multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/filtrations/filtrations.py +289 -0
  15. multipers/filtrations.pxd +224 -224
  16. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  17. multipers/function_rips.pyx +105 -105
  18. multipers/grids.cp310-win_amd64.pyd +0 -0
  19. multipers/grids.pyx +350 -350
  20. multipers/gudhi/Persistence_slices_interface.h +132 -132
  21. multipers/gudhi/Simplex_tree_interface.h +239 -245
  22. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  23. multipers/gudhi/cubical_to_boundary.h +59 -59
  24. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  27. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  28. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  29. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  30. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  31. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  32. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  34. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  35. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  36. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  37. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  38. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  39. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  40. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  41. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  42. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  43. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  44. multipers/gudhi/gudhi/Off_reader.h +173 -173
  45. multipers/gudhi/gudhi/One_critical_filtration.h +1432 -1431
  46. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  48. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  49. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  50. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  51. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  52. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  53. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  54. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  55. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  56. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  61. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  75. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  77. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  80. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  81. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  82. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  83. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  84. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  85. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  86. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  90. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  91. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  92. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  93. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  94. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  95. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  96. multipers/gudhi/gudhi/distance_functions.h +62 -62
  97. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  98. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  99. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  100. multipers/gudhi/gudhi/reader_utils.h +367 -367
  101. multipers/gudhi/mma_interface_coh.h +256 -255
  102. multipers/gudhi/mma_interface_h0.h +223 -231
  103. multipers/gudhi/mma_interface_matrix.h +284 -282
  104. multipers/gudhi/naive_merge_tree.h +536 -575
  105. multipers/gudhi/scc_io.h +310 -289
  106. multipers/gudhi/truc.h +890 -888
  107. multipers/io.cp310-win_amd64.pyd +0 -0
  108. multipers/io.pyx +711 -711
  109. multipers/ml/accuracies.py +90 -90
  110. multipers/ml/convolutions.py +520 -520
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -4
  122. multipers/mma_structures.pyx.tp +1085 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2296 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +216 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +18 -15
  156. multipers/simplex_tree_multi.pyx.tp +1939 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +81 -20
  159. multipers/slicer.pxd.tp +215 -214
  160. multipers/slicer.pyx +1091 -308
  161. multipers/slicer.pyx.tp +924 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/METADATA +21 -11
  170. multipers-2.3.0.dist-info/RECORD +182 -0
  171. multipers/tests/test_diff_helper.py +0 -73
  172. multipers/tests/test_hilbert_function.py +0 -82
  173. multipers/tests/test_mma.py +0 -83
  174. multipers/tests/test_point_clouds.py +0 -49
  175. multipers/tests/test_python-cpp_conversion.py +0 -82
  176. multipers/tests/test_signed_betti.py +0 -181
  177. multipers/tests/test_signed_measure.py +0 -89
  178. multipers/tests/test_simplextreemulti.py +0 -221
  179. multipers/tests/test_slicer.py +0 -221
  180. multipers-2.2.3.dist-info/RECORD +0 -189
  181. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/WHEEL +0 -0
  182. {multipers-2.2.3.dist-info → multipers-2.3.0.dist-info}/top_level.txt +0 -0
@@ -1,304 +1,310 @@
1
- from typing import Callable, Literal, Optional
2
-
3
- import numpy as np
4
- import torch
5
- from gudhi.rips_complex import RipsComplex
6
-
7
- import multipers as mp
8
- from multipers.ml.convolutions import DTM, KDE
9
- from multipers.simplex_tree_multi import _available_strategies
10
- from multipers.torch.diff_grids import get_grid
11
-
12
-
13
- def function_rips_signed_measure_old(
14
- x,
15
- theta: Optional[float] = None,
16
- function: Literal["dtm", "gaussian", "exponential"] | Callable = "dtm",
17
- threshold: float = np.inf,
18
- grid_strategy: _available_strategies = "regular_closest",
19
- resolution: int = 100,
20
- return_original: bool = False,
21
- return_st: bool = False,
22
- safe_conversion: bool = False,
23
- num_collapses: int = -1,
24
- expand_collapse: bool = False,
25
- dtype=torch.float32,
26
- **sm_kwargs,
27
- ):
28
- """
29
- Computes a torch-differentiable function-rips signed measure.
30
-
31
- Input
32
- -----
33
- - x (num_pts, dim) : The point cloud
34
- - theta: For density-like functions : the bandwidth
35
- - threshold : rips threshold
36
- - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
37
- Function to compute the second parameter.
38
- - grid_strategy: grid coarsenning strategy.
39
- - resolution : when coarsenning, the target resolution,
40
- - return_original : Also returns the non-differentiable signed measure.
41
- - safe_conversion : Activate this if you encounter crashes.
42
- - **kwargs : for the signed measure computation.
43
- """
44
- assert isinstance(x, torch.Tensor)
45
- if function == "dtm":
46
- assert theta is not None, "Provide a theta to compute DTM"
47
- codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
48
- elif function in ["gaussian", "exponential"]:
49
- assert theta is not None, "Provide a theta to compute density estimation"
50
- codensity = (
51
- -KDE(
52
- bandwidth=theta,
53
- kernel=function,
54
- return_log=True,
55
- )
56
- .fit(x)
57
- .score_samples(x)
58
- .type(dtype)
59
- )
60
- else:
61
- assert callable(function), "Function has to be callable"
62
- if theta is None:
63
- codensity = function(x).type(dtype)
64
- else:
65
- codensity = function(x, theta=theta).type(dtype)
66
-
67
- distance_matrix = torch.cdist(x, x).type(dtype)
68
- if threshold < np.inf:
69
- distance_matrix[distance_matrix > threshold] = np.inf
70
-
71
- st = RipsComplex(
72
- distance_matrix=distance_matrix.detach(), max_edge_length=threshold
73
- ).create_simplex_tree()
74
- # detach makes a new (reference) tensor, without tracking the gradient
75
- st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
76
- st.fill_lowerstar(
77
- codensity.detach(), parameter=1
78
- ) # fills the codensity in the second parameter of the simplextree
79
-
80
- # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
81
- st_copy = st.grid_squeeze(
82
- grid_strategy=grid_strategy, resolution=resolution, coordinate_values=True
83
- )
84
- if sm_kwargs.get("degree", None) is None and sm_kwargs.get("degrees", [None]) == [
85
- None
86
- ]:
87
- expansion_degree = st.num_vertices
88
- else:
89
- expansion_degree = (
90
- max(np.max(sm_kwargs.get("degrees", 1)), sm_kwargs.get("degree", 1)) + 1
91
- )
92
- st.collapse_edges(num=num_collapses)
93
- if not expand_collapse:
94
- st.expansion(expansion_degree) # edge collapse
95
- sms = mp.signed_measure(st, **sm_kwargs) # computes the signed measure
96
- del st
97
-
98
- simplices_list = tuple(
99
- s for s, _ in st_copy.get_simplices()
100
- ) # not optimal, we may want to do that in cython to get edges and nodes
101
- sms_diff = []
102
- for sm, weights in sms:
103
- indices, not_found_indices = st_copy.pts_to_indices(
104
- sm, simplices_dimensions=[1, 0]
105
- )
106
- if sm_kwargs.get("verbose", False):
107
- print(
108
- f"Found {(1-(indices == -1).mean()).round(2)} indices. \
109
- Out : {(indices == -1).sum()}, {len(not_found_indices)}"
110
- )
111
- sm_diff = torch.empty(sm.shape).type(dtype)
112
- # sim_dim = sm_diff.shape[1] // 2
113
-
114
- # fills the Rips-filtrations of the signed measure.
115
- # the loop is for the rank invariant
116
- for i in range(0, sm_diff.shape[1], 2):
117
- idxs = indices[:, i]
118
- if (idxs == -1).all():
119
- continue
120
- useful_idxs = idxs != -1
121
- # Retrieves the differentiable values from the distance_matrix
122
- if useful_idxs.size > 0:
123
- edges_filtrations = torch.cat(
124
- [
125
- distance_matrix[*simplices_list[idx], None]
126
- for idx in idxs[useful_idxs]
127
- ]
128
- )
129
- # fills theses values into the signed measure
130
- sm_diff[:, i][useful_idxs] = edges_filtrations
131
- # same for the other axis
132
- for i in range(1, sm_diff.shape[1], 2):
133
- idxs = indices[:, i]
134
- if (idxs == -1).all():
135
- continue
136
- useful_idxs = idxs != -1
137
- if useful_idxs.size > 0:
138
- nodes_filtrations = torch.cat(
139
- [codensity[simplices_list[idx]] for idx in idxs[useful_idxs]]
140
- )
141
- sm_diff[:, i][useful_idxs] = nodes_filtrations
142
-
143
- # fills not-found values as constants
144
- if len(not_found_indices) > 0:
145
- not_found_indices = indices == -1
146
- sm_diff[indices == -1] = torch.from_numpy(sm[indices == -1]).type(dtype)
147
-
148
- sms_diff.append((sm_diff, torch.from_numpy(weights)))
149
- flags = [True, return_original, return_st]
150
- if np.sum(flags) == 1:
151
- return sms_diff
152
- return tuple(stuff for stuff, flag in zip([sms_diff, sms, st_copy], flags) if flag)
153
-
154
-
155
- def function_rips_signed_measure(
156
- x,
157
- theta: Optional[float] = None,
158
- function: Literal["dtm", "gaussian", "exponential"] | Callable = "gaussian",
159
- threshold: Optional[float] = None,
160
- grid_strategy: Literal[
161
- "regular_closest", "exact", "quantile", "regular_left"
162
- ] = "exact",
163
- complex: Literal["rips", "delaunay", "weak_delaunay"] = "rips",
164
- resolution: int = 100,
165
- safe_conversion: bool = False,
166
- num_collapses: Optional[int] = None,
167
- expand_collapse: bool = False,
168
- dtype=torch.float32,
169
- plot=False,
170
- # return_st: bool = False,
171
- *,
172
- log_density: bool = True,
173
- vineyard: bool = False,
174
- pers_backend=None,
175
- **sm_kwargs,
176
- ):
177
- """
178
- Computes a torch-differentiable function-rips signed measure.
179
-
180
- Input
181
- -----
182
- - x (num_pts, dim) : The point cloud
183
- - theta: For density-like functions : the bandwidth
184
- - threshold : rips threshold
185
- - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
186
- Function to compute the second parameter.
187
- - grid_strategy: grid coarsenning strategy.
188
- - resolution : when coarsenning, the target resolution,
189
- - return_original : Also returns the non-differentiable signed measure.
190
- - safe_conversion : Activate this if you encounter crashes.
191
- - **kwargs : for the signed measure computation.
192
- """
193
- if num_collapses is None:
194
- num_collapses = -1 if complex == "rips" else None
195
- assert isinstance(x, torch.Tensor)
196
- if function == "dtm":
197
- assert theta is not None, "Provide a theta to compute DTM"
198
- codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
199
- elif function in ["gaussian", "exponential"]:
200
- assert theta is not None, "Provide a theta to compute density estimation"
201
- codensity = (
202
- -KDE(
203
- bandwidth=theta,
204
- kernel=function,
205
- return_log=log_density,
206
- )
207
- .fit(x)
208
- .score_samples(x)
209
- .type(dtype)
210
- )
211
- elif isinstance(function, torch.Tensor):
212
- assert (
213
- function.ndim == 1 and codensity.shape[0] == x.shape[0]
214
- ), """
215
- When function is a tensor, it is interpreted as the value of some function over x.
216
- """
217
- codensity = function
218
- else:
219
- assert callable(function), "Function has to be callable"
220
- if theta is None:
221
- codensity = function(x).type(dtype)
222
- else:
223
- codensity = function(x, theta=theta).type(dtype)
224
-
225
- distance_matrix = torch.cdist(x, x).type(dtype)
226
- distances = distance_matrix.ravel()
227
- if complex == "rips":
228
- threshold = (
229
- distance_matrix.max(axis=1).values.min() if threshold is None else threshold
230
- )
231
- distances = distances[distances <= threshold]
232
- elif complex in ["delaunay", "weak_delaunay"]:
233
- complex = "delaunay"
234
- distances /= 2
235
- else:
236
- raise ValueError(
237
- f"Unimplemented with complex {complex}. You can use rips or delaunay ftm."
238
- )
239
-
240
- # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
241
- reduced_grid = get_grid(strategy=grid_strategy)((distances, codensity), resolution)
242
-
243
- degrees = sm_kwargs.pop("degrees", [])
244
- if sm_kwargs.get("degree", None) is not None:
245
- degrees = [sm_kwargs.pop("degree", None)] + degrees
246
- if complex == "rips":
247
- st = RipsComplex(
248
- distance_matrix=distance_matrix.detach(), max_edge_length=threshold
249
- ).create_simplex_tree()
250
- # detach makes a new (reference) tensor, without tracking the gradient
251
- st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
252
- st.fill_lowerstar(
253
- codensity.detach(), parameter=1
254
- ) # fills the codensity in the second parameter of the simplextree
255
- st = st.grid_squeeze(reduced_grid)
256
- st.filtration_grid = []
257
- if None in degrees:
258
- expansion_degree = st.num_vertices
259
- else:
260
- expansion_degree = max(degrees) + 1
261
- st.collapse_edges(num=num_collapses)
262
- if not expand_collapse:
263
- st.expansion(expansion_degree) # edge collapse
264
-
265
- s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend)
266
- elif complex == "delaunay":
267
- s = mp.slicer.from_function_delaunay(
268
- x.detach().numpy(), codensity.detach().numpy()
269
- )
270
- st = mp.slicer.to_simplextree(s)
271
- st.flagify(2)
272
- s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend).grid_squeeze(
273
- reduced_grid
274
- )
275
-
276
- s.filtration_grid = [] ## To enforce minpres to be reasonable
277
- if None not in degrees:
278
- s = s.minpres(degrees=degrees)
279
- else:
280
- from joblib import Parallel, delayed
281
-
282
- s = tuple(
283
- Parallel(n_jobs=-1, backend="threading")(
284
- delayed(lambda d: s if d is None else s.minpres(degree=d))(d)
285
- for d in degrees
286
- )
287
- )
288
- ## fix previous hack
289
- for stuff in s:
290
- # stuff.filtration_grid = reduced_grid ## not necessary
291
- stuff.filtration_grid = [[1]] * stuff.num_parameters
292
-
293
- sms = tuple(
294
- sm
295
- for slicer_of_degree, degree in zip(s, degrees)
296
- for sm in mp.signed_measure(
297
- slicer_of_degree, grid=reduced_grid, degree=degree, **sm_kwargs
298
- )
299
- ) # computes the signed measure
300
- if plot:
301
- mp.plots.plot_signed_measures(
302
- tuple((sm.detach().numpy(), w.detach().numpy()) for sm, w in sms)
303
- )
304
- return sms
1
+ from typing import Callable, Literal, Optional
2
+
3
+ import numpy as np
4
+ import torch
5
+ import gudhi as gd
6
+
7
+ import multipers as mp
8
+ from multipers.ml.convolutions import DTM, KDE
9
+ from multipers.simplex_tree_multi import _available_strategies
10
+ from multipers.torch.diff_grids import get_grid
11
+
12
+
13
+ def function_rips_signed_measure_old(
14
+ x,
15
+ theta: Optional[float] = None,
16
+ function: Literal["dtm", "gaussian", "exponential"] | Callable = "dtm",
17
+ threshold: float = np.inf,
18
+ grid_strategy: _available_strategies = "regular_closest",
19
+ resolution: int = 100,
20
+ return_original: bool = False,
21
+ return_st: bool = False,
22
+ safe_conversion: bool = False,
23
+ num_collapses: int = -1,
24
+ expand_collapse: bool = False,
25
+ dtype=torch.float32,
26
+ **sm_kwargs,
27
+ ):
28
+ """
29
+ Computes a torch-differentiable function-rips signed measure.
30
+
31
+ Input
32
+ -----
33
+ - x (num_pts, dim) : The point cloud
34
+ - theta: For density-like functions : the bandwidth
35
+ - threshold : rips threshold
36
+ - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
37
+ Function to compute the second parameter.
38
+ - grid_strategy: grid coarsenning strategy.
39
+ - resolution : when coarsenning, the target resolution,
40
+ - return_original : Also returns the non-differentiable signed measure.
41
+ - safe_conversion : Activate this if you encounter crashes.
42
+ - **kwargs : for the signed measure computation.
43
+ """
44
+ assert isinstance(x, torch.Tensor)
45
+ if function == "dtm":
46
+ assert theta is not None, "Provide a theta to compute DTM"
47
+ codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
48
+ elif function in ["gaussian", "exponential"]:
49
+ assert theta is not None, "Provide a theta to compute density estimation"
50
+ codensity = (
51
+ -KDE(
52
+ bandwidth=theta,
53
+ kernel=function,
54
+ return_log=True,
55
+ )
56
+ .fit(x)
57
+ .score_samples(x)
58
+ .type(dtype)
59
+ )
60
+ else:
61
+ assert callable(function), "Function has to be callable"
62
+ if theta is None:
63
+ codensity = function(x).type(dtype)
64
+ else:
65
+ codensity = function(x, theta=theta).type(dtype)
66
+
67
+ distance_matrix = torch.cdist(x, x).type(dtype)
68
+ if threshold < np.inf:
69
+ distance_matrix[distance_matrix > threshold] = np.inf
70
+
71
+ # st = RipsComplex(
72
+ # distance_matrix=distance_matrix.detach(), max_edge_length=threshold
73
+ # ).create_simplex_tree()
74
+ st = gd.SimplexTree.create_from_array(
75
+ distance_matrix.detach(), max_filtration=threshold
76
+ )
77
+ # detach makes a new (reference) tensor, without tracking the gradient
78
+ st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
79
+ st.fill_lowerstar(
80
+ codensity.detach(), parameter=1
81
+ ) # fills the codensity in the second parameter of the simplextree
82
+
83
+ # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
84
+ st_copy = st.grid_squeeze(
85
+ grid_strategy=grid_strategy, resolution=resolution, coordinate_values=True
86
+ )
87
+ if sm_kwargs.get("degree", None) is None and sm_kwargs.get("degrees", [None]) == [
88
+ None
89
+ ]:
90
+ expansion_degree = st.num_vertices
91
+ else:
92
+ expansion_degree = (
93
+ max(np.max(sm_kwargs.get("degrees", 1)), sm_kwargs.get("degree", 1)) + 1
94
+ )
95
+ st.collapse_edges(num=num_collapses)
96
+ if not expand_collapse:
97
+ st.expansion(expansion_degree) # edge collapse
98
+ sms = mp.signed_measure(st, **sm_kwargs) # computes the signed measure
99
+ del st
100
+
101
+ simplices_list = tuple(
102
+ s for s, _ in st_copy.get_simplices()
103
+ ) # not optimal, we may want to do that in cython to get edges and nodes
104
+ sms_diff = []
105
+ for sm, weights in sms:
106
+ indices, not_found_indices = st_copy.pts_to_indices(
107
+ sm, simplices_dimensions=[1, 0]
108
+ )
109
+ if sm_kwargs.get("verbose", False):
110
+ print(
111
+ f"Found {(1-(indices == -1).mean()).round(2)} indices. \
112
+ Out : {(indices == -1).sum()}, {len(not_found_indices)}"
113
+ )
114
+ sm_diff = torch.empty(sm.shape).type(dtype)
115
+ # sim_dim = sm_diff.shape[1] // 2
116
+
117
+ # fills the Rips-filtrations of the signed measure.
118
+ # the loop is for the rank invariant
119
+ for i in range(0, sm_diff.shape[1], 2):
120
+ idxs = indices[:, i]
121
+ if (idxs == -1).all():
122
+ continue
123
+ useful_idxs = idxs != -1
124
+ # Retrieves the differentiable values from the distance_matrix
125
+ if useful_idxs.size > 0:
126
+ edges_filtrations = torch.cat(
127
+ [
128
+ distance_matrix[*simplices_list[idx], None]
129
+ for idx in idxs[useful_idxs]
130
+ ]
131
+ )
132
+ # fills theses values into the signed measure
133
+ sm_diff[:, i][useful_idxs] = edges_filtrations
134
+ # same for the other axis
135
+ for i in range(1, sm_diff.shape[1], 2):
136
+ idxs = indices[:, i]
137
+ if (idxs == -1).all():
138
+ continue
139
+ useful_idxs = idxs != -1
140
+ if useful_idxs.size > 0:
141
+ nodes_filtrations = torch.cat(
142
+ [codensity[simplices_list[idx]] for idx in idxs[useful_idxs]]
143
+ )
144
+ sm_diff[:, i][useful_idxs] = nodes_filtrations
145
+
146
+ # fills not-found values as constants
147
+ if len(not_found_indices) > 0:
148
+ not_found_indices = indices == -1
149
+ sm_diff[indices == -1] = torch.from_numpy(sm[indices == -1]).type(dtype)
150
+
151
+ sms_diff.append((sm_diff, torch.from_numpy(weights)))
152
+ flags = [True, return_original, return_st]
153
+ if np.sum(flags) == 1:
154
+ return sms_diff
155
+ return tuple(stuff for stuff, flag in zip([sms_diff, sms, st_copy], flags) if flag)
156
+
157
+
158
+ def function_rips_signed_measure(
159
+ x,
160
+ theta: Optional[float] = None,
161
+ function: Literal["dtm", "gaussian", "exponential"] | Callable = "gaussian",
162
+ threshold: Optional[float] = None,
163
+ grid_strategy: Literal[
164
+ "regular_closest", "exact", "quantile", "regular_left"
165
+ ] = "exact",
166
+ complex: Literal["rips", "delaunay", "weak_delaunay"] = "rips",
167
+ resolution: int = 100,
168
+ safe_conversion: bool = False,
169
+ num_collapses: Optional[int] = None,
170
+ expand_collapse: bool = False,
171
+ dtype=torch.float32,
172
+ plot=False,
173
+ # return_st: bool = False,
174
+ *,
175
+ log_density: bool = True,
176
+ vineyard: bool = False,
177
+ pers_backend=None,
178
+ **sm_kwargs,
179
+ ):
180
+ """
181
+ Computes a torch-differentiable function-rips signed measure.
182
+
183
+ Input
184
+ -----
185
+ - x (num_pts, dim) : The point cloud
186
+ - theta: For density-like functions : the bandwidth
187
+ - threshold : rips threshold
188
+ - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
189
+ Function to compute the second parameter.
190
+ - grid_strategy: grid coarsenning strategy.
191
+ - resolution : when coarsenning, the target resolution,
192
+ - return_original : Also returns the non-differentiable signed measure.
193
+ - safe_conversion : Activate this if you encounter crashes.
194
+ - **kwargs : for the signed measure computation.
195
+ """
196
+ if num_collapses is None:
197
+ num_collapses = -1 if complex == "rips" else None
198
+ assert isinstance(x, torch.Tensor)
199
+ if function == "dtm":
200
+ assert theta is not None, "Provide a theta to compute DTM"
201
+ codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
202
+ elif function in ["gaussian", "exponential"]:
203
+ assert theta is not None, "Provide a theta to compute density estimation"
204
+ codensity = (
205
+ -KDE(
206
+ bandwidth=theta,
207
+ kernel=function,
208
+ return_log=log_density,
209
+ )
210
+ .fit(x)
211
+ .score_samples(x)
212
+ .type(dtype)
213
+ )
214
+ elif isinstance(function, torch.Tensor):
215
+ assert (
216
+ function.ndim == 1 and codensity.shape[0] == x.shape[0]
217
+ ), """
218
+ When function is a tensor, it is interpreted as the value of some function over x.
219
+ """
220
+ codensity = function
221
+ else:
222
+ assert callable(function), "Function has to be callable"
223
+ if theta is None:
224
+ codensity = function(x).type(dtype)
225
+ else:
226
+ codensity = function(x, theta=theta).type(dtype)
227
+
228
+ distance_matrix = torch.cdist(x, x).type(dtype)
229
+ distances = distance_matrix.ravel()
230
+ if complex == "rips":
231
+ threshold = (
232
+ distance_matrix.max(axis=1).values.min() if threshold is None else threshold
233
+ )
234
+ distances = distances[distances <= threshold]
235
+ elif complex in ["delaunay", "weak_delaunay"]:
236
+ complex = "delaunay"
237
+ distances /= 2
238
+ else:
239
+ raise ValueError(
240
+ f"Unimplemented with complex {complex}. You can use rips or delaunay ftm."
241
+ )
242
+
243
+ # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
244
+ reduced_grid = get_grid(strategy=grid_strategy)((distances, codensity), resolution)
245
+
246
+ degrees = sm_kwargs.pop("degrees", [])
247
+ if sm_kwargs.get("degree", None) is not None:
248
+ degrees = [sm_kwargs.pop("degree", None)] + degrees
249
+ if complex == "rips":
250
+ # st = RipsComplex(
251
+ # distance_matrix=distance_matrix.detach(), max_edge_length=threshold
252
+ # ).create_simplex_tree()
253
+ st = gd.SimplexTree.create_from_array(
254
+ distance_matrix.detach(), max_filtration=threshold
255
+ )
256
+ # detach makes a new (reference) tensor, without tracking the gradient
257
+ st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
258
+ st.fill_lowerstar(
259
+ codensity.detach(), parameter=1
260
+ ) # fills the codensity in the second parameter of the simplextree
261
+ st = st.grid_squeeze(reduced_grid)
262
+ st.filtration_grid = []
263
+ if None in degrees:
264
+ expansion_degree = st.num_vertices
265
+ else:
266
+ expansion_degree = max(degrees) + 1
267
+ st.collapse_edges(num=num_collapses)
268
+ if not expand_collapse:
269
+ st.expansion(expansion_degree) # edge collapse
270
+
271
+ s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend)
272
+ elif complex == "delaunay":
273
+ s = mp.slicer.from_function_delaunay(
274
+ x.detach().numpy(), codensity.detach().numpy()
275
+ )
276
+ st = mp.slicer.to_simplextree(s)
277
+ st.flagify(2)
278
+ s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend).grid_squeeze(
279
+ reduced_grid
280
+ )
281
+
282
+ s.filtration_grid = [] ## To enforce minpres to be reasonable
283
+ if None not in degrees:
284
+ s = s.minpres(degrees=degrees)
285
+ else:
286
+ from joblib import Parallel, delayed
287
+
288
+ s = tuple(
289
+ Parallel(n_jobs=-1, backend="threading")(
290
+ delayed(lambda d: s if d is None else s.minpres(degree=d))(d)
291
+ for d in degrees
292
+ )
293
+ )
294
+ ## fix previous hack
295
+ for stuff in s:
296
+ # stuff.filtration_grid = reduced_grid ## not necessary
297
+ stuff.filtration_grid = [[1]] * stuff.num_parameters
298
+
299
+ sms = tuple(
300
+ sm
301
+ for slicer_of_degree, degree in zip(s, degrees)
302
+ for sm in mp.signed_measure(
303
+ slicer_of_degree, grid=reduced_grid, degree=degree, **sm_kwargs
304
+ )
305
+ ) # computes the signed measure
306
+ if plot:
307
+ mp.plots.plot_signed_measures(
308
+ tuple((sm.detach().numpy(), w.detach().numpy()) for sm, w in sms)
309
+ )
310
+ return sms