multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp310-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp310-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
@@ -1,27 +1,27 @@
1
- import numpy as np
2
- from pandas import read_csv
3
- from os.path import expanduser
4
- from os import walk
5
- from sklearn.preprocessing import LabelEncoder
6
-
7
-
8
-
9
- def get(DATASET_PATH = expanduser("~/Datasets/")):
10
- DATASET_PATH += "1.5mmRegions/"
11
- X, labels = [],[]
12
- for label in ["FoxP3", "CD8", "CD68"]:
13
- # for label in ["FoxP3", "CD8"]:
14
- for root, dirs, files in walk(DATASET_PATH + label+"/"):
15
- for name in files:
16
- X.append(np.array(read_csv(DATASET_PATH+label+"/"+name))/1500) ## Rescaled
17
- labels.append(label)
18
- return X, LabelEncoder().fit_transform(np.array(labels))
19
-
20
- def get_immuno(i=1, DATASET_PATH = expanduser("~/Datasets/")):
21
- immu_dataset = read_csv(DATASET_PATH+f"LargeHypoxicRegion{i}.csv")
22
- X = np.array(immu_dataset['x'])
23
- X /= np.max(X)
24
- Y = np.array(immu_dataset['y'])
25
- Y /= np.max(Y)
26
- labels = LabelEncoder().fit_transform(immu_dataset['Celltype'])
27
- return np.asarray([X,Y]).T, labels
1
+ import numpy as np
2
+ from pandas import read_csv
3
+ from os.path import expanduser
4
+ from os import walk
5
+ from sklearn.preprocessing import LabelEncoder
6
+
7
+
8
+
9
+ def get(DATASET_PATH = expanduser("~/Datasets/")):
10
+ DATASET_PATH += "1.5mmRegions/"
11
+ X, labels = [],[]
12
+ for label in ["FoxP3", "CD8", "CD68"]:
13
+ # for label in ["FoxP3", "CD8"]:
14
+ for root, dirs, files in walk(DATASET_PATH + label+"/"):
15
+ for name in files:
16
+ X.append(np.array(read_csv(DATASET_PATH+label+"/"+name))/1500) ## Rescaled
17
+ labels.append(label)
18
+ return X, LabelEncoder().fit_transform(np.array(labels))
19
+
20
+ def get_immuno(i=1, DATASET_PATH = expanduser("~/Datasets/")):
21
+ immu_dataset = read_csv(DATASET_PATH+f"LargeHypoxicRegion{i}.csv")
22
+ X = np.array(immu_dataset['x'])
23
+ X /= np.max(X)
24
+ Y = np.array(immu_dataset['y'])
25
+ Y /= np.max(Y)
26
+ labels = LabelEncoder().fit_transform(immu_dataset['Celltype'])
27
+ return np.asarray([X,Y]).T, labels
@@ -1,91 +1,91 @@
1
- from tqdm import tqdm
2
- import numpy as np
3
- from torch_geometric.data.data import Data
4
- import networkx as nx
5
- from sklearn.base import BaseEstimator, TransformerMixin
6
- from typing import Iterable
7
-
8
-
9
- def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
10
- from sklearn.neighbors import kneighbors_graph
11
- """
12
- sample points and create neighborhoold graph
13
- """
14
- dataset = train_dataset + test_dataset
15
- indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
16
-
17
- dataset:list[Data] = [dataset[i] for i in indices]
18
- _,labels = torch_geometric_2nx(dataset, labels_only=True)
19
- if labels_only: return labels
20
-
21
- def data2graph(data:Data):
22
- pos = data.pos.numpy()
23
- adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
24
- g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
25
- if exp_flag:
26
- for u, v in g.edges(): # TODO optimize
27
- g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
28
- return g
29
- #TODO : nx.set_edge_attributes()
30
-
31
- return [data2graph(data) for data in dataset], labels
32
- def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
33
- """
34
- :param dataset:
35
- :param labels_only: return labels only
36
- :param print_flag:
37
- :param weight_flag: whether computing distance as weights or not
38
- :return:
39
- """
40
- if labels_only:
41
- return None, [int(data.y) for data in dataset]
42
- def data2graph(data:Data):
43
- edges = np.unique(data.edge_index.numpy().T, axis=0)
44
- g = nx.from_edgelist(edges)
45
- edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
46
- nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
47
- nx.set_edge_attributes(g, edge_filtration, "geodesic")
48
- return g
49
- return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
50
-
51
-
52
- def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
53
- """ load modelnet 10 or 40 and convert to graphs"""
54
- from torch_geometric.transforms import FaceToEdge
55
- from .shape3d import load_modelnet
56
- train_dataset, test_dataset = load_modelnet(version, point_flag = False)
57
- dataset = train_dataset + test_dataset
58
- if b>0: dataset = [dataset[i] for i in range(a,b)]
59
- if labels_only:
60
- return torch_geometric_2nx(dataset, labels_only=True)
61
- dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
62
- graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
63
- return graphs, labels
64
-
65
-
66
-
67
-
68
- class Torch2SimplexTree(BaseEstimator,TransformerMixin):
69
- """
70
- WARNING : build in progress
71
- PyTorch Data-like to simplextree.
72
-
73
- Input
74
- -----
75
- Class having `pos`, `edges`, `faces` methods
76
-
77
- Filtrations
78
- -----------
79
- - Geodesic (geodesic rips)
80
- - eccentricity
81
- """
82
- import multipers as mp
83
-
84
- def __init__(self, filtrations:Iterable[str]=[]):
85
- super().__init__()
86
-
87
- def fit(self, X, y=None):
88
- return self
89
-
90
- def transform(self,X:list[nx.Graph]):
1
+ from tqdm import tqdm
2
+ import numpy as np
3
+ from torch_geometric.data.data import Data
4
+ import networkx as nx
5
+ from sklearn.base import BaseEstimator, TransformerMixin
6
+ from typing import Iterable
7
+
8
+
9
+ def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
10
+ from sklearn.neighbors import kneighbors_graph
11
+ """
12
+ sample points and create neighborhoold graph
13
+ """
14
+ dataset = train_dataset + test_dataset
15
+ indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
16
+
17
+ dataset:list[Data] = [dataset[i] for i in indices]
18
+ _,labels = torch_geometric_2nx(dataset, labels_only=True)
19
+ if labels_only: return labels
20
+
21
+ def data2graph(data:Data):
22
+ pos = data.pos.numpy()
23
+ adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
24
+ g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
25
+ if exp_flag:
26
+ for u, v in g.edges(): # TODO optimize
27
+ g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
28
+ return g
29
+ #TODO : nx.set_edge_attributes()
30
+
31
+ return [data2graph(data) for data in dataset], labels
32
+ def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
33
+ """
34
+ :param dataset:
35
+ :param labels_only: return labels only
36
+ :param print_flag:
37
+ :param weight_flag: whether computing distance as weights or not
38
+ :return:
39
+ """
40
+ if labels_only:
41
+ return None, [int(data.y) for data in dataset]
42
+ def data2graph(data:Data):
43
+ edges = np.unique(data.edge_index.numpy().T, axis=0)
44
+ g = nx.from_edgelist(edges)
45
+ edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
46
+ nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
47
+ nx.set_edge_attributes(g, edge_filtration, "geodesic")
48
+ return g
49
+ return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
50
+
51
+
52
+ def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
53
+ """ load modelnet 10 or 40 and convert to graphs"""
54
+ from torch_geometric.transforms import FaceToEdge
55
+ from .shape3d import load_modelnet
56
+ train_dataset, test_dataset = load_modelnet(version, point_flag = False)
57
+ dataset = train_dataset + test_dataset
58
+ if b>0: dataset = [dataset[i] for i in range(a,b)]
59
+ if labels_only:
60
+ return torch_geometric_2nx(dataset, labels_only=True)
61
+ dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
62
+ graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
63
+ return graphs, labels
64
+
65
+
66
+
67
+
68
+ class Torch2SimplexTree(BaseEstimator,TransformerMixin):
69
+ """
70
+ WARNING : build in progress
71
+ PyTorch Data-like to simplextree.
72
+
73
+ Input
74
+ -----
75
+ Class having `pos`, `edges`, `faces` methods
76
+
77
+ Filtrations
78
+ -----------
79
+ - Geodesic (geodesic rips)
80
+ - eccentricity
81
+ """
82
+ import multipers as mp
83
+
84
+ def __init__(self, filtrations:Iterable[str]=[]):
85
+ super().__init__()
86
+
87
+ def fit(self, X, y=None):
88
+ return self
89
+
90
+ def transform(self,X:list[nx.Graph]):
91
91
  return
multipers/data/shape3d.py CHANGED
@@ -1,101 +1,101 @@
1
- import numpy as np
2
- from os.path import expanduser
3
- from torch_geometric.datasets import ModelNet
4
-
5
- DATASET_PATH = expanduser("~/Datasets/")
6
- import os
7
-
8
-
9
- ####################### MODELNET
10
- def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
11
- from torch_geometric.transforms import FaceToEdge, SamplePoints
12
- """
13
- :param point_flag: Sample points if point_flag true. Otherwise load mesh
14
- :return: train_dataset, test_dataset
15
- """
16
- assert version in ['10', '40']
17
- if sample_points:
18
- pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
19
- else:
20
- pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
21
- path = f"{DATASET_PATH}/ModelNet{version}"
22
- if reset:
23
- # print(f"rm -rf {path}")
24
- os.system(f"rm -rf {path+'/processed/'}")
25
- train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
26
- test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
27
- return train_dataset, test_dataset
28
-
29
-
30
- def get_ModelNet(dataset, num_graph, seed):
31
- train,test = load_modelnet(version=dataset[8:])
32
- test_size = len(test) / len(train)
33
- if num_graph >0:
34
- np.random.seed(seed)
35
- indices = np.random.choice(len(train), num_graph, replace=False)
36
- train = train[indices]
37
- indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
38
- test = test[indices]
39
- np.random.seed() # resets seed
40
- return train, test
41
-
42
-
43
- def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
44
- if dataset.startswith("ModelNet"):
45
- return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
46
- datasets = get_(dataset=dataset, num_sample=num_graph)
47
- graphs = []
48
- labels = []
49
- np.random.seed(seed)
50
- for data, ls in datasets:
51
- nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
52
- for i,node in enumerate(nodes):
53
- data_ = data # if i == 0 else None # prevents doing copies
54
- graphs.append([data_, node])
55
- labels.append(ls[node])
56
- return graphs, labels
57
-
58
-
59
- def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
60
- from torch_geometric.io import read_off
61
- if dataset.startswith("3dshapes/"):
62
- dataset_ = dataset[len("3dshapes/"):]
63
- else:
64
- dataset_ = dataset
65
- if dataset_num is None and "/" in dataset_:
66
- position = dataset_.rfind("/")
67
- dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
68
- dataset_ = dataset_[:position]
69
-
70
- if dataset_num is None: # gets a random (available) number for this dataset
71
- from os import listdir
72
- from random import choice
73
- files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
74
- if num_sample <= 0:
75
- files = [file for file in files if "label" not in file]
76
- else:
77
- files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
78
- dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
79
-
80
- print("Dataset nums : ", *dataset_nums)
81
- out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
82
- return out
83
-
84
- path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
85
- data = read_off(path)
86
- faces = data.face.numpy().T
87
- # data = FaceToEdge(remove_faces=remove_faces)(data)
88
- #labels
89
- label_path = path.split(".")[0] + "_labels.txt"
90
- f = open(label_path, "r")
91
- labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
92
- current_label=""
93
- for i, line in enumerate(f.readlines()):
94
- if i % 2 == 0:
95
- current_label = line.strip()
96
- continue
97
- faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
98
- # print(faces_of_label.min())
99
- nodes_of_label = np.unique(faces[faces_of_label].flatten())
100
- labels[nodes_of_label] = current_label # les labels sont sur les faces
101
- return data, labels
1
+ import numpy as np
2
+ from os.path import expanduser
3
+ from torch_geometric.datasets import ModelNet
4
+
5
+ DATASET_PATH = expanduser("~/Datasets/")
6
+ import os
7
+
8
+
9
+ ####################### MODELNET
10
+ def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
11
+ from torch_geometric.transforms import FaceToEdge, SamplePoints
12
+ """
13
+ :param point_flag: Sample points if point_flag true. Otherwise load mesh
14
+ :return: train_dataset, test_dataset
15
+ """
16
+ assert version in ['10', '40']
17
+ if sample_points:
18
+ pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
19
+ else:
20
+ pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
21
+ path = f"{DATASET_PATH}/ModelNet{version}"
22
+ if reset:
23
+ # print(f"rm -rf {path}")
24
+ os.system(f"rm -rf {path+'/processed/'}")
25
+ train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
26
+ test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
27
+ return train_dataset, test_dataset
28
+
29
+
30
+ def get_ModelNet(dataset, num_graph, seed):
31
+ train,test = load_modelnet(version=dataset[8:])
32
+ test_size = len(test) / len(train)
33
+ if num_graph >0:
34
+ np.random.seed(seed)
35
+ indices = np.random.choice(len(train), num_graph, replace=False)
36
+ train = train[indices]
37
+ indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
38
+ test = test[indices]
39
+ np.random.seed() # resets seed
40
+ return train, test
41
+
42
+
43
+ def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
44
+ if dataset.startswith("ModelNet"):
45
+ return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
46
+ datasets = get_(dataset=dataset, num_sample=num_graph)
47
+ graphs = []
48
+ labels = []
49
+ np.random.seed(seed)
50
+ for data, ls in datasets:
51
+ nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
52
+ for i,node in enumerate(nodes):
53
+ data_ = data # if i == 0 else None # prevents doing copies
54
+ graphs.append([data_, node])
55
+ labels.append(ls[node])
56
+ return graphs, labels
57
+
58
+
59
+ def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
60
+ from torch_geometric.io import read_off
61
+ if dataset.startswith("3dshapes/"):
62
+ dataset_ = dataset[len("3dshapes/"):]
63
+ else:
64
+ dataset_ = dataset
65
+ if dataset_num is None and "/" in dataset_:
66
+ position = dataset_.rfind("/")
67
+ dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
68
+ dataset_ = dataset_[:position]
69
+
70
+ if dataset_num is None: # gets a random (available) number for this dataset
71
+ from os import listdir
72
+ from random import choice
73
+ files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
74
+ if num_sample <= 0:
75
+ files = [file for file in files if "label" not in file]
76
+ else:
77
+ files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
78
+ dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
79
+
80
+ print("Dataset nums : ", *dataset_nums)
81
+ out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
82
+ return out
83
+
84
+ path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
85
+ data = read_off(path)
86
+ faces = data.face.numpy().T
87
+ # data = FaceToEdge(remove_faces=remove_faces)(data)
88
+ #labels
89
+ label_path = path.split(".")[0] + "_labels.txt"
90
+ f = open(label_path, "r")
91
+ labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
92
+ current_label=""
93
+ for i, line in enumerate(f.readlines()):
94
+ if i % 2 == 0:
95
+ current_label = line.strip()
96
+ continue
97
+ faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
98
+ # print(faces_of_label.min())
99
+ nodes_of_label = np.unique(faces[faces_of_label].flatten())
100
+ labels[nodes_of_label] = current_label # les labels sont sur les faces
101
+ return data, labels
@@ -1,111 +1,113 @@
1
- import numpy as np
2
-
3
-
4
- def noisy_annulus(
5
- n1: int = 1000,
6
- n2: int = 200,
7
- r1: float = 1,
8
- r2: float = 2,
9
- dim: int = 2,
10
- center: np.ndarray | list | None = None,
11
- **kwargs
12
- ) -> np.ndarray:
13
- """Generates a noisy annulus dataset.
14
-
15
- Parameters
16
- ----------
17
- r1 : float.
18
- Lower radius of the annulus.
19
- r2 : float.
20
- Upper radius of the annulus.
21
- n1 : int
22
- Number of points in the annulus.
23
- n2 : int
24
- Number of points in the square.
25
- dim : int
26
- Dimension of the annulus.
27
- center: list or array
28
- center of the annulus.
29
-
30
- Returns
31
- -------
32
- numpy array
33
- Dataset. size : (n1+n2) x dim
34
-
35
- """
36
- theta = np.random.normal(size=(n1, dim))
37
- theta /= np.linalg.norm(theta, axis=1)[:, None]
38
- rs = np.sqrt(np.random.uniform(low=r1**2, high=r2**2, size=n1))
39
- annulus = rs[:, None] * theta
40
- if center is not None:
41
- annulus += np.array(center)
42
- diffuse_noise = np.random.uniform(size=(n2, dim), low=-1.1 * r2, high=1.1 * r2)
43
- if center is not None:
44
- diffuse_noise += np.array(center)
45
- return np.vstack([annulus, diffuse_noise])
46
-
47
-
48
- def three_annulus(num_pts: int = 500, num_outliers: int = 500):
49
- X = np.block(
50
- [
51
- [np.random.uniform(low=-2, high=2, size=(num_outliers, 2))],
52
- [
53
- np.array(
54
- noisy_annulus(
55
- r1=0.6,
56
- r2=0.9,
57
- n1=(int)(num_pts * 1 / 3),
58
- n2=0,
59
- center=[1, -0.2],
60
- )
61
- )
62
- ],
63
- [
64
- np.array(
65
- noisy_annulus(
66
- r1=0.4,
67
- r2=0.55,
68
- n1=(int)(num_pts * 1 / 3),
69
- n2=0,
70
- center=[-1.2, -1],
71
- )
72
- )
73
- ],
74
- [
75
- np.array(
76
- noisy_annulus(
77
- r1=0.3,
78
- r2=0.4,
79
- n1=(int)(num_pts * 1 / 3),
80
- n2=0,
81
- center=[-0.7, 1.1],
82
- )
83
- )
84
- ],
85
- ]
86
- )
87
- return X
88
-
89
-
90
- def orbit(n: int = 1000, r: float = 1.0, x0=[]):
91
- point_list = []
92
- if len(x0) != 2:
93
- x, y = np.random.uniform(size=2)
94
- else:
95
- x, y = x0
96
- point_list.append([x, y])
97
- for _ in range(n - 1):
98
- x = (x + r * y * (1 - y)) % 1
99
- y = (y + r * x * (1 - x)) % 1
100
- point_list.append([x, y])
101
- return np.asarray(point_list, dtype=float)
102
-
103
-
104
- def get_orbit5k(num_pts=1000, num_data=5000):
105
- from sklearn.preprocessing import LabelEncoder
106
-
107
- rs = [2.5, 3.5, 4, 4.1, 4.3]
108
- labels = np.random.choice(rs, size=num_data, replace=True)
109
- X = [orbit(n=num_pts, r=r) for r in labels]
110
- labels = LabelEncoder().fit_transform(labels)
111
- return X, labels
1
+ import numpy as np
2
+
3
+
4
+ def noisy_annulus(
5
+ n1: int = 1000,
6
+ n2: int = 200,
7
+ r1: float = 1,
8
+ r2: float = 2,
9
+ dim: int = 2,
10
+ center: np.ndarray | list | None = None,
11
+ **kwargs
12
+ ) -> np.ndarray:
13
+ """Generates a noisy annulus dataset.
14
+
15
+ Parameters
16
+ ----------
17
+ r1 : float.
18
+ Lower radius of the annulus.
19
+ r2 : float.
20
+ Upper radius of the annulus.
21
+ n1 : int
22
+ Number of points in the annulus.
23
+ n2 : int
24
+ Number of points in the square.
25
+ dim : int
26
+ Dimension of the annulus.
27
+ center: list or array
28
+ center of the annulus.
29
+
30
+ Returns
31
+ -------
32
+ numpy array
33
+ Dataset. size : (n1+n2) x dim
34
+
35
+ """
36
+ theta = np.random.normal(size=(n1, dim))
37
+ theta /= np.linalg.norm(theta, axis=1)[:, None]
38
+ rs = np.sqrt(np.random.uniform(low=r1**2, high=r2**2, size=n1))
39
+ annulus = rs[:, None] * theta
40
+ if center is not None:
41
+ annulus += np.array(center)
42
+ diffuse_noise = np.random.uniform(size=(n2, dim), low=-1.1 * r2, high=1.1 * r2)
43
+ if center is not None:
44
+ diffuse_noise += np.array(center)
45
+ return np.vstack([annulus, diffuse_noise])
46
+
47
+
48
+ def three_annulus(num_pts: int = 500, num_outliers: int = 500):
49
+ q, r = divmod(num_pts, 3)
50
+ num_pts_1, num_pts_2, num_pts_3 = q, q + (r > 0), q + (r > 1)
51
+ X = np.block(
52
+ [
53
+ [np.random.uniform(low=-2, high=2, size=(num_outliers, 2))],
54
+ [
55
+ np.array(
56
+ noisy_annulus(
57
+ r1=0.6,
58
+ r2=0.9,
59
+ n1=num_pts_1,
60
+ n2=0,
61
+ center=[1, -0.2],
62
+ )
63
+ )
64
+ ],
65
+ [
66
+ np.array(
67
+ noisy_annulus(
68
+ r1=0.4,
69
+ r2=0.55,
70
+ n1=num_pts_2,
71
+ n2=0,
72
+ center=[-1.2, -1],
73
+ )
74
+ )
75
+ ],
76
+ [
77
+ np.array(
78
+ noisy_annulus(
79
+ r1=0.3,
80
+ r2=0.4,
81
+ n1=num_pts_3,
82
+ n2=0,
83
+ center=[-0.7, 1.1],
84
+ )
85
+ )
86
+ ],
87
+ ]
88
+ )
89
+ return X
90
+
91
+
92
+ def orbit(n: int = 1000, r: float = 1.0, x0=[]):
93
+ point_list = []
94
+ if len(x0) != 2:
95
+ x, y = np.random.uniform(size=2)
96
+ else:
97
+ x, y = x0
98
+ point_list.append([x, y])
99
+ for _ in range(n - 1):
100
+ x = (x + r * y * (1 - y)) % 1
101
+ y = (y + r * x * (1 - x)) % 1
102
+ point_list.append([x, y])
103
+ return np.asarray(point_list, dtype=float)
104
+
105
+
106
+ def get_orbit5k(num_pts=1000, num_data=5000):
107
+ from sklearn.preprocessing import LabelEncoder
108
+
109
+ rs = [2.5, 3.5, 4, 4.1, 4.3]
110
+ labels = np.random.choice(rs, size=num_data, replace=True)
111
+ X = [orbit(n=num_pts, r=r) for r in labels]
112
+ labels = LabelEncoder().fit_transform(labels)
113
+ return X, labels