multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp310-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp310-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
multipers/tensor.pxd CHANGED
@@ -1,13 +1,13 @@
1
- from libc.stdint cimport uint16_t
2
- from libcpp.vector cimport vector
3
- from libcpp cimport bool, float
4
-
5
-
6
- ctypedef float dtype
7
- ctypedef uint16_t index_type
8
-
9
- cdef extern from "tensor/tensor.h" namespace "tensor":
10
- cdef cppclass static_tensor_view[float, uint16_t]:
11
- static_tensor_view() except + nogil
12
- static_tensor_view(dtype*,const vector[index_type]&) except + nogil
13
- const vector[index_type]& get_resolution()
1
+ from libc.stdint cimport uint16_t
2
+ from libcpp.vector cimport vector
3
+ from libcpp cimport bool, float
4
+
5
+
6
+ ctypedef float dtype
7
+ ctypedef uint16_t index_type
8
+
9
+ cdef extern from "tensor/tensor.h" namespace "tensor":
10
+ cdef cppclass static_tensor_view[float, uint16_t]:
11
+ static_tensor_view() except + nogil
12
+ static_tensor_view(dtype*,const vector[index_type]&) except + nogil
13
+ const vector[index_type]& get_resolution()
multipers/test.pyx CHANGED
@@ -1,44 +1,44 @@
1
- # cimport multipers.tensor as mt
2
- from libc.stdint cimport intptr_t, uint16_t
3
- from libcpp.vector cimport vector
4
- from libcpp cimport bool, int, float
5
- from libcpp.utility cimport pair
6
- from typing import Optional,Iterable,Callable
7
-
8
-
9
- ctypedef float value_type
10
- # ctypedef uint16_t index_type
11
-
12
- import numpy as np
13
- # cimport numpy as cnp
14
- # cnp.import_array()
15
-
16
- # cdef extern from "multi_parameter_rank_invariant/rank_invariant.h" namespace "Gudhi::rank_invariant":
17
- # void get_hilbert_surface(const intptr_t, mt.static_tensor_view, const vector[index_type], const vector[index_type], index_type, index_type, const vector[index_type], bool, bool) except + nogil
18
-
19
-
20
- from multipers.simplex_tree_multi import SimplexTreeMulti
21
-
22
-
23
- def numpy_to_tensor(array:np.ndarray):
24
- cdef vector[index_type] shape = array.shape
25
- cdef dtype[::1] contigus_array_view = np.ascontiguousarray(array)
26
- cdef dtype* dtype_ptr = &contigus_array_view[0]
27
- cdef mt.static_tensor_view tensor
28
- with nogil:
29
- tensor = mt.static_tensor_view(dtype_ptr, shape)
30
- return tensor.get_resolution()
31
-
32
- # def hilbert2d(simplextree:SimplexTreeMulti, grid_shape:np.ndarray|list, vector[index_type] degrees, bool mobius_inversion):
33
- # # assert simplextree.num_parameters == 2
34
- # cdef intptr_t ptr = simplextree.thisptr
35
- # cdef vector[index_type] c_grid_shape = grid_shape
36
- # cdef dtype[::1] container = np.zeros(grid_shape, dtype=np.float32).flatten()
37
- # cdef dtype* container_ptr = &container[0]
38
- # cdef mt.static_tensor_view c_container = mt.static_tensor_view(container_ptr, c_grid_shape)
39
- # cdef index_type i = 0
40
- # cdef index_type j = 1
41
- # cdef vector[index_type] fixed_values = [[],[]]
42
- # # get_hilbert_surface(ptr, c_container, c_grid_shape, degrees,i,j,fixed_values, False, False)
43
- # return container.reshape(grid_shape)
44
-
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+
9
+ ctypedef float value_type
10
+ # ctypedef uint16_t index_type
11
+
12
+ import numpy as np
13
+ # cimport numpy as cnp
14
+ # cnp.import_array()
15
+
16
+ # cdef extern from "multi_parameter_rank_invariant/rank_invariant.h" namespace "Gudhi::rank_invariant":
17
+ # void get_hilbert_surface(const intptr_t, mt.static_tensor_view, const vector[index_type], const vector[index_type], index_type, index_type, const vector[index_type], bool, bool) except + nogil
18
+
19
+
20
+ from multipers.simplex_tree_multi import SimplexTreeMulti
21
+
22
+
23
+ def numpy_to_tensor(array:np.ndarray):
24
+ cdef vector[index_type] shape = array.shape
25
+ cdef dtype[::1] contigus_array_view = np.ascontiguousarray(array)
26
+ cdef dtype* dtype_ptr = &contigus_array_view[0]
27
+ cdef mt.static_tensor_view tensor
28
+ with nogil:
29
+ tensor = mt.static_tensor_view(dtype_ptr, shape)
30
+ return tensor.get_resolution()
31
+
32
+ # def hilbert2d(simplextree:SimplexTreeMulti, grid_shape:np.ndarray|list, vector[index_type] degrees, bool mobius_inversion):
33
+ # # assert simplextree.num_parameters == 2
34
+ # cdef intptr_t ptr = simplextree.thisptr
35
+ # cdef vector[index_type] c_grid_shape = grid_shape
36
+ # cdef dtype[::1] container = np.zeros(grid_shape, dtype=np.float32).flatten()
37
+ # cdef dtype* container_ptr = &container[0]
38
+ # cdef mt.static_tensor_view c_container = mt.static_tensor_view(container_ptr, c_grid_shape)
39
+ # cdef index_type i = 0
40
+ # cdef index_type j = 1
41
+ # cdef vector[index_type] fixed_values = [[],[]]
42
+ # # get_hilbert_surface(ptr, c_container, c_grid_shape, degrees,i,j,fixed_values, False, False)
43
+ # return container.reshape(grid_shape)
44
+
@@ -1,57 +1,57 @@
1
- import numpy as np
2
-
3
-
4
- def assert_st_simplices(st, dump):
5
- """
6
- Checks that the simplextree has the same
7
- filtration as the dump.
8
- """
9
-
10
- assert np.all(
11
- [
12
- np.isclose(a, b).all()
13
- for x, y in zip(st.get_simplices(), dump, strict=True)
14
- for a, b in zip(x, y, strict=True)
15
- ]
16
- )
17
-
18
-
19
- def sort_sm(sms):
20
- idx = np.argsort([sm[0][:, 0] for sm in sms])
21
- return tuple((sm[0][idx], sm[1][idx]) for sm in sms)
22
-
23
-
24
- def assert_sm_pair(sm1, sm2, exact=True, max_error=1e-3, reg=0.1):
25
- if not exact:
26
- from multipers.distances import sm_distance
27
-
28
- d = sm_distance(sm1, sm2, reg=0.1)
29
- assert d < max_error, f"Failed comparison:\n{sm1}\n{sm2},\n with distance {d}."
30
- return
31
- assert np.all(
32
- [
33
- np.isclose(a, b).all()
34
- for x, y in zip(sm1, sm2, strict=True)
35
- for a, b in zip(x, y, strict=True)
36
- ]
37
- ), f"Failed comparison:\n-----------------\n{sm1}\n-----------------\n{sm2}"
38
-
39
-
40
- def assert_sm(*args, exact=True, max_error=1e-5, reg=0.1):
41
- sms = tuple(args)
42
- for i in range(len(sms) - 1):
43
- assert_sm_pair(sms[i], sms[i + 1], exact=exact, max_error=max_error, reg=reg)
44
-
45
-
46
- def random_st(npts=100, num_parameters=2, max_dim=2):
47
- import gudhi as gd
48
-
49
- import multipers as mp
50
- from multipers.data import noisy_annulus
51
-
52
- x = noisy_annulus(npts // 2, npts - npts // 2, dim=max_dim)
53
- st = gd.AlphaComplex(points=x).create_simplex_tree()
54
- st = mp.SimplexTreeMulti(st, num_parameters=num_parameters)
55
- for p in range(num_parameters):
56
- st.fill_lowerstar(np.random.uniform(size=npts), p)
57
- return st
1
+ import numpy as np
2
+
3
+
4
+ def assert_st_simplices(st, dump):
5
+ """
6
+ Checks that the simplextree has the same
7
+ filtration as the dump.
8
+ """
9
+
10
+ assert np.all(
11
+ [
12
+ np.isclose(a, b).all()
13
+ for x, y in zip(st.get_simplices(), dump, strict=True)
14
+ for a, b in zip(x, y, strict=True)
15
+ ]
16
+ )
17
+
18
+
19
+ def sort_sm(sms):
20
+ idx = np.argsort([sm[0][:, 0] for sm in sms])
21
+ return tuple((sm[0][idx], sm[1][idx]) for sm in sms)
22
+
23
+
24
+ def assert_sm_pair(sm1, sm2, exact=True, max_error=1e-3, reg=0.1):
25
+ if not exact:
26
+ from multipers.distances import sm_distance
27
+
28
+ d = sm_distance(sm1, sm2, reg=0.1)
29
+ assert d < max_error, f"Failed comparison:\n{sm1}\n{sm2},\n with distance {d}."
30
+ return
31
+ assert np.all(
32
+ [
33
+ np.isclose(a, b).all()
34
+ for x, y in zip(sm1, sm2, strict=True)
35
+ for a, b in zip(x, y, strict=True)
36
+ ]
37
+ ), f"Failed comparison:\n-----------------\n{sm1}\n-----------------\n{sm2}"
38
+
39
+
40
+ def assert_sm(*args, exact=True, max_error=1e-5, reg=0.1):
41
+ sms = tuple(args)
42
+ for i in range(len(sms) - 1):
43
+ assert_sm_pair(sms[i], sms[i + 1], exact=exact, max_error=max_error, reg=reg)
44
+
45
+
46
+ def random_st(npts=100, num_parameters=2, max_dim=2):
47
+ import gudhi as gd
48
+
49
+ import multipers as mp
50
+ from multipers.data import noisy_annulus
51
+
52
+ x = noisy_annulus(npts // 2, npts - npts // 2, dim=max_dim)
53
+ st = gd.AlphaComplex(points=x).create_simplex_tree()
54
+ st = mp.SimplexTreeMulti(st, num_parameters=num_parameters)
55
+ for p in range(num_parameters):
56
+ st.fill_lowerstar(np.random.uniform(size=npts), p)
57
+ return st
@@ -1,217 +1,217 @@
1
- from typing import Literal
2
-
3
- import numpy as np
4
- import torch
5
- from pykeops.torch import LazyTensor
6
-
7
-
8
- def get_grid(strategy: Literal["exact", "regular_closest", "regular_left", "quantile"]):
9
- """
10
- Given a strategy, returns a function of signature
11
- `(num_pts, num_parameter), int --> Iterable[1d array]`
12
- that generates a torch-differentiable grid from a set of points,
13
- and a resolution.
14
- """
15
- match strategy:
16
- case "exact":
17
- return _exact_grid
18
- case "regular_closest":
19
- return _regular_closest_grid
20
- case "regular_left":
21
- return _regular_left_grid
22
- case "quantile":
23
- return _quantile_grid
24
- case _:
25
- raise ValueError(
26
- f"""
27
- Unimplemented strategy {strategy}.
28
- Available ones : exact, regular_closest, regular_left, quantile.
29
- """
30
- )
31
-
32
-
33
- def todense(grid: list[torch.Tensor]):
34
- return torch.cartesian_prod(*grid)
35
-
36
-
37
- def _exact_grid(filtration_values, r=None):
38
- grid = tuple(_unique_any(f) for f in filtration_values)
39
- return grid
40
-
41
-
42
- def _regular_closest_grid(filtration_values, r: int):
43
- grid = tuple(_regular_closest(f, r) for f in filtration_values)
44
- return grid
45
-
46
-
47
- def _regular_left_grid(filtration_values, r: int):
48
- grid = tuple(_regular_left(f, r) for f in filtration_values)
49
- return grid
50
-
51
-
52
- def _quantile_grid(filtration_values, r: int):
53
- qs = torch.linspace(0, 1, r)
54
- grid = tuple(_unique_any(torch.quantile(f, q=qs)) for f in filtration_values)
55
- return grid
56
-
57
-
58
- def _unique_any(x, assume_sorted=False, remove_inf: bool = True):
59
- if not assume_sorted:
60
- x, _ = x.sort()
61
- if remove_inf and x[-1] == torch.inf:
62
- x = x[:-1]
63
- with torch.no_grad():
64
- y = x.unique()
65
- idx = torch.searchsorted(x, y)
66
- x = torch.cat([x, torch.tensor([torch.inf])])
67
- return x[idx]
68
-
69
-
70
- def _regular_left(f, r: int, unique: bool = True):
71
- f = _unique_any(f)
72
- with torch.no_grad():
73
- f_regular = torch.linspace(f[0].item(), f[-1].item(), r, device=f.device)
74
- idx = torch.searchsorted(f, f_regular)
75
- f = torch.cat([f, torch.tensor([torch.inf])])
76
- if unique:
77
- return _unique_any(f[idx])
78
- return f[idx]
79
-
80
-
81
- def _regular_closest(f, r: int, unique: bool = True):
82
- f = _unique_any(f)
83
- with torch.no_grad():
84
- f_reg = torch.linspace(
85
- f[0].item(), f[-1].item(), steps=r, dtype=f.dtype, device=f.device
86
- )
87
- _f = LazyTensor(f[:, None, None])
88
- _f_reg = LazyTensor(f_reg[None, :, None])
89
- indices = (_f - _f_reg).abs().argmin(0).ravel()
90
- f = torch.cat([f, torch.tensor([torch.inf])])
91
- f_regular_closest = f[indices]
92
- if unique:
93
- f_regular_closest = _unique_any(f_regular_closest)
94
- return f_regular_closest
95
-
96
-
97
- def evaluate_in_grid(pts, grid):
98
- """Evaluates points (assumed to be coordinates) in this grid.
99
- Input
100
- -----
101
- - pts: (num_points, num_parameters) array
102
- - grid: Iterable of 1-d array, for each parameter
103
-
104
- Returns
105
- -------
106
- - array of shape like points of dtype like grid.
107
- """
108
- # grid = [torch.cat([g, torch.tensor([torch.inf])]) for g in grid]
109
- # new_pts = torch.empty(pts.shape, dtype=grid[0].dtype, device=grid[0].device)
110
- # for parameter, pt_of_parameter in enumerate(pts.T):
111
- # new_pts[:, parameter] = grid[parameter][pt_of_parameter]
112
- return torch.cat(
113
- [
114
- grid[parameter][pt_of_parameter][:, None]
115
- for parameter, pt_of_parameter in enumerate(pts.T)
116
- ],
117
- dim=1,
118
- )
119
-
120
-
121
- def evaluate_mod_in_grid(mod, grid, box=None):
122
- """Given an MMA module, pushes it into the specified grid.
123
- Useful for e.g., make it differentiable.
124
-
125
- Input
126
- -----
127
- - mod: PyModule
128
- - grid: Iterable of 1d array, for num_parameters
129
- Ouput
130
- -----
131
- torch-compatible module in the format:
132
- (num_degrees) x (num_interval of degree) x ((num_birth, num_parameter), (num_death, num_parameters))
133
-
134
- """
135
- if box is not None:
136
- grid = tuple(
137
- torch.cat(
138
- [
139
- box[0][[i]],
140
- _unique_any(
141
- grid[i].clamp(min=box[0][i], max=box[1][i]), assume_sorted=True
142
- ),
143
- box[1][[i]],
144
- ]
145
- )
146
- for i in range(len(grid))
147
- )
148
- (birth_sizes, death_sizes), births, deaths = mod.to_flat_idx(grid)
149
- births = evaluate_in_grid(births, grid)
150
- deaths = evaluate_in_grid(deaths, grid)
151
- diff_mod = tuple(
152
- zip(
153
- births.split_with_sizes(birth_sizes.tolist()),
154
- deaths.split_with_sizes(death_sizes.tolist()),
155
- )
156
- )
157
- return diff_mod
158
-
159
-
160
- def evaluate_mod_in_grid__old(mod, grid, box=None):
161
- """Given an MMA module, pushes it into the specified grid.
162
- Useful for e.g., make it differentiable.
163
-
164
- Input
165
- -----
166
- - mod: PyModule
167
- - grid: Iterable of 1d array, for num_parameters
168
- Ouput
169
- -----
170
- torch-compatible module in the format:
171
- (num_degrees) x (num_interval of degree) x ((num_birth, num_parameter), (num_death, num_parameters))
172
-
173
- """
174
- from pykeops.numpy import LazyTensor
175
-
176
- with torch.no_grad():
177
- if box is None:
178
- # box = mod.get_box()
179
- box = np.asarray([[g[0] for g in grid], [g[-1] for g in grid]])
180
- S = mod.dump()[1]
181
-
182
- def get_idx_parameter(A, G, p):
183
- g = G[p].numpy() if isinstance(G[p], torch.Tensor) else np.asarray(G[p])
184
- la = LazyTensor(np.asarray(A, dtype=g.dtype)[None, :, [p]])
185
- lg = LazyTensor(g[:, None, None])
186
- return (la - lg).abs().argmin(0)
187
-
188
- Bdump = np.concatenate([s[0] for s in S], axis=0).clip(box[[0]], box[[1]])
189
- B = np.concatenate(
190
- [get_idx_parameter(Bdump, grid, p) for p in range(mod.num_parameters)],
191
- axis=1,
192
- dtype=np.int64,
193
- )
194
- Ddump = np.concatenate([s[1] for s in S], axis=0, dtype=np.float32).clip(
195
- box[[0]], box[[1]]
196
- )
197
- D = np.concatenate(
198
- [get_idx_parameter(Ddump, grid, p) for p in range(mod.num_parameters)],
199
- axis=1,
200
- dtype=np.int64,
201
- )
202
-
203
- BB = evaluate_in_grid(B, grid)
204
- DD = evaluate_in_grid(D, grid)
205
-
206
- b_idx = tuple((len(s[0]) for s in S))
207
- d_idx = tuple((len(s[1]) for s in S))
208
- BBB = BB.split_with_sizes(b_idx)
209
- DDD = DD.split_with_sizes(d_idx)
210
-
211
- splits = np.concatenate([[0], mod.degree_splits(), [len(BBB)]])
212
- splits = torch.from_numpy(splits)
213
- out = [
214
- list(zip(BBB[splits[i] : splits[i + 1]], DDD[splits[i] : splits[i + 1]]))
215
- for i in range(len(splits) - 1)
216
- ] ## For some reasons this kills the gradient ???? pytorch bug
217
- return out
1
+ from typing import Literal
2
+
3
+ import numpy as np
4
+ import torch
5
+ from pykeops.torch import LazyTensor
6
+
7
+
8
+ def get_grid(strategy: Literal["exact", "regular_closest", "regular_left", "quantile"]):
9
+ """
10
+ Given a strategy, returns a function of signature
11
+ `(num_pts, num_parameter), int --> Iterable[1d array]`
12
+ that generates a torch-differentiable grid from a set of points,
13
+ and a resolution.
14
+ """
15
+ match strategy:
16
+ case "exact":
17
+ return _exact_grid
18
+ case "regular_closest":
19
+ return _regular_closest_grid
20
+ case "regular_left":
21
+ return _regular_left_grid
22
+ case "quantile":
23
+ return _quantile_grid
24
+ case _:
25
+ raise ValueError(
26
+ f"""
27
+ Unimplemented strategy {strategy}.
28
+ Available ones : exact, regular_closest, regular_left, quantile.
29
+ """
30
+ )
31
+
32
+
33
+ def todense(grid: list[torch.Tensor]):
34
+ return torch.cartesian_prod(*grid)
35
+
36
+
37
+ def _exact_grid(filtration_values, r=None):
38
+ grid = tuple(_unique_any(f) for f in filtration_values)
39
+ return grid
40
+
41
+
42
+ def _regular_closest_grid(filtration_values, r: int):
43
+ grid = tuple(_regular_closest(f, r) for f in filtration_values)
44
+ return grid
45
+
46
+
47
+ def _regular_left_grid(filtration_values, r: int):
48
+ grid = tuple(_regular_left(f, r) for f in filtration_values)
49
+ return grid
50
+
51
+
52
+ def _quantile_grid(filtration_values, r: int):
53
+ qs = torch.linspace(0, 1, r)
54
+ grid = tuple(_unique_any(torch.quantile(f, q=qs)) for f in filtration_values)
55
+ return grid
56
+
57
+
58
+ def _unique_any(x, assume_sorted=False, remove_inf: bool = True):
59
+ if not assume_sorted:
60
+ x, _ = x.sort()
61
+ if remove_inf and x[-1] == torch.inf:
62
+ x = x[:-1]
63
+ with torch.no_grad():
64
+ y = x.unique()
65
+ idx = torch.searchsorted(x, y)
66
+ x = torch.cat([x, torch.tensor([torch.inf])])
67
+ return x[idx]
68
+
69
+
70
+ def _regular_left(f, r: int, unique: bool = True):
71
+ f = _unique_any(f)
72
+ with torch.no_grad():
73
+ f_regular = torch.linspace(f[0].item(), f[-1].item(), r, device=f.device)
74
+ idx = torch.searchsorted(f, f_regular)
75
+ f = torch.cat([f, torch.tensor([torch.inf])])
76
+ if unique:
77
+ return _unique_any(f[idx])
78
+ return f[idx]
79
+
80
+
81
+ def _regular_closest(f, r: int, unique: bool = True):
82
+ f = _unique_any(f)
83
+ with torch.no_grad():
84
+ f_reg = torch.linspace(
85
+ f[0].item(), f[-1].item(), steps=r, dtype=f.dtype, device=f.device
86
+ )
87
+ _f = LazyTensor(f[:, None, None])
88
+ _f_reg = LazyTensor(f_reg[None, :, None])
89
+ indices = (_f - _f_reg).abs().argmin(0).ravel()
90
+ f = torch.cat([f, torch.tensor([torch.inf])])
91
+ f_regular_closest = f[indices]
92
+ if unique:
93
+ f_regular_closest = _unique_any(f_regular_closest)
94
+ return f_regular_closest
95
+
96
+
97
+ def evaluate_in_grid(pts, grid):
98
+ """Evaluates points (assumed to be coordinates) in this grid.
99
+ Input
100
+ -----
101
+ - pts: (num_points, num_parameters) array
102
+ - grid: Iterable of 1-d array, for each parameter
103
+
104
+ Returns
105
+ -------
106
+ - array of shape like points of dtype like grid.
107
+ """
108
+ # grid = [torch.cat([g, torch.tensor([torch.inf])]) for g in grid]
109
+ # new_pts = torch.empty(pts.shape, dtype=grid[0].dtype, device=grid[0].device)
110
+ # for parameter, pt_of_parameter in enumerate(pts.T):
111
+ # new_pts[:, parameter] = grid[parameter][pt_of_parameter]
112
+ return torch.cat(
113
+ [
114
+ grid[parameter][pt_of_parameter][:, None]
115
+ for parameter, pt_of_parameter in enumerate(pts.T)
116
+ ],
117
+ dim=1,
118
+ )
119
+
120
+
121
+ def evaluate_mod_in_grid(mod, grid, box=None):
122
+ """Given an MMA module, pushes it into the specified grid.
123
+ Useful for e.g., make it differentiable.
124
+
125
+ Input
126
+ -----
127
+ - mod: PyModule
128
+ - grid: Iterable of 1d array, for num_parameters
129
+ Ouput
130
+ -----
131
+ torch-compatible module in the format:
132
+ (num_degrees) x (num_interval of degree) x ((num_birth, num_parameter), (num_death, num_parameters))
133
+
134
+ """
135
+ if box is not None:
136
+ grid = tuple(
137
+ torch.cat(
138
+ [
139
+ box[0][[i]],
140
+ _unique_any(
141
+ grid[i].clamp(min=box[0][i], max=box[1][i]), assume_sorted=True
142
+ ),
143
+ box[1][[i]],
144
+ ]
145
+ )
146
+ for i in range(len(grid))
147
+ )
148
+ (birth_sizes, death_sizes), births, deaths = mod.to_flat_idx(grid)
149
+ births = evaluate_in_grid(births, grid)
150
+ deaths = evaluate_in_grid(deaths, grid)
151
+ diff_mod = tuple(
152
+ zip(
153
+ births.split_with_sizes(birth_sizes.tolist()),
154
+ deaths.split_with_sizes(death_sizes.tolist()),
155
+ )
156
+ )
157
+ return diff_mod
158
+
159
+
160
+ def evaluate_mod_in_grid__old(mod, grid, box=None):
161
+ """Given an MMA module, pushes it into the specified grid.
162
+ Useful for e.g., make it differentiable.
163
+
164
+ Input
165
+ -----
166
+ - mod: PyModule
167
+ - grid: Iterable of 1d array, for num_parameters
168
+ Ouput
169
+ -----
170
+ torch-compatible module in the format:
171
+ (num_degrees) x (num_interval of degree) x ((num_birth, num_parameter), (num_death, num_parameters))
172
+
173
+ """
174
+ from pykeops.numpy import LazyTensor
175
+
176
+ with torch.no_grad():
177
+ if box is None:
178
+ # box = mod.get_box()
179
+ box = np.asarray([[g[0] for g in grid], [g[-1] for g in grid]])
180
+ S = mod.dump()[1]
181
+
182
+ def get_idx_parameter(A, G, p):
183
+ g = G[p].numpy() if isinstance(G[p], torch.Tensor) else np.asarray(G[p])
184
+ la = LazyTensor(np.asarray(A, dtype=g.dtype)[None, :, [p]])
185
+ lg = LazyTensor(g[:, None, None])
186
+ return (la - lg).abs().argmin(0)
187
+
188
+ Bdump = np.concatenate([s[0] for s in S], axis=0).clip(box[[0]], box[[1]])
189
+ B = np.concatenate(
190
+ [get_idx_parameter(Bdump, grid, p) for p in range(mod.num_parameters)],
191
+ axis=1,
192
+ dtype=np.int64,
193
+ )
194
+ Ddump = np.concatenate([s[1] for s in S], axis=0, dtype=np.float32).clip(
195
+ box[[0]], box[[1]]
196
+ )
197
+ D = np.concatenate(
198
+ [get_idx_parameter(Ddump, grid, p) for p in range(mod.num_parameters)],
199
+ axis=1,
200
+ dtype=np.int64,
201
+ )
202
+
203
+ BB = evaluate_in_grid(B, grid)
204
+ DD = evaluate_in_grid(D, grid)
205
+
206
+ b_idx = tuple((len(s[0]) for s in S))
207
+ d_idx = tuple((len(s[1]) for s in S))
208
+ BBB = BB.split_with_sizes(b_idx)
209
+ DDD = DD.split_with_sizes(d_idx)
210
+
211
+ splits = np.concatenate([[0], mod.degree_splits(), [len(BBB)]])
212
+ splits = torch.from_numpy(splits)
213
+ out = [
214
+ list(zip(BBB[splits[i] : splits[i + 1]], DDD[splits[i] : splits[i + 1]]))
215
+ for i in range(len(splits) - 1)
216
+ ] ## For some reasons this kills the gradient ???? pytorch bug
217
+ return out