multipers 2.4.0b1__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multipers/.dylibs/libboost_timer.dylib +0 -0
- multipers/.dylibs/libc++.1.0.dylib +0 -0
- multipers/.dylibs/libtbb.12.17.dylib +0 -0
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +426 -0
- multipers/_slicer_meta.py +231 -0
- multipers/array_api/__init__.py +62 -0
- multipers/array_api/numpy.py +124 -0
- multipers/array_api/torch.py +133 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +736 -0
- multipers/filtration_conversions.pxd.tp +226 -0
- multipers/filtrations/__init__.py +21 -0
- multipers/filtrations/density.py +529 -0
- multipers/filtrations/filtrations.py +480 -0
- multipers/filtrations.pxd +534 -0
- multipers/filtrations.pxd.tp +332 -0
- multipers/function_rips.cpython-312-darwin.so +0 -0
- multipers/function_rips.pyx +104 -0
- multipers/grids.cpython-312-darwin.so +0 -0
- multipers/grids.pyx +538 -0
- multipers/gudhi/Persistence_slices_interface.h +213 -0
- multipers/gudhi/Simplex_tree_interface.h +274 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +648 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +52 -0
- multipers/gudhi/gudhi/Degree_rips_bifiltration.h +2307 -0
- multipers/gudhi/gudhi/Dynamic_multi_parameter_filtration.h +2524 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +453 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +460 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +444 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +584 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +490 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +580 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +391 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +389 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +493 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +384 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +492 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2200 -0
- multipers/gudhi/gudhi/Multi_filtration/Multi_parameter_generator.h +1712 -0
- multipers/gudhi/gudhi/Multi_filtration/multi_filtration_conversions.h +237 -0
- multipers/gudhi/gudhi/Multi_filtration/multi_filtration_utils.h +225 -0
- multipers/gudhi/gudhi/Multi_parameter_filtered_complex.h +485 -0
- multipers/gudhi/gudhi/Multi_parameter_filtration.h +2643 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +233 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +309 -0
- multipers/gudhi/gudhi/Multi_persistence/Multi_parameter_filtered_complex_pcoh_interface.h +268 -0
- multipers/gudhi/gudhi/Multi_persistence/Persistence_interface_cohomology.h +159 -0
- multipers/gudhi/gudhi/Multi_persistence/Persistence_interface_matrix.h +463 -0
- multipers/gudhi/gudhi/Multi_persistence/Point.h +853 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +834 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +838 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +833 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1367 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1157 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +869 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +905 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +122 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +260 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +288 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +170 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +247 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +571 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +182 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +130 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +235 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +312 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +923 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +914 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +930 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1071 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +203 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +886 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +984 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1213 -0
- multipers/gudhi/gudhi/Persistence_matrix/index_mapper.h +58 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +227 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +200 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +166 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +319 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +562 -0
- multipers/gudhi/gudhi/Persistence_on_a_line.h +152 -0
- multipers/gudhi/gudhi/Persistence_on_rectangle.h +617 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +769 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Projective_cover_kernel.h +379 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +559 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +121 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/filtration_value_utils.h +155 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +60 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +105 -0
- multipers/gudhi/gudhi/Simplex_tree.h +3170 -0
- multipers/gudhi/gudhi/Slicer.h +848 -0
- multipers/gudhi/gudhi/Thread_safe_slicer.h +393 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/multi_simplex_tree_helpers.h +147 -0
- multipers/gudhi/gudhi/persistence_interval.h +263 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +188 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/gudhi/simple_mdspan.h +484 -0
- multipers/gudhi/gudhi/slicer_helpers.h +779 -0
- multipers/gudhi/tmp_h0_pers/mma_interface_h0.h +223 -0
- multipers/gudhi/tmp_h0_pers/naive_merge_tree.h +536 -0
- multipers/io.cpython-312-darwin.so +0 -0
- multipers/io.pyx +472 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1667 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-312-darwin.so +0 -0
- multipers/mma_structures.pxd +134 -0
- multipers/mma_structures.pyx +1483 -0
- multipers/mma_structures.pyx.tp +1126 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +85 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +95 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +317 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +761 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +149 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +350 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2541 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +292 -0
- multipers/multiparameter_module_approximation/utilities.h +428 -0
- multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
- multipers/multiparameter_module_approximation.pyx +286 -0
- multipers/ops.cpython-312-darwin.so +0 -0
- multipers/ops.pyx +231 -0
- multipers/pickle.py +89 -0
- multipers/plots.py +550 -0
- multipers/point_measure.cpython-312-darwin.so +0 -0
- multipers/point_measure.pyx +409 -0
- multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
- multipers/simplex_tree_multi.pxd +136 -0
- multipers/simplex_tree_multi.pyx +11719 -0
- multipers/simplex_tree_multi.pyx.tp +2102 -0
- multipers/slicer.cpython-312-darwin.so +0 -0
- multipers/slicer.pxd +2097 -0
- multipers/slicer.pxd.tp +263 -0
- multipers/slicer.pyx +13042 -0
- multipers/slicer.pyx.tp +1259 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +70 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers/vector_interface.pxd +46 -0
- multipers-2.4.0b1.dist-info/METADATA +131 -0
- multipers-2.4.0b1.dist-info/RECORD +184 -0
- multipers-2.4.0b1.dist-info/WHEEL +6 -0
- multipers-2.4.0b1.dist-info/licenses/LICENSE +21 -0
- multipers-2.4.0b1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,480 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from warnings import warn
|
|
4
|
+
|
|
5
|
+
import gudhi as gd
|
|
6
|
+
import numpy as np
|
|
7
|
+
from numpy.typing import ArrayLike
|
|
8
|
+
from scipy.spatial import KDTree
|
|
9
|
+
|
|
10
|
+
from multipers.array_api import api_from_tensor, api_from_tensors
|
|
11
|
+
from multipers.filtrations.density import DTM, available_kernels
|
|
12
|
+
from multipers.grids import compute_grid
|
|
13
|
+
from multipers.simplex_tree_multi import SimplexTreeMulti, SimplexTreeMulti_type
|
|
14
|
+
import multipers as _mp
|
|
15
|
+
|
|
16
|
+
try:
|
|
17
|
+
import pykeops
|
|
18
|
+
|
|
19
|
+
from multipers.filtrations.density import KDE
|
|
20
|
+
except ImportError:
|
|
21
|
+
from sklearn.neighbors import KernelDensity
|
|
22
|
+
|
|
23
|
+
warn("pykeops not found. Falling back to sklearn.")
|
|
24
|
+
|
|
25
|
+
def KDE(bandwidth, kernel, return_log):
|
|
26
|
+
assert return_log, "Sklearn returns log-density."
|
|
27
|
+
return KernelDensity(bandwidth=bandwidth, kernel=kernel)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def RipsLowerstar(
|
|
31
|
+
*,
|
|
32
|
+
points: Optional[ArrayLike] = None,
|
|
33
|
+
distance_matrix: Optional[ArrayLike] = None,
|
|
34
|
+
function: Optional[ArrayLike] = None,
|
|
35
|
+
threshold_radius: Optional[float] = None,
|
|
36
|
+
):
|
|
37
|
+
"""
|
|
38
|
+
Computes the Rips complex, with the usual rips filtration as a first parameter,
|
|
39
|
+
and the lower star multi filtration as other parameter.
|
|
40
|
+
|
|
41
|
+
Input:
|
|
42
|
+
- points or distance_matrix: ArrayLike
|
|
43
|
+
- function : ArrayLike of shape (num_data, num_parameters -1)
|
|
44
|
+
- threshold_radius: max edge length of the rips. Defaults at min(max(distance_matrix, axis=1)).
|
|
45
|
+
"""
|
|
46
|
+
assert points is not None or distance_matrix is not None, (
|
|
47
|
+
"`points` or `distance_matrix` has to be given."
|
|
48
|
+
)
|
|
49
|
+
if distance_matrix is None:
|
|
50
|
+
api = api_from_tensor(points)
|
|
51
|
+
points = api.astensor(points)
|
|
52
|
+
D = api.cdist(points, points) # this may be slow...
|
|
53
|
+
else:
|
|
54
|
+
api = api_from_tensor(distance_matrix)
|
|
55
|
+
D = api.astensor(distance_matrix)
|
|
56
|
+
|
|
57
|
+
if threshold_radius is None:
|
|
58
|
+
threshold_radius = api.min(api.maxvalues(D, axis=1))
|
|
59
|
+
st = gd.SimplexTree.create_from_array(
|
|
60
|
+
api.asnumpy(D), max_filtration=threshold_radius
|
|
61
|
+
)
|
|
62
|
+
if function is None:
|
|
63
|
+
return SimplexTreeMulti(st, num_parameters=1)
|
|
64
|
+
|
|
65
|
+
function = api.astensor(function)
|
|
66
|
+
if function.ndim == 1:
|
|
67
|
+
function = function[:, None]
|
|
68
|
+
if function.ndim != 2:
|
|
69
|
+
raise ValueError(
|
|
70
|
+
f"""
|
|
71
|
+
`function.ndim` should be 0 or 1 . Got {function.ndim=}.{function=}
|
|
72
|
+
"""
|
|
73
|
+
)
|
|
74
|
+
num_parameters = function.shape[1] + 1
|
|
75
|
+
st = SimplexTreeMulti(st, num_parameters=num_parameters)
|
|
76
|
+
for i in range(function.shape[1]):
|
|
77
|
+
st.fill_lowerstar(api.asnumpy(function[:, i]), parameter=1 + i)
|
|
78
|
+
if api.has_grad(D) or api.has_grad(function):
|
|
79
|
+
from multipers.grids import compute_grid
|
|
80
|
+
|
|
81
|
+
filtration_values = [D.ravel(), *[f for f in function.T]]
|
|
82
|
+
grid = compute_grid(filtration_values)
|
|
83
|
+
st = st.grid_squeeze(grid)
|
|
84
|
+
st._clean_filtration_grid()
|
|
85
|
+
return st
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def RipsCodensity(
|
|
89
|
+
points: ArrayLike,
|
|
90
|
+
bandwidth: Optional[float] = None,
|
|
91
|
+
*,
|
|
92
|
+
return_log: bool = True,
|
|
93
|
+
dtm_mass: Optional[float] = None,
|
|
94
|
+
kernel: available_kernels = "gaussian",
|
|
95
|
+
threshold_radius: Optional[float] = None,
|
|
96
|
+
):
|
|
97
|
+
"""
|
|
98
|
+
Computes the Rips density filtration.
|
|
99
|
+
"""
|
|
100
|
+
assert bandwidth is None or dtm_mass is None, (
|
|
101
|
+
"Density estimation is either via kernels or dtm."
|
|
102
|
+
)
|
|
103
|
+
if bandwidth is not None:
|
|
104
|
+
kde = KDE(bandwidth=bandwidth, kernel=kernel, return_log=return_log)
|
|
105
|
+
f = -kde.fit(points).score_samples(points)
|
|
106
|
+
elif dtm_mass is not None:
|
|
107
|
+
f = DTM(masses=[dtm_mass]).fit(points).score_samples(points)[0]
|
|
108
|
+
else:
|
|
109
|
+
raise ValueError("Bandwidth or DTM mass has to be given.")
|
|
110
|
+
return RipsLowerstar(points=points, function=f, threshold_radius=threshold_radius)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def DelaunayLowerstar(
|
|
114
|
+
points: ArrayLike,
|
|
115
|
+
function: ArrayLike,
|
|
116
|
+
*,
|
|
117
|
+
distance_matrix: Optional[ArrayLike] = None,
|
|
118
|
+
threshold_radius: Optional[float] = None,
|
|
119
|
+
reduce_degree: int = -1,
|
|
120
|
+
vineyard: Optional[bool] = None,
|
|
121
|
+
dtype=np.float64,
|
|
122
|
+
verbose: bool = False,
|
|
123
|
+
clear: bool = True,
|
|
124
|
+
flagify: bool = False,
|
|
125
|
+
):
|
|
126
|
+
"""
|
|
127
|
+
Computes the Function Delaunay bifiltration. Similar to RipsLowerstar, but most suited for low-dimensional euclidean data.
|
|
128
|
+
See [Delaunay bifiltrations of functions on point clouds, Alonso et al] https://doi.org/10.1137/1.9781611977912.173
|
|
129
|
+
|
|
130
|
+
Input:
|
|
131
|
+
- points or distance_matrix: ArrayLike
|
|
132
|
+
- function : ArrayLike of shape (num_data, )
|
|
133
|
+
- threshold_radius: max edge length of the rips. Defaults at min(max(distance_matrix, axis=1)).
|
|
134
|
+
"""
|
|
135
|
+
from multipers.slicer import from_function_delaunay
|
|
136
|
+
|
|
137
|
+
if flagify and reduce_degree >= 0:
|
|
138
|
+
raise ValueError(
|
|
139
|
+
"Got {reduce_degree=} and {flagify=}. Cannot flagify with reduce degree."
|
|
140
|
+
)
|
|
141
|
+
assert distance_matrix is None, "Delaunay cannot be built from distance matrices"
|
|
142
|
+
if threshold_radius is not None:
|
|
143
|
+
raise NotImplementedError("Delaunay with threshold not implemented yet.")
|
|
144
|
+
api = api_from_tensors(points, function)
|
|
145
|
+
if not flagify and (api.has_grad(points) or api.has_grad(function)):
|
|
146
|
+
warn("Cannot keep points gradient unless using `flagify=True`.")
|
|
147
|
+
points = api.astensor(points)
|
|
148
|
+
function = api.astensor(function).squeeze()
|
|
149
|
+
assert function.ndim == 1, (
|
|
150
|
+
"Delaunay Lowerstar is only compatible with 1 additional parameter."
|
|
151
|
+
)
|
|
152
|
+
slicer = from_function_delaunay(
|
|
153
|
+
api.asnumpy(points),
|
|
154
|
+
api.asnumpy(function),
|
|
155
|
+
degree=reduce_degree,
|
|
156
|
+
vineyard=vineyard,
|
|
157
|
+
dtype=dtype,
|
|
158
|
+
verbose=verbose,
|
|
159
|
+
clear=clear,
|
|
160
|
+
)
|
|
161
|
+
if reduce_degree >= 0:
|
|
162
|
+
# Force resolution to avoid confusion with hilbert.
|
|
163
|
+
slicer = slicer.minpres(degree=reduce_degree, force=True)
|
|
164
|
+
if flagify:
|
|
165
|
+
from multipers.slicer import to_simplextree
|
|
166
|
+
|
|
167
|
+
slicer = to_simplextree(slicer)
|
|
168
|
+
slicer.flagify(2)
|
|
169
|
+
|
|
170
|
+
if api.has_grad(points) or api.has_grad(function):
|
|
171
|
+
distances = api.cdist(points, points) / 2
|
|
172
|
+
grid = compute_grid([distances.ravel(), function])
|
|
173
|
+
slicer = slicer.grid_squeeze(grid)
|
|
174
|
+
slicer = slicer._clean_filtration_grid()
|
|
175
|
+
|
|
176
|
+
return slicer
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
def DelaunayCodensity(
|
|
180
|
+
points: ArrayLike,
|
|
181
|
+
bandwidth: Optional[float] = None,
|
|
182
|
+
*,
|
|
183
|
+
return_log: bool = True,
|
|
184
|
+
dtm_mass: Optional[float] = None,
|
|
185
|
+
kernel: available_kernels = "gaussian",
|
|
186
|
+
threshold_radius: Optional[float] = None,
|
|
187
|
+
reduce_degree: int = -1,
|
|
188
|
+
vineyard: Optional[bool] = None,
|
|
189
|
+
dtype=np.float64,
|
|
190
|
+
verbose: bool = False,
|
|
191
|
+
clear: bool = True,
|
|
192
|
+
flagify: bool = False,
|
|
193
|
+
):
|
|
194
|
+
"""
|
|
195
|
+
TODO
|
|
196
|
+
"""
|
|
197
|
+
assert bandwidth is None or dtm_mass is None, (
|
|
198
|
+
"Density estimation is either via kernels or dtm."
|
|
199
|
+
)
|
|
200
|
+
if bandwidth is not None:
|
|
201
|
+
kde = KDE(bandwidth=bandwidth, kernel=kernel, return_log=return_log)
|
|
202
|
+
f = -kde.fit(points).score_samples(points)
|
|
203
|
+
elif dtm_mass is not None:
|
|
204
|
+
f = DTM(masses=[dtm_mass]).fit(points).score_samples(points)[0]
|
|
205
|
+
else:
|
|
206
|
+
raise ValueError("Bandwidth or DTM mass has to be given.")
|
|
207
|
+
return DelaunayLowerstar(
|
|
208
|
+
points=points,
|
|
209
|
+
function=f,
|
|
210
|
+
threshold_radius=threshold_radius,
|
|
211
|
+
reduce_degree=reduce_degree,
|
|
212
|
+
vineyard=vineyard,
|
|
213
|
+
dtype=dtype,
|
|
214
|
+
verbose=verbose,
|
|
215
|
+
clear=clear,
|
|
216
|
+
flagify=flagify,
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
def Cubical(image: ArrayLike, **slicer_kwargs):
|
|
221
|
+
"""
|
|
222
|
+
Computes the cubical filtration of an image.
|
|
223
|
+
The last axis dimention is interpreted as the number of parameters.
|
|
224
|
+
|
|
225
|
+
Input:
|
|
226
|
+
- image: ArrayLike of shape (*image_resolution, num_parameters)
|
|
227
|
+
- ** args : specify non-default slicer parameters
|
|
228
|
+
"""
|
|
229
|
+
from multipers.slicer import from_bitmap
|
|
230
|
+
|
|
231
|
+
api = api_from_tensor(image)
|
|
232
|
+
image = api.astensor(image)
|
|
233
|
+
if api.has_grad(image):
|
|
234
|
+
img2 = image.reshape(-1, image.shape[-1]).T
|
|
235
|
+
grid = compute_grid(img2)
|
|
236
|
+
coord_img = np.empty(image.shape, dtype=np.int32)
|
|
237
|
+
slice_shape = image.shape[:-1]
|
|
238
|
+
for i in range(image.shape[-1]):
|
|
239
|
+
coord_img[..., i] = np.searchsorted(
|
|
240
|
+
api.asnumpy(grid[i]),
|
|
241
|
+
api.asnumpy(image[..., i]).reshape(-1),
|
|
242
|
+
).reshape(slice_shape)
|
|
243
|
+
slicer = from_bitmap(coord_img, **slicer_kwargs)
|
|
244
|
+
slicer.filtration_grid = grid
|
|
245
|
+
slicer._clean_filtration_grid()
|
|
246
|
+
return slicer
|
|
247
|
+
|
|
248
|
+
return from_bitmap(image, **slicer_kwargs)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def DegreeRips(
|
|
252
|
+
*,
|
|
253
|
+
simplex_tree=None,
|
|
254
|
+
degrees=None,
|
|
255
|
+
points=None,
|
|
256
|
+
distance_matrix=None,
|
|
257
|
+
ks=None,
|
|
258
|
+
threshold_radius=None,
|
|
259
|
+
num=None,
|
|
260
|
+
squeeze_strategy="exact",
|
|
261
|
+
squeeze_resolution=None,
|
|
262
|
+
squeeze=True,
|
|
263
|
+
):
|
|
264
|
+
"""
|
|
265
|
+
The DegreeRips filtration.
|
|
266
|
+
"""
|
|
267
|
+
|
|
268
|
+
if simplex_tree is None:
|
|
269
|
+
if distance_matrix is None:
|
|
270
|
+
if points is None:
|
|
271
|
+
raise ValueError(
|
|
272
|
+
"A simplextree, a distance matrix or a point cloud has to be given."
|
|
273
|
+
)
|
|
274
|
+
api = api_from_tensor(points)
|
|
275
|
+
points = api.astensor(points)
|
|
276
|
+
D = api.cdist(points, points)
|
|
277
|
+
else:
|
|
278
|
+
api = api_from_tensor(distance_matrix)
|
|
279
|
+
D = api.astensor(distance_matrix)
|
|
280
|
+
|
|
281
|
+
if threshold_radius is None:
|
|
282
|
+
threshold_radius = api.min(api.maxvalues(D, axis=1))
|
|
283
|
+
st = gd.SimplexTree.create_from_array(
|
|
284
|
+
api.asnumpy(D), max_filtration=threshold_radius
|
|
285
|
+
)
|
|
286
|
+
rips_filtration = api.unique(D.ravel())
|
|
287
|
+
else:
|
|
288
|
+
st = simplex_tree
|
|
289
|
+
rips_filtration = None
|
|
290
|
+
|
|
291
|
+
if ks is None or rips_filtration is None:
|
|
292
|
+
from warnings import warn
|
|
293
|
+
|
|
294
|
+
warn(
|
|
295
|
+
"(copy warning) Had to copy the rips to infer the `degrees` or recover the 1st filtration parameter."
|
|
296
|
+
)
|
|
297
|
+
_temp_st = _mp.SimplexTreeMulti(
|
|
298
|
+
st, num_parameters=1
|
|
299
|
+
) # Gudhi is missing some functionality
|
|
300
|
+
if ks is None:
|
|
301
|
+
max_degree = (
|
|
302
|
+
np.bincount(_temp_st.get_simplices_of_dimension(1).ravel()).max() // 2
|
|
303
|
+
)
|
|
304
|
+
ks = (
|
|
305
|
+
np.arange(max_degree)
|
|
306
|
+
if num is None
|
|
307
|
+
else np.unique(np.linspace(0, max_degree, num, dtype=np.int32))
|
|
308
|
+
)
|
|
309
|
+
if rips_filtration is None:
|
|
310
|
+
rips_filtration = _mp.grids.compute_grid(_temp_st)[0]
|
|
311
|
+
|
|
312
|
+
from multipers.function_rips import get_degree_rips
|
|
313
|
+
|
|
314
|
+
st_multi = get_degree_rips(st, degrees=ks)
|
|
315
|
+
if squeeze:
|
|
316
|
+
F = [rips_filtration, ks.astype(np.float64)]
|
|
317
|
+
F = _mp.grids.compute_grid(
|
|
318
|
+
F, strategy=squeeze_strategy, resolution=squeeze_resolution
|
|
319
|
+
)
|
|
320
|
+
st_multi = st_multi.grid_squeeze(F)
|
|
321
|
+
st_multi.filtration_grid = (F[0], F[1] - F[1][-1]) # degrees are negative
|
|
322
|
+
return st_multi
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
def CoreDelaunay(
|
|
326
|
+
points: ArrayLike,
|
|
327
|
+
*,
|
|
328
|
+
beta: float = 1.0,
|
|
329
|
+
ks: Optional[Sequence[int]] = None,
|
|
330
|
+
precision: str = "safe",
|
|
331
|
+
verbose: bool = False,
|
|
332
|
+
max_alpha_square: float = float("inf"),
|
|
333
|
+
positive_degree: bool = False,
|
|
334
|
+
) -> SimplexTreeMulti_type:
|
|
335
|
+
"""
|
|
336
|
+
Computes the Delaunay core bifiltration of a point cloud presented in the paper "Core Bifiltration" https://arxiv.org/abs/2405.01214, and returns the (multi-critical) bifiltration as a SimplexTreeMulti. The Delaunay core bifiltration is an alpha complex version of the core bifiltration which is smaller in size. Moreover, along the horizontal line k=1, the Delaunay core bifiltration is identical to the alpha complex.
|
|
337
|
+
|
|
338
|
+
Input:
|
|
339
|
+
- points: The point cloud as an ArrayLike of shape (n, d) where n is the number of points and d is the dimension of the points.
|
|
340
|
+
- beta: The beta parameter for the Delaunay Core Bifiltration (default 1.0).
|
|
341
|
+
- ks: The list of k-values to include in the bifiltration (default None). If None, the k-values are set to [1, 2, ..., n] where n is the number of points in the point cloud. For large point clouds, it is recommended to set ks to a smaller list of k-values to reduce computation time. The values in ks must all be integers, positive, and less than or equal to the number of points in the point cloud.
|
|
342
|
+
- precision: The precision of the computation of the AlphaComplex, one of ['safe', 'exact', 'fast'] (default 'safe'). See the GUDHI documentation for more information.
|
|
343
|
+
- verbose: Whether to print progress messages (default False).
|
|
344
|
+
- max_alpha_square: The maximum squared alpha value to consider when createing the alpha complex (default inf). See the GUDHI documentation for more information.
|
|
345
|
+
"""
|
|
346
|
+
points = np.asarray(points)
|
|
347
|
+
if ks is None:
|
|
348
|
+
ks = np.arange(1, len(points) + 1)
|
|
349
|
+
else:
|
|
350
|
+
ks = np.asarray(ks, dtype=int)
|
|
351
|
+
ks: np.ndarray
|
|
352
|
+
|
|
353
|
+
assert len(ks) > 0, "The parameter ks must contain at least one value."
|
|
354
|
+
assert np.all(ks > 0), "All values in ks must be positive."
|
|
355
|
+
assert np.all(ks <= len(points)), (
|
|
356
|
+
"All values in ks must be less than or equal to the number of points in the point cloud."
|
|
357
|
+
)
|
|
358
|
+
assert len(points) > 0, "The point cloud must contain at least one point."
|
|
359
|
+
assert points.ndim == 2, f"The point cloud must be a 2D array, got {points.ndim}D."
|
|
360
|
+
assert beta >= 0, f"The parameter beta must be positive, got {beta}."
|
|
361
|
+
assert precision in [
|
|
362
|
+
"safe",
|
|
363
|
+
"exact",
|
|
364
|
+
"fast",
|
|
365
|
+
], f"""
|
|
366
|
+
The parameter precision must be one of ['safe', 'exact', 'fast'],
|
|
367
|
+
got {precision}.
|
|
368
|
+
"""
|
|
369
|
+
|
|
370
|
+
if verbose:
|
|
371
|
+
print(
|
|
372
|
+
f"""Computing the Delaunay Core Bifiltration
|
|
373
|
+
of {len(points)} points in dimension {points.shape[1]}
|
|
374
|
+
with parameters:
|
|
375
|
+
"""
|
|
376
|
+
)
|
|
377
|
+
print(f"\tbeta = {beta}")
|
|
378
|
+
print(f"\tks = {ks}")
|
|
379
|
+
|
|
380
|
+
if verbose:
|
|
381
|
+
print("Building the alpha complex...")
|
|
382
|
+
alpha_complex = gd.AlphaComplex(
|
|
383
|
+
points=points, precision=precision
|
|
384
|
+
).create_simplex_tree(max_alpha_square=max_alpha_square)
|
|
385
|
+
|
|
386
|
+
if verbose:
|
|
387
|
+
print("Computing the k-nearest neighbor distances...")
|
|
388
|
+
knn_distances = KDTree(points).query(points, k=ks)[0]
|
|
389
|
+
|
|
390
|
+
max_dim = alpha_complex.dimension()
|
|
391
|
+
vertex_arrays_in_dimension = [[] for _ in range(max_dim + 1)]
|
|
392
|
+
squared_alphas_in_dimension = [[] for _ in range(max_dim + 1)]
|
|
393
|
+
for simplex, alpha_squared in alpha_complex.get_simplices():
|
|
394
|
+
dim = len(simplex) - 1
|
|
395
|
+
squared_alphas_in_dimension[dim].append(alpha_squared)
|
|
396
|
+
vertex_arrays_in_dimension[dim].append(simplex)
|
|
397
|
+
|
|
398
|
+
alphas_in_dimension = [
|
|
399
|
+
np.sqrt(np.array(alpha_squared, dtype=np.float64))
|
|
400
|
+
for alpha_squared in squared_alphas_in_dimension
|
|
401
|
+
]
|
|
402
|
+
vertex_arrays_in_dimension = [
|
|
403
|
+
np.array(vertex_array, dtype=np.int32)
|
|
404
|
+
for vertex_array in vertex_arrays_in_dimension
|
|
405
|
+
]
|
|
406
|
+
|
|
407
|
+
simplex_tree_multi = SimplexTreeMulti(
|
|
408
|
+
num_parameters=2, kcritical=True, dtype=np.float64
|
|
409
|
+
)
|
|
410
|
+
|
|
411
|
+
for dim, (vertex_array, alphas) in enumerate(
|
|
412
|
+
zip(vertex_arrays_in_dimension, alphas_in_dimension)
|
|
413
|
+
):
|
|
414
|
+
num_simplices = len(vertex_array)
|
|
415
|
+
if verbose:
|
|
416
|
+
print(
|
|
417
|
+
f"""
|
|
418
|
+
Inserting {num_simplices} simplices of dimension {dim}
|
|
419
|
+
({num_simplices * len(ks)} birth values)...
|
|
420
|
+
"""
|
|
421
|
+
)
|
|
422
|
+
max_knn_distances = np.max(knn_distances[vertex_array], axis=1)
|
|
423
|
+
critical_radii = np.maximum(alphas[:, None], beta * max_knn_distances)
|
|
424
|
+
filtrations = np.stack(
|
|
425
|
+
(
|
|
426
|
+
critical_radii,
|
|
427
|
+
(ks[-1] - ks if positive_degree else -ks)
|
|
428
|
+
* np.ones_like(critical_radii),
|
|
429
|
+
),
|
|
430
|
+
axis=-1,
|
|
431
|
+
)
|
|
432
|
+
simplex_tree_multi.insert_batch(vertex_array.T, filtrations)
|
|
433
|
+
|
|
434
|
+
if verbose:
|
|
435
|
+
print("Done computing the Delaunay Core Bifiltration.")
|
|
436
|
+
|
|
437
|
+
return simplex_tree_multi
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
def RhomboidBifiltration(
|
|
441
|
+
x,
|
|
442
|
+
k_max: int,
|
|
443
|
+
degree: int,
|
|
444
|
+
verbose: bool = False,
|
|
445
|
+
):
|
|
446
|
+
"""
|
|
447
|
+
Rhomboid Tiling bifiltration.
|
|
448
|
+
This (1-critical) bifiltration is quasi-isomorphic to the (multi-critical) multicover bifiltration.
|
|
449
|
+
From [Computing the Multicover Bifiltration](https://doi.org/10.1007/s00454-022-00476-8), whose code
|
|
450
|
+
can be found here: https://github.com/geoo89/rhomboidtiling
|
|
451
|
+
|
|
452
|
+
Parameters
|
|
453
|
+
- x: 2d or 3d point cloud, of shape `(num_points,dimension)`.
|
|
454
|
+
- k_max(int): maximum number of cover to consider
|
|
455
|
+
- degree: dimension to consider
|
|
456
|
+
- verbose:bool
|
|
457
|
+
"""
|
|
458
|
+
from multipers.io import _rhomboid_tiling_to_slicer
|
|
459
|
+
from multipers import Slicer
|
|
460
|
+
|
|
461
|
+
api = api_from_tensor(x)
|
|
462
|
+
if api.has_grad(x):
|
|
463
|
+
from warnings import warn
|
|
464
|
+
|
|
465
|
+
warn(
|
|
466
|
+
"Found a gradient in input, which cannot be processed by RhomboidBifiltration."
|
|
467
|
+
)
|
|
468
|
+
x = api.asnumpy(x)
|
|
469
|
+
if x.ndim not in (2, 3):
|
|
470
|
+
raise ValueError("Only 2-3D dimensional point cloud are supported.")
|
|
471
|
+
out = Slicer()
|
|
472
|
+
_rhomboid_tiling_to_slicer(
|
|
473
|
+
slicer=out,
|
|
474
|
+
point_cloud=x,
|
|
475
|
+
k_max=k_max,
|
|
476
|
+
verbose=verbose,
|
|
477
|
+
degree=degree,
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
return out
|