multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp310-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp310-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
@@ -1,369 +1,369 @@
1
- #pragma once
2
- #include <gudhi/Simplex_tree_multi.h>
3
- #include "gudhi/truc.h"
4
- #include "multi_parameter_rank_invariant/persistence_slices.h"
5
- #include "tensor/tensor.h"
6
- #include <algorithm>
7
- #include <cstddef>
8
- #include <gudhi/One_critical_filtration.h>
9
- #include <oneapi/tbb/enumerable_thread_specific.h>
10
- #include <oneapi/tbb/parallel_for.h>
11
- #include <ostream>
12
- #include <utility> // std::pair
13
- #include <vector>
14
-
15
- namespace Gudhi {
16
- namespace multiparameter {
17
- namespace rank_invariant {
18
- using Index = truc_interface::index_type;
19
-
20
- // using Elbow = std::vector<std::pair<>>;grid
21
- template <typename index_type>
22
- inline void push_in_elbow(index_type &i, index_type &j, const index_type I, const index_type J) {
23
- if (j < J) {
24
- j++;
25
- return;
26
- }
27
- if (i < I) {
28
- i++;
29
- return;
30
- }
31
- j++;
32
- return;
33
- }
34
-
35
- template <typename index_type, typename value_type>
36
- inline value_type get_slice_rank_filtration(const value_type x,
37
- const value_type y,
38
- const index_type I,
39
- const index_type J) {
40
- if (x > static_cast<value_type>(I))
41
- return std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity()
42
- : std::numeric_limits<value_type>::max();
43
- if (y > static_cast<value_type>(J)) return I + static_cast<index_type>(y);
44
- return J + static_cast<index_type>(x);
45
- }
46
-
47
- template <typename index_type>
48
- inline std::pair<index_type, index_type> get_coordinates(index_type in_slice_value, index_type I, index_type J) {
49
- if (in_slice_value <= J) return {0, J};
50
- if (in_slice_value <= I + J) return {in_slice_value - J, J};
51
- return {I, in_slice_value - I};
52
- }
53
-
54
- template <typename dtype, typename index_type, typename Filtration>
55
- inline void compute_2d_rank_invariant_of_elbow(
56
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
57
- Simplex_tree_std &_st_container, // copy of st_multi
58
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
59
- const index_type I,
60
- const index_type J,
61
- const std::vector<index_type> &grid_shape,
62
- const std::vector<index_type> &degrees,
63
- const int expand_collapse_max_dim = 0) {
64
- // const bool verbose = false; // verbose
65
- using value_type = typename Simplex_tree_std::Filtration_value;
66
- constexpr const value_type inf = std::numeric_limits<value_type>::infinity();
67
-
68
- // const auto X = grid_shape[1], Y = grid_shape[2]; // First axis is degree
69
- const auto Y = grid_shape[2];
70
- // Fills the filtration in the container
71
- // TODO : C++23 zip, when Apples clang will stop being obsolete
72
- auto sh_standard = _st_container.complex_simplex_range().begin();
73
- auto _end = _st_container.complex_simplex_range().end();
74
- auto sh_multi = st_multi.complex_simplex_range().begin();
75
- for (; sh_standard != _end; ++sh_multi, ++sh_standard) {
76
- const Filtration &multi_filtration = st_multi.filtration(*sh_multi);
77
- value_type filtration_in_slice;
78
- if constexpr (Filtration::is_multi_critical) {
79
- filtration_in_slice = inf;
80
- for (const auto &stuff : multi_filtration) {
81
- value_type x = stuff[0];
82
- value_type y = stuff[1];
83
- filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
84
- }
85
- } else {
86
- value_type x = multi_filtration[0];
87
- value_type y = multi_filtration[1];
88
- filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
89
- }
90
- _st_container.assign_filtration(*sh_standard, filtration_in_slice);
91
- }
92
- const std::vector<Barcode> &barcodes = compute_dgms(_st_container, degrees, expand_collapse_max_dim);
93
- index_type degree_index = 0;
94
- for (const auto &barcode : barcodes) { // TODO range view cartesian product
95
- for (const auto &bar : barcode) {
96
- auto birth = static_cast<index_type>(bar.first);
97
- auto death = static_cast<index_type>(
98
- std::min(bar.second,
99
- static_cast<typename Simplex_tree_std::Filtration_value>(Y + I))); // I,J atteints, pas X ni Y
100
-
101
- // todo : optimize
102
- // auto [a,b] = get_coordinates(birth, I,J);
103
- for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
104
- for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
105
- auto [i, j] = get_coordinates(intermediate_birth, I, J);
106
- auto [k, l] = get_coordinates(intermediate_death, I, J);
107
- if (((i < k || j == J) && (j < l || k == I))) {
108
- // std::vector<index_type> coordinates_to_remove =
109
- // {degree_index,i,j,k,l}; out[coordinates_to_remove]++;
110
- out[{degree_index, i, j, k, l}]++;
111
- }
112
- }
113
- }
114
- }
115
- degree_index++;
116
- }
117
- }
118
-
119
- template <typename dtype, typename index_type, typename Filtration>
120
- inline void compute_2d_rank_invariant(
121
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
122
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
123
- const std::vector<index_type> &grid_shape,
124
- const std::vector<index_type> &degrees,
125
- bool expand_collapse) {
126
- if (degrees.size() == 0) return;
127
- assert(st_multi.get_number_of_parameters() == 2);
128
- Simplex_tree_std st_;
129
- Gudhi::multi_persistence::flatten(st_, st_multi,
130
- 0); // copies the st_multi to a standard 1-pers simplextree
131
- const int max_dim = expand_collapse ? *std::max_element(degrees.begin(), degrees.end()) + 1 : 0;
132
- index_type X = grid_shape[1];
133
- index_type Y = grid_shape[2]; // First axis is degree
134
- tbb::enumerable_thread_specific<Simplex_tree_std> thread_simplex_tree(st_); // initialize with a good simplextree
135
- tbb::parallel_for(0, X, [&](index_type I) {
136
- tbb::parallel_for(0, Y, [&](index_type J) {
137
- auto &st_container = thread_simplex_tree.local();
138
- compute_2d_rank_invariant_of_elbow<dtype, index_type, Filtration>(
139
- st_multi, st_container, out, I, J, grid_shape, degrees, max_dim);
140
- });
141
- });
142
- }
143
-
144
- template <typename Filtration, typename dtype, typename indices_type, typename... Args>
145
- void compute_rank_invariant_python(
146
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
147
- dtype *data_ptr,
148
- const std::vector<indices_type> grid_shape,
149
- const std::vector<indices_type> degrees,
150
- indices_type n_jobs,
151
- bool expand_collapse) {
152
- if (degrees.size() == 0) return;
153
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
154
-
155
- oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
156
- arena.execute([&] {
157
- compute_2d_rank_invariant<dtype, indices_type, Filtration>(
158
- st_multi, container, grid_shape, degrees, expand_collapse);
159
- });
160
-
161
- return;
162
- }
163
-
164
- template <class PersBackend,
165
- class Structure,
166
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
167
- typename dtype,
168
- typename index_type>
169
- inline void compute_2d_rank_invariant_of_elbow(
170
- typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe &slicer, // truc slicer
171
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
172
- const index_type I,
173
- const index_type J,
174
- const std::vector<index_type> &grid_shape,
175
- const std::vector<index_type> &degrees,
176
- // std::vector<Index> &order_container, // constant size
177
- // std::vector<typename MultiFiltration::value_type> &one_persistence, // constant size
178
- const bool flip_death = false,
179
- const bool ignore_inf = true) {
180
- using value_type = typename MultiFiltration::value_type;
181
- const auto &filtrations_values = slicer.get_filtrations();
182
- auto num_generators = filtrations_values.size();
183
- // one_persistence.resize(num_generators); // local variable should be
184
- // initialized correctly
185
- const auto Y = grid_shape[2];
186
- constexpr const bool verbose = false;
187
- if constexpr (verbose) std::cout << "filtration_in_slice : [ ";
188
- for (auto i = 0u; i < num_generators; ++i) {
189
- const auto &f = filtrations_values[i];
190
- value_type filtration_in_slice = MultiFiltration::Generator::T_inf;
191
- if constexpr (MultiFiltration::is_multi_critical) {
192
- for (const auto &stuff : f) {
193
- value_type x = stuff[0];
194
- value_type y = stuff[1];
195
-
196
- filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
197
- }
198
- } else {
199
- value_type x = f[0];
200
- value_type y = f[1];
201
- filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
202
- }
203
- if constexpr (verbose) std::cout << filtration_in_slice << ",";
204
- slicer.get_one_filtration()[i] = filtration_in_slice;
205
- }
206
- if constexpr (verbose) std::cout << "\b]" << std::endl;
207
-
208
- index_type degree_index = 0;
209
- // order_container.resize(slicer.num_generators()); // local variable should
210
- // be initialized correctly
211
- // TODO : use slicer::ThreadSafe instead of maintaining one_pers & order
212
- // BUG : This will break as soon as slicer interface change
213
-
214
- using bc_type = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::split_barcode;
215
- bc_type barcodes;
216
- if constexpr (PersBackend::is_vine) {
217
- // slicer.set_one_filtration(one_persistence);
218
- if (I == 0 && J == 0) [[unlikely]] // this is dangerous, assumes it starts at 0 0
219
- {
220
- // TODO : This is a good optimization but needs a patch on
221
- // PersistenceMatrix std::vector<bool>
222
- // degrees_index(slicer.get_dimensions().back()+1, false); for (const auto
223
- // &degree : degrees) {
224
- // if (degree <= slicer.get_dimensions())
225
- // degrees_index[degree] = true;
226
- // }
227
- // slicer.compute_persistence(degrees_index);
228
- slicer.compute_persistence();
229
- } else {
230
- slicer.vineyard_update();
231
- }
232
- barcodes = slicer.get_barcode();
233
- } else {
234
- slicer.compute_persistence(ignore_inf);
235
- barcodes = slicer.get_barcode();
236
- }
237
-
238
- // note one_pers not necesary when vine, but does the same computation
239
-
240
- for (auto degree : degrees) {
241
- // this assumes barcodes degrees starts from 0
242
- if constexpr (verbose) std::cout << "Adding Barcode of degree " << degree << std::endl;
243
- if (degree >= static_cast<index_type>(barcodes.size())) continue;
244
- const auto &barcode = barcodes[degree];
245
- for (const auto &bar : barcode) {
246
- if (bar.first > Y + I) continue;
247
- if constexpr (verbose)
248
- std::cout << bar.first << " " << bar.second << "checkinf: " << MultiFiltration::Generator::T_inf << " ==? "
249
- << (bar.first == MultiFiltration::Generator::T_inf) << std::endl;
250
- auto birth = static_cast<index_type>(bar.first);
251
- auto death = static_cast<index_type>(
252
- std::min(bar.second,
253
- static_cast<typename MultiFiltration::value_type>(Y + I))); // I,J atteints, pas X ni Y
254
- if constexpr (false) std::cout << "Birth " << birth << " Death " << death << std::endl;
255
- for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
256
- for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
257
- auto [i, j] = get_coordinates(intermediate_birth, I, J);
258
- auto [k, l] = get_coordinates(intermediate_death, I, J);
259
- if (((i < k || j == J) && (j < l || k == I))) {
260
- if (flip_death)
261
- out[{degree_index, i, j, I - 1 - k, J - 1 - l}]++;
262
- else
263
- out[{degree_index, i, j, k, l}]++;
264
- }
265
- if constexpr (false) std::cout << degree_index << " " << i << " " << j << " " << k << " " << l << std::endl;
266
- }
267
- }
268
- }
269
- degree_index++;
270
- }
271
- };
272
-
273
- template <class PersBackend,
274
- class Structure,
275
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
276
- typename dtype,
277
- typename index_type>
278
- inline void compute_2d_rank_invariant(
279
- truc_interface::Truc<PersBackend, Structure, MultiFiltration> &slicer,
280
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
281
- const std::vector<index_type> &grid_shape,
282
- const std::vector<index_type> &degrees,
283
- const bool flip_death,
284
- const bool ignore_inf) {
285
- if (degrees.size() == 0) return;
286
- index_type X = grid_shape[1];
287
- index_type Y = grid_shape[2]; // First axis is degree
288
- constexpr const bool verbose = false;
289
- if constexpr (verbose)
290
- std::cout << "Shape " << grid_shape[0] << " " << grid_shape[1] << " " << grid_shape[2] << " " << grid_shape[3]
291
- << " " << grid_shape[4] << std::endl;
292
-
293
- using ThreadSafe = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe;
294
- ThreadSafe slicer_thread(slicer);
295
- tbb::enumerable_thread_specific<ThreadSafe> thread_locals(slicer_thread);
296
- tbb::parallel_for(0, X, [&](index_type I) {
297
- tbb::parallel_for(0, Y, [&](index_type J) {
298
- if constexpr (verbose) std::cout << "Computing elbow " << I << " " << J << "...";
299
- ThreadSafe &slicer = thread_locals.local();
300
- compute_2d_rank_invariant_of_elbow<PersBackend, Structure, MultiFiltration, dtype, index_type>(
301
- slicer, out, I, J, grid_shape, degrees, flip_death, ignore_inf);
302
- if constexpr (verbose) std::cout << "Done!" << std::endl;
303
- });
304
- });
305
- }
306
-
307
- template <class PersBackend,
308
- class Structure,
309
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
310
- typename dtype,
311
- typename indices_type>
312
- void compute_rank_invariant_python(truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
313
- dtype *data_ptr,
314
- const std::vector<indices_type> grid_shape,
315
- const std::vector<indices_type> degrees,
316
- indices_type n_jobs,
317
- const bool ignore_inf) {
318
- if (degrees.size() == 0) return;
319
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
320
- if constexpr (false){
321
- std::cout << "ignore_inf " << ignore_inf << std::endl;
322
- }
323
-
324
- oneapi::tbb::task_arena arena(PersBackend::is_vine ? 1 : n_jobs); // limits the number of threads
325
- arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, false, ignore_inf); });
326
-
327
- return;
328
- }
329
-
330
- template <typename PersBackend,
331
- typename Structure,
332
- typename MultiFiltration,
333
- typename dtype = int,
334
- typename indices_type = int>
335
- std::pair<std::vector<std::vector<indices_type>>, std::vector<dtype>> compute_rank_signed_measure(
336
- truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
337
- dtype *data_ptr,
338
- const std::vector<indices_type> grid_shape,
339
- const std::vector<indices_type> degrees,
340
- indices_type n_jobs,
341
- bool verbose,
342
- const bool ignore_inf) {
343
- if (degrees.size() == 0) return {{}, {}};
344
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
345
- oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
346
- constexpr bool flip_death = true;
347
- arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, flip_death, ignore_inf); });
348
-
349
- if (verbose) {
350
- std::cout << "Done.\n";
351
- std::cout << "Computing mobius inversion ..." << std::flush;
352
- }
353
-
354
- // for (indices_type axis :
355
- // std::views::iota(2,st_multi.get_number_of_parameters()+1)) // +1 for the
356
- // degree in axis 0
357
- for (std::size_t axis = 0u; axis < slicer.num_parameters() + 1; axis++) container.differentiate(axis);
358
- if (verbose) {
359
- std::cout << "Done.\n";
360
- std::cout << "Sparsifying the measure ..." << std::flush;
361
- }
362
- auto raw_signed_measure = container.sparsify({false, false, true, true});
363
- if (verbose) {
364
- std::cout << "Done.\n";
365
- }
366
- return raw_signed_measure;
367
- }
368
-
369
- }}} // namespace Gudhi::multiparameter::rank_invariant
1
+ #pragma once
2
+ #include <gudhi/Simplex_tree_multi.h>
3
+ #include "gudhi/truc.h"
4
+ #include "multi_parameter_rank_invariant/persistence_slices.h"
5
+ #include "tensor/tensor.h"
6
+ #include <algorithm>
7
+ #include <cstddef>
8
+ #include <gudhi/One_critical_filtration.h>
9
+ #include <oneapi/tbb/enumerable_thread_specific.h>
10
+ #include <oneapi/tbb/parallel_for.h>
11
+ #include <ostream>
12
+ #include <utility> // std::pair
13
+ #include <vector>
14
+
15
+ namespace Gudhi {
16
+ namespace multiparameter {
17
+ namespace rank_invariant {
18
+ using Index = truc_interface::index_type;
19
+
20
+ // using Elbow = std::vector<std::pair<>>;grid
21
+ template <typename index_type>
22
+ inline void push_in_elbow(index_type &i, index_type &j, const index_type I, const index_type J) {
23
+ if (j < J) {
24
+ j++;
25
+ return;
26
+ }
27
+ if (i < I) {
28
+ i++;
29
+ return;
30
+ }
31
+ j++;
32
+ return;
33
+ }
34
+
35
+ template <typename index_type, typename value_type>
36
+ inline value_type get_slice_rank_filtration(const value_type x,
37
+ const value_type y,
38
+ const index_type I,
39
+ const index_type J) {
40
+ if (x > static_cast<value_type>(I))
41
+ return std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity()
42
+ : std::numeric_limits<value_type>::max();
43
+ if (y > static_cast<value_type>(J)) return I + static_cast<index_type>(y);
44
+ return J + static_cast<index_type>(x);
45
+ }
46
+
47
+ template <typename index_type>
48
+ inline std::pair<index_type, index_type> get_coordinates(index_type in_slice_value, index_type I, index_type J) {
49
+ if (in_slice_value <= J) return {0, J};
50
+ if (in_slice_value <= I + J) return {in_slice_value - J, J};
51
+ return {I, in_slice_value - I};
52
+ }
53
+
54
+ template <typename dtype, typename index_type, typename Filtration>
55
+ inline void compute_2d_rank_invariant_of_elbow(
56
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
57
+ Simplex_tree_std &_st_container, // copy of st_multi
58
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
59
+ const index_type I,
60
+ const index_type J,
61
+ const std::vector<index_type> &grid_shape,
62
+ const std::vector<index_type> &degrees,
63
+ const int expand_collapse_max_dim = 0) {
64
+ // const bool verbose = false; // verbose
65
+ using value_type = typename Simplex_tree_std::Filtration_value;
66
+ constexpr const value_type inf = std::numeric_limits<value_type>::infinity();
67
+
68
+ // const auto X = grid_shape[1], Y = grid_shape[2]; // First axis is degree
69
+ const auto Y = grid_shape[2];
70
+ // Fills the filtration in the container
71
+ // TODO : C++23 zip, when Apples clang will stop being obsolete
72
+ auto sh_standard = _st_container.complex_simplex_range().begin();
73
+ auto _end = _st_container.complex_simplex_range().end();
74
+ auto sh_multi = st_multi.complex_simplex_range().begin();
75
+ for (; sh_standard != _end; ++sh_multi, ++sh_standard) {
76
+ const Filtration &multi_filtration = st_multi.filtration(*sh_multi);
77
+ value_type filtration_in_slice;
78
+ if constexpr (Filtration::is_multi_critical) {
79
+ filtration_in_slice = inf;
80
+ for (const auto &stuff : multi_filtration) {
81
+ value_type x = stuff[0];
82
+ value_type y = stuff[1];
83
+ filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
84
+ }
85
+ } else {
86
+ value_type x = multi_filtration[0];
87
+ value_type y = multi_filtration[1];
88
+ filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
89
+ }
90
+ _st_container.assign_filtration(*sh_standard, filtration_in_slice);
91
+ }
92
+ const std::vector<Barcode> &barcodes = compute_dgms(_st_container, degrees, expand_collapse_max_dim);
93
+ index_type degree_index = 0;
94
+ for (const auto &barcode : barcodes) { // TODO range view cartesian product
95
+ for (const auto &bar : barcode) {
96
+ auto birth = static_cast<index_type>(bar.first);
97
+ auto death = static_cast<index_type>(
98
+ std::min(bar.second,
99
+ static_cast<typename Simplex_tree_std::Filtration_value>(Y + I))); // I,J atteints, pas X ni Y
100
+
101
+ // todo : optimize
102
+ // auto [a,b] = get_coordinates(birth, I,J);
103
+ for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
104
+ for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
105
+ auto [i, j] = get_coordinates(intermediate_birth, I, J);
106
+ auto [k, l] = get_coordinates(intermediate_death, I, J);
107
+ if (((i < k || j == J) && (j < l || k == I))) {
108
+ // std::vector<index_type> coordinates_to_remove =
109
+ // {degree_index,i,j,k,l}; out[coordinates_to_remove]++;
110
+ out[{degree_index, i, j, k, l}]++;
111
+ }
112
+ }
113
+ }
114
+ }
115
+ degree_index++;
116
+ }
117
+ }
118
+
119
+ template <typename dtype, typename index_type, typename Filtration>
120
+ inline void compute_2d_rank_invariant(
121
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
122
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
123
+ const std::vector<index_type> &grid_shape,
124
+ const std::vector<index_type> &degrees,
125
+ bool expand_collapse) {
126
+ if (degrees.size() == 0) return;
127
+ assert(st_multi.get_number_of_parameters() == 2);
128
+ Simplex_tree_std st_;
129
+ Gudhi::multi_persistence::flatten(st_, st_multi,
130
+ 0); // copies the st_multi to a standard 1-pers simplextree
131
+ const int max_dim = expand_collapse ? *std::max_element(degrees.begin(), degrees.end()) + 1 : 0;
132
+ index_type X = grid_shape[1];
133
+ index_type Y = grid_shape[2]; // First axis is degree
134
+ tbb::enumerable_thread_specific<Simplex_tree_std> thread_simplex_tree(st_); // initialize with a good simplextree
135
+ tbb::parallel_for(0, X, [&](index_type I) {
136
+ tbb::parallel_for(0, Y, [&](index_type J) {
137
+ auto &st_container = thread_simplex_tree.local();
138
+ compute_2d_rank_invariant_of_elbow<dtype, index_type, Filtration>(
139
+ st_multi, st_container, out, I, J, grid_shape, degrees, max_dim);
140
+ });
141
+ });
142
+ }
143
+
144
+ template <typename Filtration, typename dtype, typename indices_type, typename... Args>
145
+ void compute_rank_invariant_python(
146
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
147
+ dtype *data_ptr,
148
+ const std::vector<indices_type> grid_shape,
149
+ const std::vector<indices_type> degrees,
150
+ indices_type n_jobs,
151
+ bool expand_collapse) {
152
+ if (degrees.size() == 0) return;
153
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
154
+
155
+ oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
156
+ arena.execute([&] {
157
+ compute_2d_rank_invariant<dtype, indices_type, Filtration>(
158
+ st_multi, container, grid_shape, degrees, expand_collapse);
159
+ });
160
+
161
+ return;
162
+ }
163
+
164
+ template <class PersBackend,
165
+ class Structure,
166
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
167
+ typename dtype,
168
+ typename index_type>
169
+ inline void compute_2d_rank_invariant_of_elbow(
170
+ typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe &slicer, // truc slicer
171
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
172
+ const index_type I,
173
+ const index_type J,
174
+ const std::vector<index_type> &grid_shape,
175
+ const std::vector<index_type> &degrees,
176
+ // std::vector<Index> &order_container, // constant size
177
+ // std::vector<typename MultiFiltration::value_type> &one_persistence, // constant size
178
+ const bool flip_death = false,
179
+ const bool ignore_inf = true) {
180
+ using value_type = typename MultiFiltration::value_type;
181
+ const auto &filtrations_values = slicer.get_filtrations();
182
+ auto num_generators = filtrations_values.size();
183
+ // one_persistence.resize(num_generators); // local variable should be
184
+ // initialized correctly
185
+ const auto Y = grid_shape[2];
186
+ constexpr const bool verbose = false;
187
+ if constexpr (verbose) std::cout << "filtration_in_slice : [ ";
188
+ for (auto i = 0u; i < num_generators; ++i) {
189
+ const auto &f = filtrations_values[i];
190
+ value_type filtration_in_slice = MultiFiltration::Generator::T_inf;
191
+ if constexpr (MultiFiltration::is_multi_critical) {
192
+ for (const auto &stuff : f) {
193
+ value_type x = stuff[0];
194
+ value_type y = stuff[1];
195
+
196
+ filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
197
+ }
198
+ } else {
199
+ value_type x = f[0];
200
+ value_type y = f[1];
201
+ filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
202
+ }
203
+ if constexpr (verbose) std::cout << filtration_in_slice << ",";
204
+ slicer.get_one_filtration()[i] = filtration_in_slice;
205
+ }
206
+ if constexpr (verbose) std::cout << "\b]" << std::endl;
207
+
208
+ index_type degree_index = 0;
209
+ // order_container.resize(slicer.num_generators()); // local variable should
210
+ // be initialized correctly
211
+ // TODO : use slicer::ThreadSafe instead of maintaining one_pers & order
212
+ // BUG : This will break as soon as slicer interface change
213
+
214
+ using bc_type = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::split_barcode;
215
+ bc_type barcodes;
216
+ if constexpr (PersBackend::is_vine) {
217
+ // slicer.set_one_filtration(one_persistence);
218
+ if (I == 0 && J == 0) [[unlikely]] // this is dangerous, assumes it starts at 0 0
219
+ {
220
+ // TODO : This is a good optimization but needs a patch on
221
+ // PersistenceMatrix std::vector<bool>
222
+ // degrees_index(slicer.get_dimensions().back()+1, false); for (const auto
223
+ // &degree : degrees) {
224
+ // if (degree <= slicer.get_dimensions())
225
+ // degrees_index[degree] = true;
226
+ // }
227
+ // slicer.compute_persistence(degrees_index);
228
+ slicer.compute_persistence();
229
+ } else {
230
+ slicer.vineyard_update();
231
+ }
232
+ barcodes = slicer.get_barcode();
233
+ } else {
234
+ slicer.compute_persistence(ignore_inf);
235
+ barcodes = slicer.get_barcode();
236
+ }
237
+
238
+ // note one_pers not necesary when vine, but does the same computation
239
+
240
+ for (auto degree : degrees) {
241
+ // this assumes barcodes degrees starts from 0
242
+ if constexpr (verbose) std::cout << "Adding Barcode of degree " << degree << std::endl;
243
+ if (degree >= static_cast<index_type>(barcodes.size())) continue;
244
+ const auto &barcode = barcodes[degree];
245
+ for (const auto &bar : barcode) {
246
+ if (bar.first > Y + I) continue;
247
+ if constexpr (verbose)
248
+ std::cout << bar.first << " " << bar.second << "checkinf: " << MultiFiltration::Generator::T_inf << " ==? "
249
+ << (bar.first == MultiFiltration::Generator::T_inf) << std::endl;
250
+ auto birth = static_cast<index_type>(bar.first);
251
+ auto death = static_cast<index_type>(
252
+ std::min(bar.second,
253
+ static_cast<typename MultiFiltration::value_type>(Y + I))); // I,J atteints, pas X ni Y
254
+ if constexpr (false) std::cout << "Birth " << birth << " Death " << death << std::endl;
255
+ for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
256
+ for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
257
+ auto [i, j] = get_coordinates(intermediate_birth, I, J);
258
+ auto [k, l] = get_coordinates(intermediate_death, I, J);
259
+ if (((i < k || j == J) && (j < l || k == I))) {
260
+ if (flip_death)
261
+ out[{degree_index, i, j, I - 1 - k, J - 1 - l}]++;
262
+ else
263
+ out[{degree_index, i, j, k, l}]++;
264
+ }
265
+ if constexpr (false) std::cout << degree_index << " " << i << " " << j << " " << k << " " << l << std::endl;
266
+ }
267
+ }
268
+ }
269
+ degree_index++;
270
+ }
271
+ };
272
+
273
+ template <class PersBackend,
274
+ class Structure,
275
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
276
+ typename dtype,
277
+ typename index_type>
278
+ inline void compute_2d_rank_invariant(
279
+ truc_interface::Truc<PersBackend, Structure, MultiFiltration> &slicer,
280
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
281
+ const std::vector<index_type> &grid_shape,
282
+ const std::vector<index_type> &degrees,
283
+ const bool flip_death,
284
+ const bool ignore_inf) {
285
+ if (degrees.size() == 0) return;
286
+ index_type X = grid_shape[1];
287
+ index_type Y = grid_shape[2]; // First axis is degree
288
+ constexpr const bool verbose = false;
289
+ if constexpr (verbose)
290
+ std::cout << "Shape " << grid_shape[0] << " " << grid_shape[1] << " " << grid_shape[2] << " " << grid_shape[3]
291
+ << " " << grid_shape[4] << std::endl;
292
+
293
+ using ThreadSafe = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe;
294
+ ThreadSafe slicer_thread(slicer);
295
+ tbb::enumerable_thread_specific<ThreadSafe> thread_locals(slicer_thread);
296
+ tbb::parallel_for(0, X, [&](index_type I) {
297
+ tbb::parallel_for(0, Y, [&](index_type J) {
298
+ if constexpr (verbose) std::cout << "Computing elbow " << I << " " << J << "...";
299
+ ThreadSafe &slicer = thread_locals.local();
300
+ compute_2d_rank_invariant_of_elbow<PersBackend, Structure, MultiFiltration, dtype, index_type>(
301
+ slicer, out, I, J, grid_shape, degrees, flip_death, ignore_inf);
302
+ if constexpr (verbose) std::cout << "Done!" << std::endl;
303
+ });
304
+ });
305
+ }
306
+
307
+ template <class PersBackend,
308
+ class Structure,
309
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
310
+ typename dtype,
311
+ typename indices_type>
312
+ void compute_rank_invariant_python(truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
313
+ dtype *data_ptr,
314
+ const std::vector<indices_type> grid_shape,
315
+ const std::vector<indices_type> degrees,
316
+ indices_type n_jobs,
317
+ const bool ignore_inf) {
318
+ if (degrees.size() == 0) return;
319
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
320
+ if constexpr (false){
321
+ std::cout << "ignore_inf " << ignore_inf << std::endl;
322
+ }
323
+
324
+ oneapi::tbb::task_arena arena(PersBackend::is_vine ? 1 : n_jobs); // limits the number of threads
325
+ arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, false, ignore_inf); });
326
+
327
+ return;
328
+ }
329
+
330
+ template <typename PersBackend,
331
+ typename Structure,
332
+ typename MultiFiltration,
333
+ typename dtype = int,
334
+ typename indices_type = int>
335
+ std::pair<std::vector<std::vector<indices_type>>, std::vector<dtype>> compute_rank_signed_measure(
336
+ truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
337
+ dtype *data_ptr,
338
+ const std::vector<indices_type> grid_shape,
339
+ const std::vector<indices_type> degrees,
340
+ indices_type n_jobs,
341
+ bool verbose,
342
+ const bool ignore_inf) {
343
+ if (degrees.size() == 0) return {{}, {}};
344
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
345
+ oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
346
+ constexpr bool flip_death = true;
347
+ arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, flip_death, ignore_inf); });
348
+
349
+ if (verbose) {
350
+ std::cout << "Done.\n";
351
+ std::cout << "Computing mobius inversion ..." << std::flush;
352
+ }
353
+
354
+ // for (indices_type axis :
355
+ // std::views::iota(2,st_multi.get_number_of_parameters()+1)) // +1 for the
356
+ // degree in axis 0
357
+ for (std::size_t axis = 0u; axis < slicer.num_parameters() + 1; axis++) container.differentiate(axis);
358
+ if (verbose) {
359
+ std::cout << "Done.\n";
360
+ std::cout << "Sparsifying the measure ..." << std::flush;
361
+ }
362
+ auto raw_signed_measure = container.sparsify({false, false, true, true});
363
+ if (verbose) {
364
+ std::cout << "Done.\n";
365
+ }
366
+ return raw_signed_measure;
367
+ }
368
+
369
+ }}} // namespace Gudhi::multiparameter::rank_invariant