multipers 2.4.0b1__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. multipers/.dylibs/libboost_timer.dylib +0 -0
  2. multipers/.dylibs/libc++.1.0.dylib +0 -0
  3. multipers/.dylibs/libtbb.12.17.dylib +0 -0
  4. multipers/__init__.py +33 -0
  5. multipers/_signed_measure_meta.py +426 -0
  6. multipers/_slicer_meta.py +231 -0
  7. multipers/array_api/__init__.py +62 -0
  8. multipers/array_api/numpy.py +124 -0
  9. multipers/array_api/torch.py +133 -0
  10. multipers/data/MOL2.py +458 -0
  11. multipers/data/UCR.py +18 -0
  12. multipers/data/__init__.py +1 -0
  13. multipers/data/graphs.py +466 -0
  14. multipers/data/immuno_regions.py +27 -0
  15. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  16. multipers/data/pytorch2simplextree.py +91 -0
  17. multipers/data/shape3d.py +101 -0
  18. multipers/data/synthetic.py +113 -0
  19. multipers/distances.py +202 -0
  20. multipers/filtration_conversions.pxd +736 -0
  21. multipers/filtration_conversions.pxd.tp +226 -0
  22. multipers/filtrations/__init__.py +21 -0
  23. multipers/filtrations/density.py +529 -0
  24. multipers/filtrations/filtrations.py +480 -0
  25. multipers/filtrations.pxd +534 -0
  26. multipers/filtrations.pxd.tp +332 -0
  27. multipers/function_rips.cpython-312-darwin.so +0 -0
  28. multipers/function_rips.pyx +104 -0
  29. multipers/grids.cpython-312-darwin.so +0 -0
  30. multipers/grids.pyx +538 -0
  31. multipers/gudhi/Persistence_slices_interface.h +213 -0
  32. multipers/gudhi/Simplex_tree_interface.h +274 -0
  33. multipers/gudhi/Simplex_tree_multi_interface.h +648 -0
  34. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  35. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  36. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  37. multipers/gudhi/gudhi/Debug_utils.h +52 -0
  38. multipers/gudhi/gudhi/Degree_rips_bifiltration.h +2307 -0
  39. multipers/gudhi/gudhi/Dynamic_multi_parameter_filtration.h +2524 -0
  40. multipers/gudhi/gudhi/Fields/Multi_field.h +453 -0
  41. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +460 -0
  42. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +444 -0
  43. multipers/gudhi/gudhi/Fields/Multi_field_small.h +584 -0
  44. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +490 -0
  45. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +580 -0
  46. multipers/gudhi/gudhi/Fields/Z2_field.h +391 -0
  47. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +389 -0
  48. multipers/gudhi/gudhi/Fields/Zp_field.h +493 -0
  49. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +384 -0
  50. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +492 -0
  51. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  52. multipers/gudhi/gudhi/Matrix.h +2200 -0
  53. multipers/gudhi/gudhi/Multi_filtration/Multi_parameter_generator.h +1712 -0
  54. multipers/gudhi/gudhi/Multi_filtration/multi_filtration_conversions.h +237 -0
  55. multipers/gudhi/gudhi/Multi_filtration/multi_filtration_utils.h +225 -0
  56. multipers/gudhi/gudhi/Multi_parameter_filtered_complex.h +485 -0
  57. multipers/gudhi/gudhi/Multi_parameter_filtration.h +2643 -0
  58. multipers/gudhi/gudhi/Multi_persistence/Box.h +233 -0
  59. multipers/gudhi/gudhi/Multi_persistence/Line.h +309 -0
  60. multipers/gudhi/gudhi/Multi_persistence/Multi_parameter_filtered_complex_pcoh_interface.h +268 -0
  61. multipers/gudhi/gudhi/Multi_persistence/Persistence_interface_cohomology.h +159 -0
  62. multipers/gudhi/gudhi/Multi_persistence/Persistence_interface_matrix.h +463 -0
  63. multipers/gudhi/gudhi/Multi_persistence/Point.h +853 -0
  64. multipers/gudhi/gudhi/Off_reader.h +173 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +834 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +838 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +833 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1367 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1157 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +869 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +905 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +122 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +260 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +288 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +170 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +247 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +571 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +182 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +130 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +235 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +312 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1092 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +923 -0
  84. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +914 -0
  85. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +930 -0
  86. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1071 -0
  87. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +203 -0
  88. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +886 -0
  89. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +984 -0
  90. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1213 -0
  91. multipers/gudhi/gudhi/Persistence_matrix/index_mapper.h +58 -0
  92. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +227 -0
  93. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +200 -0
  94. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +166 -0
  95. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +319 -0
  96. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +562 -0
  97. multipers/gudhi/gudhi/Persistence_on_a_line.h +152 -0
  98. multipers/gudhi/gudhi/Persistence_on_rectangle.h +617 -0
  99. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  100. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  101. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  102. multipers/gudhi/gudhi/Persistent_cohomology.h +769 -0
  103. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  104. multipers/gudhi/gudhi/Projective_cover_kernel.h +379 -0
  105. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  106. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +559 -0
  107. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  108. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +121 -0
  109. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  110. multipers/gudhi/gudhi/Simplex_tree/filtration_value_utils.h +155 -0
  111. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  112. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  113. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +60 -0
  114. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +105 -0
  115. multipers/gudhi/gudhi/Simplex_tree.h +3170 -0
  116. multipers/gudhi/gudhi/Slicer.h +848 -0
  117. multipers/gudhi/gudhi/Thread_safe_slicer.h +393 -0
  118. multipers/gudhi/gudhi/distance_functions.h +62 -0
  119. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  120. multipers/gudhi/gudhi/multi_simplex_tree_helpers.h +147 -0
  121. multipers/gudhi/gudhi/persistence_interval.h +263 -0
  122. multipers/gudhi/gudhi/persistence_matrix_options.h +188 -0
  123. multipers/gudhi/gudhi/reader_utils.h +367 -0
  124. multipers/gudhi/gudhi/simple_mdspan.h +484 -0
  125. multipers/gudhi/gudhi/slicer_helpers.h +779 -0
  126. multipers/gudhi/tmp_h0_pers/mma_interface_h0.h +223 -0
  127. multipers/gudhi/tmp_h0_pers/naive_merge_tree.h +536 -0
  128. multipers/io.cpython-312-darwin.so +0 -0
  129. multipers/io.pyx +472 -0
  130. multipers/ml/__init__.py +0 -0
  131. multipers/ml/accuracies.py +90 -0
  132. multipers/ml/invariants_with_persistable.py +79 -0
  133. multipers/ml/kernels.py +176 -0
  134. multipers/ml/mma.py +713 -0
  135. multipers/ml/one.py +472 -0
  136. multipers/ml/point_clouds.py +352 -0
  137. multipers/ml/signed_measures.py +1667 -0
  138. multipers/ml/sliced_wasserstein.py +461 -0
  139. multipers/ml/tools.py +113 -0
  140. multipers/mma_structures.cpython-312-darwin.so +0 -0
  141. multipers/mma_structures.pxd +134 -0
  142. multipers/mma_structures.pyx +1483 -0
  143. multipers/mma_structures.pyx.tp +1126 -0
  144. multipers/multi_parameter_rank_invariant/diff_helpers.h +85 -0
  145. multipers/multi_parameter_rank_invariant/euler_characteristic.h +95 -0
  146. multipers/multi_parameter_rank_invariant/function_rips.h +317 -0
  147. multipers/multi_parameter_rank_invariant/hilbert_function.h +761 -0
  148. multipers/multi_parameter_rank_invariant/persistence_slices.h +149 -0
  149. multipers/multi_parameter_rank_invariant/rank_invariant.h +350 -0
  150. multipers/multiparameter_edge_collapse.py +41 -0
  151. multipers/multiparameter_module_approximation/approximation.h +2541 -0
  152. multipers/multiparameter_module_approximation/debug.h +107 -0
  153. multipers/multiparameter_module_approximation/format_python-cpp.h +292 -0
  154. multipers/multiparameter_module_approximation/utilities.h +428 -0
  155. multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
  156. multipers/multiparameter_module_approximation.pyx +286 -0
  157. multipers/ops.cpython-312-darwin.so +0 -0
  158. multipers/ops.pyx +231 -0
  159. multipers/pickle.py +89 -0
  160. multipers/plots.py +550 -0
  161. multipers/point_measure.cpython-312-darwin.so +0 -0
  162. multipers/point_measure.pyx +409 -0
  163. multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
  164. multipers/simplex_tree_multi.pxd +136 -0
  165. multipers/simplex_tree_multi.pyx +11719 -0
  166. multipers/simplex_tree_multi.pyx.tp +2102 -0
  167. multipers/slicer.cpython-312-darwin.so +0 -0
  168. multipers/slicer.pxd +2097 -0
  169. multipers/slicer.pxd.tp +263 -0
  170. multipers/slicer.pyx +13042 -0
  171. multipers/slicer.pyx.tp +1259 -0
  172. multipers/tensor/tensor.h +672 -0
  173. multipers/tensor.pxd +13 -0
  174. multipers/test.pyx +44 -0
  175. multipers/tests/__init__.py +70 -0
  176. multipers/torch/__init__.py +1 -0
  177. multipers/torch/diff_grids.py +240 -0
  178. multipers/torch/rips_density.py +310 -0
  179. multipers/vector_interface.pxd +46 -0
  180. multipers-2.4.0b1.dist-info/METADATA +131 -0
  181. multipers-2.4.0b1.dist-info/RECORD +184 -0
  182. multipers-2.4.0b1.dist-info/WHEEL +6 -0
  183. multipers-2.4.0b1.dist-info/licenses/LICENSE +21 -0
  184. multipers-2.4.0b1.dist-info/top_level.txt +1 -0
multipers/grids.pyx ADDED
@@ -0,0 +1,538 @@
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+ from itertools import product
12
+ from multipers.array_api import api_from_tensor, api_from_tensors
13
+ from multipers.array_api import numpy as npapi
14
+ from multipers.array_api import check_keops
15
+
16
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
17
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
18
+
19
+ ctypedef fused some_int:
20
+ int32_t
21
+ int64_t
22
+
23
+ ctypedef fused some_float:
24
+ float
25
+ double
26
+
27
+ def sanitize_grid(grid, bool numpyfy=False, bool add_inf=False):
28
+ cdef int num_parameters = len(grid)
29
+ if num_parameters == 0:
30
+ raise ValueError("empty filtration grid")
31
+ api = api_from_tensors(*grid)
32
+ if numpyfy:
33
+ grid = tuple(api.asnumpy(grid[i]) for i in range(num_parameters))
34
+ else:
35
+ # copy here may not be necessary, but cheap
36
+ grid = tuple(api.astensor(grid[i]) for i in range(num_parameters))
37
+ if add_inf:
38
+ api = api_from_tensors(grid[0])
39
+ inf = api.astensor(_inf_value(grid[0]))
40
+ grid = tuple(
41
+ grid[i] if grid[i][-1] == inf
42
+ else api.cat([grid[i], inf[None]])
43
+ for i in range(num_parameters)
44
+ )
45
+ assert np.all([g.ndim==1 for g in grid])
46
+ return grid
47
+
48
+ def threshold_slice(a, m,M):
49
+ if m is not None:
50
+ a = a[a>=m]
51
+ if M is not None:
52
+ a = a[a<=M]
53
+ return a
54
+
55
+
56
+
57
+
58
+ def compute_grid(
59
+ x,
60
+ resolution:Optional[int|Iterable[int]]=None,
61
+ strategy:Lstrategies="exact",
62
+ bool unique=True,
63
+ some_float _q_factor=1.,
64
+ drop_quantiles=[0,0],
65
+ bool dense = False,
66
+ threshold_min = None,
67
+ threshold_max = None,
68
+ ):
69
+ """
70
+ Computes a grid from filtration values, using some strategy.
71
+
72
+ Input
73
+ -----
74
+
75
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
76
+ where `filtration_of_parameter` is a array[float, ndim=1]
77
+ - `resolution`:Optional[int|tuple[int]]
78
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
79
+ - `unique`: if true, doesn't repeat values in the output grid.
80
+ - `drop_quantiles` : drop some filtration values according to these quantiles
81
+ Output
82
+ ------
83
+
84
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
85
+ """
86
+
87
+ from multipers.slicer import is_slicer
88
+ from multipers.simplex_tree_multi import is_simplextree_multi
89
+ from multipers.mma_structures import is_mma
90
+
91
+ if resolution is not None and strategy == "exact":
92
+ raise ValueError("The 'exact' strategy does not support resolution.")
93
+ if strategy != "exact":
94
+ assert resolution is not None, "A resolution is required for non-exact strategies"
95
+
96
+
97
+ cdef bool is_numpy_compatible = True
98
+ if (is_slicer(x) or is_simplextree_multi(x)) and x.is_squeezed:
99
+ initial_grid = x.filtration_grid
100
+ api = api_from_tensors(*initial_grid)
101
+ elif is_slicer(x):
102
+ initial_grid = x.get_filtrations_values().T
103
+ api = npapi
104
+ elif is_simplextree_multi(x):
105
+ initial_grid = x.get_filtration_grid()
106
+ api = npapi
107
+ elif is_mma(x):
108
+ initial_grid = x.get_filtration_values()
109
+ api = npapi
110
+ elif isinstance(x, np.ndarray):
111
+ initial_grid = x
112
+ api = npapi
113
+ else:
114
+ x = tuple(x)
115
+ if len(x) == 0: return []
116
+ first = x[0]
117
+ ## is_sm, i.e., iterable tuple(pts,weights)
118
+ if isinstance(first, tuple) and getattr(first[0], "shape", None) is not None:
119
+ initial_grid = tuple(f[0].T for f in x)
120
+ api = api_from_tensors(*initial_grid)
121
+ initial_grid = api.cat(initial_grid, axis=1)
122
+ ## is grid-like (num_params, num_pts)
123
+ else:
124
+ api = api_from_tensors(*x)
125
+ initial_grid = tuple(api.astensor(f) for f in x)
126
+
127
+ cdef int num_parameters = len(initial_grid)
128
+ try:
129
+ int(resolution)
130
+ resolution = [resolution]*num_parameters
131
+ except TypeError:
132
+ pass
133
+
134
+ if threshold_min is not None or threshold_max is not None:
135
+ if threshold_min is None:
136
+ threshold_min = [None]*num_parameters
137
+ if threshold_max is None:
138
+ threshold_max = [None]*num_parameters
139
+
140
+ initial_grid = [
141
+ threshold_slice(x,a,b)
142
+ for x,a,b in zip(initial_grid, threshold_min, threshold_max)
143
+ ]
144
+
145
+ grid = _compute_grid_numpy(
146
+ initial_grid,
147
+ resolution=resolution,
148
+ strategy = strategy,
149
+ unique = unique,
150
+ _q_factor=_q_factor,
151
+ drop_quantiles=drop_quantiles,
152
+ dense = dense,
153
+ )
154
+ # from multipers.torch.diff_grids import get_grid
155
+ # grid = get_grid(strategy)(initial_grid,resolution)
156
+ if dense:
157
+ grid = todense(grid)
158
+ return grid
159
+
160
+
161
+
162
+
163
+
164
+ def _compute_grid_numpy(
165
+ filtrations_values,
166
+ resolution=None,
167
+ strategy:Lstrategies="exact",
168
+ bool unique=True,
169
+ some_float _q_factor=1.,
170
+ drop_quantiles=[0,0],
171
+ bool dense = False,
172
+ ):
173
+ """
174
+ Computes a grid from filtration values, using some strategy.
175
+
176
+ Input
177
+ -----
178
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
179
+ where `filtration_of_parameter` is a array[float, ndim=1]
180
+ - `resolution`:Optional[int|tuple[int]]
181
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
182
+ - `unique`: if true, doesn't repeat values in the output grid.
183
+ - `drop_quantiles` : drop some filtration values according to these quantiles
184
+ Output
185
+ ------
186
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
187
+ """
188
+ num_parameters = len(filtrations_values)
189
+ api = api_from_tensors(*filtrations_values)
190
+ try:
191
+ a,b=drop_quantiles
192
+ except:
193
+ a,b=drop_quantiles,drop_quantiles
194
+
195
+ if a != 0 or b != 0:
196
+ boxes = api.astensor([api.quantile_closest(filtration, [a, b], axis=1) for filtration in filtrations_values])
197
+ min_filtration, max_filtration = api.minvalues(boxes, axis=(0,1)), api.maxvalues(boxes, axis=(0,1)) # box, birth/death, filtration
198
+ filtrations_values = [
199
+ filtration[(m<filtration) * (filtration <M)]
200
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
201
+ ]
202
+
203
+ ## match doesn't work with cython BUG
204
+ if strategy == "exact":
205
+ F=tuple(api.unique(f) for f in filtrations_values)
206
+ elif strategy == "quantile":
207
+ F = tuple(api.unique(f) for f in filtrations_values)
208
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
209
+ F = tuple( api.quantile_closest(f, q=api.linspace(0,1,int(r*_q_factor)), axis=0) for f,r in zip(F, resolution) )
210
+ if unique:
211
+ F = tuple(api.unique(f) for f in F)
212
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
213
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
214
+ elif strategy == "regular":
215
+ F = tuple(_todo_regular(f,r,api) for f,r in zip(filtrations_values, resolution))
216
+ elif strategy == "regular_closest":
217
+ F = tuple(_todo_regular_closest(f,r, unique,api) for f,r in zip(filtrations_values, resolution))
218
+ elif strategy == "regular_left":
219
+ F = tuple(_todo_regular_left(f,r, unique,api) for f,r in zip(filtrations_values, resolution))
220
+ # elif strategy == "torch_regular_closest":
221
+ # F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
222
+ elif strategy == "partition":
223
+ F = tuple(_todo_partition(f,r, unique, api) for f,r in zip(filtrations_values, resolution))
224
+ elif strategy == "precomputed":
225
+ F=filtrations_values
226
+ else:
227
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
228
+ if dense:
229
+ return todense(F)
230
+ return F
231
+
232
+ def todense(grid, bool product_order=False):
233
+ if len(grid) == 0:
234
+ return np.empty(0)
235
+ api = api_from_tensors(*grid)
236
+ # if product_order:
237
+ # if not api.backend ==np:
238
+ # raise NotImplementedError("only numpy here.")
239
+ # return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
240
+ return api.cartesian_product(*grid)
241
+ # if not isinstance(grid[0], np.ndarray):
242
+ # import torch
243
+ # assert isinstance(grid[0], torch.Tensor)
244
+ # from multipers.torch.diff_grids import todense
245
+ # return todense(grid)
246
+ # dtype = grid[0].dtype
247
+ # if product_order:
248
+ # return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
249
+ # mesh = np.meshgrid(*grid)
250
+ # coordinates = np.stack(mesh, axis=-1).reshape(-1, len(grid)).astype(dtype)
251
+ # return coordinates
252
+
253
+
254
+
255
+ def _todo_regular(f, int r, api):
256
+ if api.has_grad(f):
257
+ from warnings import warn
258
+ warn("`strategy=regular` is not differentiable. Removing grad.")
259
+ with api.no_grad():
260
+ return api.linspace(api.min(f), api.max(f), r)
261
+
262
+ def _project_on_1d_grid(f,grid, bool unique, api):
263
+ # api=api_from_tensors(f,grid)
264
+ if f.ndim != 1:
265
+ raise ValueError(f"Got ndim!=1. {f=}")
266
+ f = api.unique(f)
267
+ with api.no_grad():
268
+ _f = api.LazyTensor(f[:, None, None])
269
+ _f_reg = api.LazyTensor(grid[None, :, None])
270
+ indices = (_f - _f_reg).abs().argmin(0).ravel()
271
+ f = api.cat([f, api.tensor([api.inf], dtype=f.dtype)])
272
+ f_proj = f[indices]
273
+ if unique:
274
+ f_proj = api.unique(f_proj)
275
+ return f_proj
276
+
277
+ def _todo_regular_closest_keops(f, int r, bool unique, api):
278
+ f = api.astensor(f)
279
+ with api.no_grad():
280
+ f_regular = api.linspace(api.min(f), api.max(f), r, device = api.device(f),dtype=f.dtype)
281
+ return _project_on_1d_grid(f,f_regular,unique,api)
282
+
283
+ def _todo_regular_closest_old(some_float[:] f, int r, bool unique, api=None):
284
+ f_array = np.asarray(f)
285
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
286
+ f_regular_closest = np.asarray([f[<int64_t>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)], dtype=f_array.dtype)
287
+ if unique: f_regular_closest = np.unique(f_regular_closest)
288
+ return f_regular_closest
289
+
290
+ def _todo_regular_left(f, int r, bool unique,api):
291
+ sorted_f = api.sort(f)
292
+ with api.no_grad():
293
+ f_regular = api.linspace(sorted_f[0],sorted_f[-1],r, dtype=sorted_f.dtype, device=api.device(sorted_f))
294
+ idx=api.searchsorted(sorted_f,f_regular)
295
+ f_regular_closest = sorted_f[idx]
296
+ if unique: f_regular_closest = api.unique(f_regular_closest)
297
+ return f_regular_closest
298
+
299
+ def _todo_regular_left_old(some_float[:] f, int r, bool unique):
300
+ sorted_f = np.sort(f)
301
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
302
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
303
+ if unique: f_regular_closest = np.unique(f_regular_closest)
304
+ return f_regular_closest
305
+
306
+ def _todo_partition(x, int resolution, bool unique, api):
307
+ if api.has_grad(x):
308
+ from warnings import warn
309
+ warn("`strategy=partition` is not differentiable. Removing grad.")
310
+ out = _todo_partition_(api.asnumpy(x), resolution, unique)
311
+ return api.from_numpy(out)
312
+
313
+ def _todo_partition_(some_float[:] data,int resolution, bool unique):
314
+ if data.shape[0] < resolution: resolution=data.shape[0]
315
+ k = data.shape[0] // resolution
316
+ partitions = np.partition(data, k)
317
+ f = partitions[[i*k for i in range(resolution)]]
318
+ if unique: f= np.unique(f)
319
+ return f
320
+
321
+
322
+ if check_keops():
323
+ _todo_regular_closest = _todo_regular_closest_keops
324
+ else:
325
+ _todo_regular_closest = _todo_regular_closest_old
326
+
327
+
328
+ def compute_bounding_box(stuff, inflate = 0.):
329
+ r"""
330
+ Returns a array of shape (2, num_parameters)
331
+ such that for any filtration value $y$ of something in stuff,
332
+ then if (x,z) is the output of this function, we have
333
+ $x\le y \le z$.
334
+ """
335
+ box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
336
+ if inflate:
337
+ box[0] -= inflate
338
+ box[1] += inflate
339
+ return box
340
+
341
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
342
+ """
343
+ Given points and a grid (list of one parameter grids),
344
+ pushes the points onto the grid.
345
+ """
346
+ num_points, num_parameters = points.shape[0], points.shape[1]
347
+ cdef cnp.ndarray[int64_t,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
348
+ for parameter in range(num_parameters):
349
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
350
+ if return_coordinate:
351
+ return coordinates
352
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
353
+ for parameter in range(num_parameters):
354
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
355
+ return out
356
+
357
+
358
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
359
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
360
+ if coordinate:
361
+ return push_to_grid(points, grid, coordinate), grid
362
+ return push_to_grid(points, grid, coordinate)
363
+
364
+ def _inf_value(array):
365
+ if isinstance(array, type|np.dtype):
366
+ dtype = np.dtype(array) # torch types are not types
367
+ elif isinstance(array, np.ndarray):
368
+ dtype = np.dtype(array.dtype)
369
+ else:
370
+ import torch
371
+ if isinstance(array, torch.Tensor):
372
+ dtype=array.dtype
373
+ elif isinstance(array, torch.dtype):
374
+ dtype=array
375
+ else:
376
+ raise ValueError(f"unknown input of type {type(array)=} {array=}")
377
+
378
+ if isinstance(dtype, np.dtype):
379
+ if dtype.kind == 'f':
380
+ return np.asarray(np.inf,dtype=dtype)
381
+ if dtype.kind == 'i':
382
+ return np.iinfo(dtype).max
383
+ # torch only here.
384
+ if dtype.is_floating_point:
385
+ return torch.tensor(torch.inf, dtype=dtype)
386
+ else:
387
+ return torch.iinfo(dtype).max
388
+ raise ValueError(f"Dtype must be integer or floating like (got {dtype})")
389
+
390
+ def evaluate_in_grid(pts, grid, mass_default=None, input_inf_value=None, output_inf_value=None):
391
+ """
392
+ Input
393
+ -----
394
+ - pts: of the form array[int, ndim=2]
395
+ - grid of the form Iterable[array[float, ndim=1]]
396
+ """
397
+ assert pts.ndim == 2
398
+ first_filtration = grid[0]
399
+ dtype = first_filtration.dtype
400
+ api = api_from_tensors(*grid)
401
+ if mass_default is not None:
402
+ grid = tuple(api.cat([g, api.astensor(m)[None]]) for g,m in zip(grid, mass_default))
403
+ def empty_like(x):
404
+ return api.empty(x.shape, dtype=dtype)
405
+
406
+ coords=empty_like(pts)
407
+ cdef int dim = coords.shape[1]
408
+ pts_inf = _inf_value(pts) if input_inf_value is None else input_inf_value
409
+ coords_inf = _inf_value(coords) if output_inf_value is None else output_inf_value
410
+ idx = np.argwhere(pts == pts_inf)
411
+ pts[idx[:,0],idx[:,1]] = 0
412
+ for i in range(dim):
413
+ coords[:,i] = grid[i][pts[:,i]]
414
+ coords[idx[:,0],idx[:,1]] = coords_inf
415
+ return coords
416
+
417
+ def sm_in_grid(pts, weights, grid, mass_default=None):
418
+ """Given a measure whose points are coordinates,
419
+ pushes this measure in this grid.
420
+ Input
421
+ -----
422
+ - pts: of the form array[int, ndim=2]
423
+ - weights: array[int, ndim=1]
424
+ - grid of the form Iterable[array[float, ndim=1]]
425
+ - num_parameters: number of parameters
426
+ """
427
+ if pts.ndim != 2:
428
+ raise ValueError(f"invalid dirac locations. got {pts.ndim=} != 2")
429
+ if len(grid) == 0:
430
+ raise ValueError(f"Empty grid given. Got {grid=}")
431
+ cdef int num_parameters = pts.shape[1]
432
+ if mass_default is None:
433
+ api = api_from_tensors(*grid)
434
+ else:
435
+ api = api_from_tensors(*grid, mass_default)
436
+
437
+ _grid = list(grid)
438
+ _mass_default = None if mass_default is None else api.astensor(mass_default)
439
+ while len(_grid) < num_parameters:
440
+ _grid += [api.cat([
441
+ (gt:=api.astensor(g))[1:],
442
+ api.astensor(_inf_value(api.asnumpy(gt))).reshape(1)
443
+ ]) for g in grid]
444
+ if mass_default is not None:
445
+ _mass_default = api.cat([_mass_default,mass_default])
446
+ grid = tuple(_grid)
447
+ mass_default = _mass_default
448
+
449
+ coords = evaluate_in_grid(np.asarray(pts, dtype=int), grid, mass_default)
450
+ return (coords, weights)
451
+
452
+ # TODO : optimize with memoryviews / typing
453
+ def sms_in_grid(sms, grid, mass_default=None):
454
+ """Given a measure whose points are coordinates,
455
+ pushes this measure in this grid.
456
+ Input
457
+ -----
458
+ - sms: of the form (signed_measure_like for num_measures)
459
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
460
+ - grid of the form Iterable[array[float, ndim=1]]
461
+ """
462
+ sms = tuple(sm_in_grid(pts,weights,grid=grid, mass_default=mass_default) for pts,weights in sms)
463
+ return sms
464
+
465
+
466
+ def _push_pts_to_line(pts, basepoint, direction=None, api=None):
467
+ if api is None:
468
+ api = api_from_tensors(pts, basepoint)
469
+ pts = api.astensor(pts)
470
+ basepoint = api.astensor(basepoint)
471
+ num_parameters = basepoint.shape[0]
472
+ if direction is not None:
473
+ if not api.is_promotable(direction):
474
+ raise ValueError(f"Incompatible input types. Got {type(pts)=}, {type(basepoint)=}, {type(direction)=}")
475
+
476
+ direction = api.astensor(direction)
477
+ ok_idx = direction > 0
478
+ if ok_idx.sum() == 0:
479
+ raise ValueError(f"Got invalid direction {direction}")
480
+ zero_idx = None if ok_idx.all() else direction == 0
481
+ else:
482
+ direction = api.tensor([1], dtype=int)
483
+ ok_idx = slice(None)
484
+ zero_idx = None
485
+ xa = api.maxvalues(
486
+ (pts[:, ok_idx] - basepoint[ok_idx]) / direction[ok_idx], axis=1, keepdims=True
487
+ )
488
+ if zero_idx is not None:
489
+ xb = api.where(pts[:, zero_idx] <= basepoint[zero_idx], -np.inf, np.inf)
490
+ xs = api.maxvalues(api.cat([xa, xb], axis=1), axis=1, keepdims=True)
491
+ else:
492
+ xs = xa
493
+ return xs.squeeze()
494
+
495
+ def _push_pts_to_lines(pts, basepoints, directions=None, api=None):
496
+ if api is None:
497
+ api = api_from_tensors(pts,basepoints)
498
+ cdef int num_lines = len(basepoints)
499
+ cdef int num_pts = len(pts)
500
+
501
+ pts = api.astensor(pts)
502
+ basepoints = api.astensor(basepoints)
503
+ if directions is None:
504
+ directions = [None]*num_lines
505
+ else:
506
+ directions = api.astensor(directions)
507
+
508
+ out = api.empty((num_lines, num_pts), dtype=pts.dtype)
509
+ for i in range(num_lines):
510
+ out[i] = _push_pts_to_line(pts, basepoints[i], directions[i], api=api)[None]
511
+ return out
512
+
513
+
514
+ def evaluate_mod_in_grid(mod, grid, box=None):
515
+ """Given an MMA module, pushes it into the specified grid.
516
+ Useful for e.g., make it differentiable.
517
+
518
+ Input
519
+ -----
520
+ - mod: PyModule
521
+ - grid: Iterable of 1d array, for num_parameters
522
+ Ouput
523
+ -----
524
+ torch-compatible module in the format:
525
+ (num_degrees) x (num_interval of degree) x ((num_birth, num_parameter), (num_death, num_parameters))
526
+
527
+ """
528
+ (birth_sizes, death_sizes), births, deaths = mod.to_flat_idx(grid)
529
+ births = evaluate_in_grid(births, grid)
530
+ deaths = evaluate_in_grid(deaths, grid)
531
+ api = api_from_tensors(births, deaths)
532
+ diff_mod = tuple(
533
+ zip(
534
+ api.split_with_sizes(births,birth_sizes.tolist()),
535
+ api.split_with_sizes(deaths,death_sizes.tolist()),
536
+ )
537
+ )
538
+ return diff_mod