ndarray:
|
|
160
168
|
"""Converts ndarray of float8, e5m2 (as uint32) to f32 (as uint32).
|
|
161
169
|
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
:
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
170
|
+
See :ref:`onnx-detail-float8` for technical details.
|
|
171
|
+
|
|
172
|
+
Args:
|
|
173
|
+
data: A numpy array, empty dimensions are allowed if dims is None.
|
|
174
|
+
dims: If specified, the function reshapes the results.
|
|
175
|
+
fn: No infinite values.
|
|
176
|
+
uz: No negative zero.
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
A numpy array of float32 with the same dimension if dims is None,
|
|
180
|
+
or reshaped to dims if specified
|
|
181
|
+
"""
|
|
168
182
|
res = _float8e5m2_to_float32(data, fn=fn, uz=uz)
|
|
169
183
|
if dims is None:
|
|
170
184
|
return res # type: ignore[no-any-return]
|
|
171
185
|
return res.reshape(dims) # type: ignore[no-any-return]
|
|
172
186
|
|
|
173
187
|
|
|
188
|
+
def unpack_int4(
|
|
189
|
+
data: Union[np.int32, np.ndarray],
|
|
190
|
+
dims: Union[int, Sequence[int]],
|
|
191
|
+
signed: bool,
|
|
192
|
+
) -> np.ndarray:
|
|
193
|
+
"""Converts ndarray of int4 (as packed uint8) to f32
|
|
194
|
+
See :ref:`onnx-detail-int4` for technical details.
|
|
195
|
+
|
|
196
|
+
Args:
|
|
197
|
+
data: A numpy array, empty dimensions are allowed if dims is
|
|
198
|
+
None.
|
|
199
|
+
dims: The dimensions are used to reshape the unpacked buffer
|
|
200
|
+
signed: Whether the 4 bit integer is signed or unsigned
|
|
201
|
+
|
|
202
|
+
Returns:
|
|
203
|
+
A numpy array of float32 reshaped to dims.
|
|
204
|
+
"""
|
|
205
|
+
single_func = lambda x: subbyte.unpack_single_4bitx2(x, signed) # noqa: E731
|
|
206
|
+
func = np.frompyfunc(single_func, 1, 2)
|
|
207
|
+
|
|
208
|
+
res_high, res_low = func(data.ravel())
|
|
209
|
+
res = np.empty((res_high.size + res_low.size,), dtype=np.float32)
|
|
210
|
+
res[0::2] = res_high
|
|
211
|
+
res[1::2] = res_low
|
|
212
|
+
|
|
213
|
+
if (
|
|
214
|
+
res.size == np.prod(dims) + 1
|
|
215
|
+
): # handle single-element padding due to odd number of elements
|
|
216
|
+
res = res.ravel()[:-1]
|
|
217
|
+
res = res.reshape(dims)
|
|
218
|
+
return res
|
|
219
|
+
|
|
220
|
+
|
|
174
221
|
def to_array(tensor: TensorProto, base_dir: str = "") -> np.ndarray: # noqa: PLR0911
|
|
175
222
|
"""Converts a tensor def object to a numpy array.
|
|
176
223
|
|
|
@@ -205,32 +252,41 @@ def to_array(tensor: TensorProto, base_dir: str = "") -> np.ndarray: # noqa: PL
|
|
|
205
252
|
|
|
206
253
|
if tensor.HasField("raw_data"):
|
|
207
254
|
# Raw_bytes support: using frombuffer.
|
|
255
|
+
raw_data = tensor.raw_data
|
|
208
256
|
if sys.byteorder == "big":
|
|
209
257
|
# Convert endian from little to big
|
|
210
|
-
|
|
258
|
+
raw_data = np.frombuffer(raw_data, dtype=np_dtype).byteswap().tobytes()
|
|
211
259
|
|
|
212
260
|
# manually convert bf16 since there's no numpy support
|
|
213
261
|
if tensor_dtype == TensorProto.BFLOAT16:
|
|
214
|
-
data = np.frombuffer(
|
|
262
|
+
data = np.frombuffer(raw_data, dtype=np.int16)
|
|
215
263
|
return bfloat16_to_float32(data, dims)
|
|
216
264
|
|
|
217
265
|
if tensor_dtype == TensorProto.FLOAT8E4M3FN:
|
|
218
|
-
data = np.frombuffer(
|
|
266
|
+
data = np.frombuffer(raw_data, dtype=np.int8)
|
|
219
267
|
return float8e4m3_to_float32(data, dims)
|
|
220
268
|
|
|
221
269
|
if tensor_dtype == TensorProto.FLOAT8E4M3FNUZ:
|
|
222
|
-
data = np.frombuffer(
|
|
270
|
+
data = np.frombuffer(raw_data, dtype=np.int8)
|
|
223
271
|
return float8e4m3_to_float32(data, dims, uz=True)
|
|
224
272
|
|
|
225
273
|
if tensor_dtype == TensorProto.FLOAT8E5M2:
|
|
226
|
-
data = np.frombuffer(
|
|
274
|
+
data = np.frombuffer(raw_data, dtype=np.int8)
|
|
227
275
|
return float8e5m2_to_float32(data, dims)
|
|
228
276
|
|
|
229
277
|
if tensor_dtype == TensorProto.FLOAT8E5M2FNUZ:
|
|
230
|
-
data = np.frombuffer(
|
|
278
|
+
data = np.frombuffer(raw_data, dtype=np.int8)
|
|
231
279
|
return float8e5m2_to_float32(data, dims, fn=True, uz=True)
|
|
232
280
|
|
|
233
|
-
|
|
281
|
+
if tensor_dtype == TensorProto.UINT4:
|
|
282
|
+
data = np.frombuffer(raw_data, dtype=np.uint8)
|
|
283
|
+
return unpack_int4(data, dims, signed=False)
|
|
284
|
+
|
|
285
|
+
if tensor_dtype == TensorProto.INT4:
|
|
286
|
+
data = np.frombuffer(raw_data, dtype=np.int8)
|
|
287
|
+
return unpack_int4(data, dims, signed=True)
|
|
288
|
+
|
|
289
|
+
return np.frombuffer(raw_data, dtype=np_dtype).reshape(dims) # type: ignore[no-any-return]
|
|
234
290
|
|
|
235
291
|
# float16 is stored as int32 (uint16 type); Need view to get the original value
|
|
236
292
|
if tensor_dtype == TensorProto.FLOAT16:
|
|
@@ -261,6 +317,14 @@ def to_array(tensor: TensorProto, base_dir: str = "") -> np.ndarray: # noqa: PL
|
|
|
261
317
|
data = np.asarray(tensor.int32_data, dtype=np.int32)
|
|
262
318
|
return float8e5m2_to_float32(data, dims, fn=True, uz=True)
|
|
263
319
|
|
|
320
|
+
if tensor_dtype == TensorProto.UINT4:
|
|
321
|
+
data = np.asarray(tensor.int32_data, dtype=storage_np_dtype)
|
|
322
|
+
return unpack_int4(data, dims, signed=False)
|
|
323
|
+
|
|
324
|
+
if tensor_dtype == TensorProto.INT4:
|
|
325
|
+
data = np.asarray(tensor.int32_data, dtype=storage_np_dtype)
|
|
326
|
+
return unpack_int4(data, dims, signed=True)
|
|
327
|
+
|
|
264
328
|
data = getattr(tensor, storage_field)
|
|
265
329
|
if tensor_dtype in (TensorProto.COMPLEX64, TensorProto.COMPLEX128):
|
|
266
330
|
data = combine_pairs_to_complex(data) # type: ignore[assignment,arg-type]
|
|
@@ -415,10 +479,10 @@ def to_dict(map_proto: MapProto) -> Dict[Any, Any]:
|
|
|
415
479
|
"""Converts a map def to a Python dictionary.
|
|
416
480
|
|
|
417
481
|
Args:
|
|
418
|
-
|
|
482
|
+
map_proto: a MapProto object.
|
|
419
483
|
|
|
420
484
|
Returns:
|
|
421
|
-
|
|
485
|
+
The converted dictionary.
|
|
422
486
|
"""
|
|
423
487
|
key_list: List[Any] = []
|
|
424
488
|
if map_proto.key_type == TensorProto.STRING:
|
|
@@ -441,7 +505,7 @@ def from_dict(dict_: Dict[Any, Any], name: Optional[str] = None) -> MapProto:
|
|
|
441
505
|
"""Converts a Python dictionary into a map def.
|
|
442
506
|
|
|
443
507
|
Args:
|
|
444
|
-
|
|
508
|
+
dict_: Python dictionary
|
|
445
509
|
name: (optional) the name of the map.
|
|
446
510
|
|
|
447
511
|
Returns:
|
|
@@ -573,11 +637,10 @@ def from_optional(
|
|
|
573
637
|
|
|
574
638
|
|
|
575
639
|
def convert_endian(tensor: TensorProto) -> None:
|
|
576
|
-
"""
|
|
577
|
-
Call to convert endianess of raw data in tensor.
|
|
640
|
+
"""Call to convert endianess of raw data in tensor.
|
|
578
641
|
|
|
579
|
-
|
|
580
|
-
tensor
|
|
642
|
+
Args:
|
|
643
|
+
tensor: TensorProto to be converted.
|
|
581
644
|
"""
|
|
582
645
|
tensor_dtype = tensor.data_type
|
|
583
646
|
np_dtype = helper.tensor_dtype_to_np_dtype(tensor_dtype)
|
|
@@ -589,16 +652,15 @@ def convert_endian(tensor: TensorProto) -> None:
|
|
|
589
652
|
def create_random_int(
|
|
590
653
|
input_shape: Tuple[int], dtype: np.dtype, seed: int = 1
|
|
591
654
|
) -> np.ndarray:
|
|
592
|
-
"""
|
|
593
|
-
Create random integer array for backend/test/case/node.
|
|
655
|
+
"""Create random integer array for backend/test/case/node.
|
|
594
656
|
|
|
595
657
|
Args:
|
|
596
|
-
input_shape:
|
|
597
|
-
dtype:
|
|
598
|
-
seed:
|
|
658
|
+
input_shape: The shape for the returned integer array.
|
|
659
|
+
dtype: The NumPy data type for the returned integer array.
|
|
660
|
+
seed: The seed for np.random.
|
|
599
661
|
|
|
600
662
|
Returns:
|
|
601
|
-
np.ndarray:
|
|
663
|
+
np.ndarray: Random integer array.
|
|
602
664
|
"""
|
|
603
665
|
np.random.seed(seed)
|
|
604
666
|
if dtype in (
|