mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +16 -9
- mteb/_evaluators/any_sts_evaluator.py +10 -5
- mteb/_evaluators/clustering_evaluator.py +10 -4
- mteb/_evaluators/evaluator.py +9 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
- mteb/_evaluators/pair_classification_evaluator.py +10 -5
- mteb/_evaluators/retrieval_evaluator.py +19 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +14 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
- mteb/_evaluators/text/summarization_evaluator.py +8 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +17 -9
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +15 -6
- mteb/abstasks/clustering.py +17 -8
- mteb/abstasks/clustering_legacy.py +14 -6
- mteb/abstasks/image/image_text_pair_classification.py +17 -7
- mteb/abstasks/multilabel_classification.py +11 -5
- mteb/abstasks/pair_classification.py +19 -9
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +28 -17
- mteb/abstasks/retrieval_dataset_loaders.py +11 -8
- mteb/abstasks/sts.py +19 -10
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +14 -7
- mteb/abstasks/text/summarization.py +17 -7
- mteb/abstasks/zeroshot_classification.py +15 -7
- mteb/benchmarks/_create_table.py +13 -3
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +20 -18
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +7 -3
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +11 -4
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +22 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +16 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +22 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +25 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +19 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +19 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +15 -9
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/clustering/nob/snl_clustering.py +7 -2
- mteb/tasks/clustering/nob/vg_clustering.py +7 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -113,6 +113,7 @@ xlmr_base = ModelMeta(
|
|
|
113
113
|
revision="e73636d4f797dec63c3081bb6ed5c7b0bb3f2089",
|
|
114
114
|
release_date="2019-11-05", # arxiv paper release
|
|
115
115
|
n_parameters=278043648,
|
|
116
|
+
n_embedding_parameters=192_001_536,
|
|
116
117
|
memory_usage_mb=1064,
|
|
117
118
|
embed_dim=768,
|
|
118
119
|
license="mit",
|
|
@@ -163,6 +164,7 @@ xlmr_large = ModelMeta(
|
|
|
163
164
|
revision="c23d21b0620b635a76227c604d44e43a9f0ee389",
|
|
164
165
|
release_date="2019-11-05", # arxiv paper release
|
|
165
166
|
n_parameters=559890432,
|
|
167
|
+
n_embedding_parameters=256_002_048,
|
|
166
168
|
memory_usage_mb=2141,
|
|
167
169
|
embed_dim=1024,
|
|
168
170
|
license="mit",
|
|
@@ -6,16 +6,18 @@ import warnings
|
|
|
6
6
|
from typing import TYPE_CHECKING, Any
|
|
7
7
|
|
|
8
8
|
import torch
|
|
9
|
-
from torch.utils.data import DataLoader
|
|
10
9
|
from tqdm.autonotebook import tqdm
|
|
11
10
|
|
|
12
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
11
|
from mteb.models.abs_encoder import AbsEncoder
|
|
14
12
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
15
|
-
from mteb.types import
|
|
13
|
+
from mteb.types import PromptType
|
|
16
14
|
|
|
17
15
|
if TYPE_CHECKING:
|
|
18
16
|
from PIL import Image
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types import Array, BatchedInput
|
|
19
21
|
|
|
20
22
|
logger = logging.getLogger(__name__)
|
|
21
23
|
|
|
@@ -354,6 +356,7 @@ gme_qwen2vl_2b = ModelMeta(
|
|
|
354
356
|
release_date="2024-12-24",
|
|
355
357
|
modalities=["image", "text"],
|
|
356
358
|
n_parameters=2_210_000_000,
|
|
359
|
+
n_embedding_parameters=233_373_696,
|
|
357
360
|
memory_usage_mb=8427,
|
|
358
361
|
embed_dim=1536,
|
|
359
362
|
license="apache-2.0",
|
|
@@ -378,6 +381,7 @@ gme_qwen2vl_7b = ModelMeta(
|
|
|
378
381
|
release_date="2024-12-24",
|
|
379
382
|
modalities=["image", "text"],
|
|
380
383
|
n_parameters=8_290_000_000,
|
|
384
|
+
n_embedding_parameters=544_997_376,
|
|
381
385
|
memory_usage_mb=31629,
|
|
382
386
|
embed_dim=3584,
|
|
383
387
|
license="apache-2.0",
|
|
@@ -1,17 +1,23 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import numpy as np
|
|
4
6
|
from packaging.version import Version
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
from tqdm.auto import tqdm
|
|
7
8
|
from transformers import __version__ as transformers_version
|
|
8
9
|
|
|
9
10
|
from mteb._requires_package import requires_package
|
|
10
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
11
11
|
from mteb.models import sentence_transformers_loader
|
|
12
12
|
from mteb.models.abs_encoder import AbsEncoder
|
|
13
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
-
from mteb.types import
|
|
14
|
+
from mteb.types import PromptType
|
|
15
|
+
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types import Array, BatchedInput
|
|
15
21
|
|
|
16
22
|
MULTILINGUAL_EVALUATED_LANGUAGES = [
|
|
17
23
|
"arb-Arab",
|
|
@@ -156,6 +162,7 @@ google_text_emb_004 = ModelMeta(
|
|
|
156
162
|
revision="1", # revision is intended for implementation
|
|
157
163
|
release_date="2024-05-14",
|
|
158
164
|
n_parameters=None,
|
|
165
|
+
n_embedding_parameters=None,
|
|
159
166
|
memory_usage_mb=None,
|
|
160
167
|
max_tokens=2048,
|
|
161
168
|
embed_dim=768,
|
|
@@ -181,6 +188,7 @@ google_text_emb_005 = ModelMeta(
|
|
|
181
188
|
revision="1", # revision is intended for implementation
|
|
182
189
|
release_date="2024-11-18",
|
|
183
190
|
n_parameters=None,
|
|
191
|
+
n_embedding_parameters=None,
|
|
184
192
|
memory_usage_mb=None,
|
|
185
193
|
max_tokens=2048,
|
|
186
194
|
embed_dim=768,
|
|
@@ -206,6 +214,7 @@ google_text_multilingual_emb_002 = ModelMeta(
|
|
|
206
214
|
revision="1",
|
|
207
215
|
release_date="2024-05-14",
|
|
208
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
209
218
|
memory_usage_mb=None,
|
|
210
219
|
max_tokens=2048,
|
|
211
220
|
embed_dim=768,
|
|
@@ -231,6 +240,7 @@ google_gemini_embedding_001 = ModelMeta(
|
|
|
231
240
|
revision="1",
|
|
232
241
|
release_date="2025-03-07",
|
|
233
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
234
244
|
memory_usage_mb=None,
|
|
235
245
|
max_tokens=2048,
|
|
236
246
|
embed_dim=3072,
|
|
@@ -266,6 +276,7 @@ embedding_gemma_300m = ModelMeta(
|
|
|
266
276
|
revision="64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2",
|
|
267
277
|
release_date="2025-09-04",
|
|
268
278
|
n_parameters=307_581_696,
|
|
279
|
+
n_embedding_parameters=201_326_592,
|
|
269
280
|
embed_dim=768,
|
|
270
281
|
max_tokens=2048,
|
|
271
282
|
license="gemma",
|
|
@@ -4,20 +4,21 @@ import logging
|
|
|
4
4
|
from typing import TYPE_CHECKING, Any
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
7
|
from tqdm.auto import tqdm
|
|
9
8
|
|
|
10
9
|
from mteb._requires_package import (
|
|
11
10
|
requires_image_dependencies,
|
|
12
11
|
)
|
|
13
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
14
12
|
from mteb.models.model_meta import ModelMeta
|
|
15
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
16
|
-
|
|
17
|
-
logger = logging.getLogger(__name__)
|
|
18
13
|
|
|
19
14
|
if TYPE_CHECKING:
|
|
20
15
|
from PIL import Image
|
|
16
|
+
from torch.utils.data import DataLoader
|
|
17
|
+
|
|
18
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
19
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
20
|
+
|
|
21
|
+
logger = logging.getLogger(__name__)
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
class GraniteVisionEmbeddingWrapper:
|
|
@@ -172,6 +173,7 @@ granite_vision_embedding = ModelMeta(
|
|
|
172
173
|
release_date="2025-06-11",
|
|
173
174
|
modalities=["image", "text"],
|
|
174
175
|
n_parameters=2_980_000_000,
|
|
176
|
+
n_embedding_parameters=None,
|
|
175
177
|
memory_usage_mb=11351,
|
|
176
178
|
max_tokens=128000,
|
|
177
179
|
embed_dim=128,
|
|
@@ -44,6 +44,7 @@ gritlm7b = ModelMeta(
|
|
|
44
44
|
revision="13f00a0e36500c80ce12870ea513846a066004af",
|
|
45
45
|
release_date="2024-02-15",
|
|
46
46
|
n_parameters=7_240_000_000,
|
|
47
|
+
n_embedding_parameters=131_072_000,
|
|
47
48
|
memory_usage_mb=13813,
|
|
48
49
|
embed_dim=4096,
|
|
49
50
|
license="apache-2.0",
|
|
@@ -73,6 +74,7 @@ gritlm8x7b = ModelMeta(
|
|
|
73
74
|
revision="7f089b13e3345510281733ca1e6ff871b5b4bc76",
|
|
74
75
|
release_date="2024-02-15",
|
|
75
76
|
n_parameters=57_920_000_000,
|
|
77
|
+
n_embedding_parameters=None,
|
|
76
78
|
memory_usage_mb=89079,
|
|
77
79
|
embed_dim=32768,
|
|
78
80
|
license="apache-2.0",
|
|
@@ -48,6 +48,7 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
48
48
|
revision="e26182b2122f4435e8b3ebecbf363990f409b45b",
|
|
49
49
|
release_date="2024-06-15", # initial commit of hf model.
|
|
50
50
|
n_parameters=7_613_000_000,
|
|
51
|
+
n_embedding_parameters=543_499_264,
|
|
51
52
|
memory_usage_mb=29040,
|
|
52
53
|
embed_dim=3584,
|
|
53
54
|
license="apache-2.0",
|
|
@@ -80,6 +81,7 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
80
81
|
revision="07d27e5226328010336563bc1b564a5e3436a298",
|
|
81
82
|
release_date="2024-04-20", # initial commit of hf model.
|
|
82
83
|
n_parameters=7_720_000_000,
|
|
84
|
+
n_embedding_parameters=None,
|
|
83
85
|
memory_usage_mb=29449,
|
|
84
86
|
embed_dim=4096,
|
|
85
87
|
license="apache-2.0",
|
|
@@ -117,6 +119,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
117
119
|
revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd",
|
|
118
120
|
release_date="2024-07-29", # initial commit of hf model.
|
|
119
121
|
n_parameters=1_780_000_000,
|
|
122
|
+
n_embedding_parameters=232_928_256,
|
|
120
123
|
memory_usage_mb=6776,
|
|
121
124
|
embed_dim=8960,
|
|
122
125
|
license="apache-2.0",
|
|
@@ -145,6 +148,7 @@ gte_small_zh = ModelMeta(
|
|
|
145
148
|
revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a",
|
|
146
149
|
release_date="2023-11-08", # initial commit of hf model.
|
|
147
150
|
n_parameters=int(30.3 * 1e6),
|
|
151
|
+
n_embedding_parameters=10_817_536,
|
|
148
152
|
memory_usage_mb=58,
|
|
149
153
|
embed_dim=1024,
|
|
150
154
|
license="mit",
|
|
@@ -173,6 +177,7 @@ gte_base_zh = ModelMeta(
|
|
|
173
177
|
revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c",
|
|
174
178
|
release_date="2023-11-08", # initial commit of hf model.
|
|
175
179
|
n_parameters=int(102 * 1e6),
|
|
180
|
+
n_embedding_parameters=16_226_304,
|
|
176
181
|
memory_usage_mb=195,
|
|
177
182
|
embed_dim=1024,
|
|
178
183
|
license="mit",
|
|
@@ -201,6 +206,7 @@ gte_large_zh = ModelMeta(
|
|
|
201
206
|
revision="64c364e579de308104a9b2c170ca009502f4f545",
|
|
202
207
|
release_date="2023-11-08", # initial commit of hf model.
|
|
203
208
|
n_parameters=int(326 * 1e6),
|
|
209
|
+
n_embedding_parameters=21_635_072,
|
|
204
210
|
memory_usage_mb=621,
|
|
205
211
|
embed_dim=1024,
|
|
206
212
|
license="mit",
|
|
@@ -330,6 +336,7 @@ gte_multilingual_base = ModelMeta(
|
|
|
330
336
|
revision="ca1791e0bcc104f6db161f27de1340241b13c5a4",
|
|
331
337
|
release_date="2024-07-20", # initial commit of hf model.
|
|
332
338
|
n_parameters=int(305 * 1e6),
|
|
339
|
+
n_embedding_parameters=192_036_864,
|
|
333
340
|
memory_usage_mb=582,
|
|
334
341
|
embed_dim=768,
|
|
335
342
|
license="apache-2.0",
|
|
@@ -359,6 +366,7 @@ gte_modernbert_base = ModelMeta(
|
|
|
359
366
|
revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4",
|
|
360
367
|
release_date="2025-01-21", # initial commit of hf model.
|
|
361
368
|
n_parameters=int(149 * 1e6),
|
|
369
|
+
n_embedding_parameters=None,
|
|
362
370
|
memory_usage_mb=284,
|
|
363
371
|
embed_dim=768,
|
|
364
372
|
license="apache-2.0",
|
|
@@ -402,6 +410,7 @@ gte_base_en_v15 = ModelMeta(
|
|
|
402
410
|
revision="a829fd0e060bb84554da0dfd354d0de0f7712b7f", # can be any
|
|
403
411
|
release_date="2024-06-20", # initial commit of hf model
|
|
404
412
|
n_parameters=137_000_000,
|
|
413
|
+
n_embedding_parameters=23_445_504,
|
|
405
414
|
memory_usage_mb=None,
|
|
406
415
|
embed_dim=768,
|
|
407
416
|
license="apache-2.0",
|
|
@@ -1,9 +1,13 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
2
5
|
|
|
3
6
|
from mteb.models.model_meta import ModelMeta
|
|
4
7
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
5
|
-
from mteb.types import PromptType
|
|
6
8
|
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
from mteb.types import PromptType
|
|
7
11
|
logger = logging.getLogger(__name__)
|
|
8
12
|
|
|
9
13
|
|
|
@@ -43,6 +47,7 @@ Hinvec_bidir = ModelMeta(
|
|
|
43
47
|
revision="d4fc678720cc1b8c5d18599ce2d9a4d6090c8b6b",
|
|
44
48
|
release_date="2025-06-19",
|
|
45
49
|
n_parameters=939_591_680,
|
|
50
|
+
n_embedding_parameters=None,
|
|
46
51
|
memory_usage_mb=3715,
|
|
47
52
|
embed_dim=2048,
|
|
48
53
|
license="cc-by-nc-4.0",
|
|
@@ -100,6 +100,7 @@ granite_107m_multilingual = ModelMeta(
|
|
|
100
100
|
revision="47db56afe692f731540413c67dd818ff492277e7",
|
|
101
101
|
release_date="2024-12-18",
|
|
102
102
|
n_parameters=107_000_000,
|
|
103
|
+
n_embedding_parameters=96_000_768,
|
|
103
104
|
memory_usage_mb=204,
|
|
104
105
|
embed_dim=384,
|
|
105
106
|
license="apache-2.0",
|
|
@@ -131,6 +132,7 @@ granite_278m_multilingual = ModelMeta(
|
|
|
131
132
|
revision="84e3546b88b0cb69f8078608a1df558020bcbf1f",
|
|
132
133
|
release_date="2024-12-18",
|
|
133
134
|
n_parameters=278_000_000,
|
|
135
|
+
n_embedding_parameters=192_001_536,
|
|
134
136
|
memory_usage_mb=530,
|
|
135
137
|
embed_dim=768,
|
|
136
138
|
license="apache-2.0",
|
|
@@ -162,6 +164,7 @@ granite_30m_english = ModelMeta(
|
|
|
162
164
|
revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5",
|
|
163
165
|
release_date="2024-12-18",
|
|
164
166
|
n_parameters=30_000_000,
|
|
167
|
+
n_embedding_parameters=19_301_760,
|
|
165
168
|
memory_usage_mb=58,
|
|
166
169
|
embed_dim=384,
|
|
167
170
|
license="apache-2.0",
|
|
@@ -193,6 +196,7 @@ granite_125m_english = ModelMeta(
|
|
|
193
196
|
revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730",
|
|
194
197
|
release_date="2024-12-18",
|
|
195
198
|
n_parameters=125_000_000,
|
|
199
|
+
n_embedding_parameters=38_603_520,
|
|
196
200
|
memory_usage_mb=238,
|
|
197
201
|
embed_dim=768,
|
|
198
202
|
license="apache-2.0",
|
|
@@ -225,6 +229,7 @@ granite_english_r2 = ModelMeta(
|
|
|
225
229
|
revision="6e7b8ce0e76270394ac4669ba4bbd7133b60b7f9",
|
|
226
230
|
release_date="2025-08-15",
|
|
227
231
|
n_parameters=149_000_000,
|
|
232
|
+
n_embedding_parameters=None,
|
|
228
233
|
memory_usage_mb=284,
|
|
229
234
|
embed_dim=768,
|
|
230
235
|
license="apache-2.0",
|
|
@@ -250,6 +255,7 @@ granite_small_english_r2 = ModelMeta(
|
|
|
250
255
|
revision="54a8d2616a0844355a5164432d3f6dafb37b17a3",
|
|
251
256
|
release_date="2025-08-15",
|
|
252
257
|
n_parameters=47_000_000,
|
|
258
|
+
n_embedding_parameters=None,
|
|
253
259
|
memory_usage_mb=91,
|
|
254
260
|
embed_dim=384,
|
|
255
261
|
license="apache-2.0",
|
|
@@ -56,6 +56,7 @@ inf_retriever_v1 = ModelMeta(
|
|
|
56
56
|
revision="cb70ca7c31dfa866b2eff2dad229c144d8ddfd91",
|
|
57
57
|
release_date="2024-12-24", # initial commit of hf model.
|
|
58
58
|
n_parameters=7_069_121_024,
|
|
59
|
+
n_embedding_parameters=None,
|
|
59
60
|
memory_usage_mb=13483,
|
|
60
61
|
embed_dim=3584,
|
|
61
62
|
license="apache-2.0",
|
|
@@ -83,6 +84,7 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
83
84
|
revision="c9c05c2dd50707a486966ba81703021ae2094a06",
|
|
84
85
|
release_date="2025-02-08", # initial commit of hf model.
|
|
85
86
|
n_parameters=1_543_268_864,
|
|
87
|
+
n_embedding_parameters=232_928_256,
|
|
86
88
|
memory_usage_mb=2944,
|
|
87
89
|
embed_dim=1536,
|
|
88
90
|
license="apache-2.0",
|
|
@@ -1,11 +1,10 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import torch
|
|
6
|
-
from torch.utils.data import DataLoader
|
|
7
7
|
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
9
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
11
10
|
from mteb.models.model_implementations.bge_models import (
|
|
@@ -17,7 +16,15 @@ from mteb.models.model_implementations.e5_instruct import E5_MISTRAL_TRAINING_DA
|
|
|
17
16
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
18
17
|
from mteb.models.model_implementations.qzhou_models import qzhou_training_data
|
|
19
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
20
|
-
from mteb.types import
|
|
19
|
+
from mteb.types import PromptType
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
|
|
24
|
+
from torch.utils.data import DataLoader
|
|
25
|
+
|
|
26
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
27
|
+
from mteb.types import Array, BatchedInput
|
|
21
28
|
|
|
22
29
|
logger = logging.getLogger(__name__)
|
|
23
30
|
|
|
@@ -292,6 +299,7 @@ jasper_en_v1 = ModelMeta(
|
|
|
292
299
|
revision="d6330ce98f8a0d741e781df845904c9484f00efa",
|
|
293
300
|
release_date="2024-12-11", # first commit
|
|
294
301
|
n_parameters=1_999_000_000,
|
|
302
|
+
n_embedding_parameters=232_932_864,
|
|
295
303
|
memory_usage_mb=3802,
|
|
296
304
|
max_tokens=131072,
|
|
297
305
|
embed_dim=8960,
|
|
@@ -339,6 +347,7 @@ Jasper_Token_Compression_600M = ModelMeta(
|
|
|
339
347
|
revision="06a100f753a5a96d9e583b3af79c6fcdfacc4719",
|
|
340
348
|
release_date="2025-11-14",
|
|
341
349
|
n_parameters=595776512,
|
|
350
|
+
n_embedding_parameters=None,
|
|
342
351
|
memory_usage_mb=2272,
|
|
343
352
|
embed_dim=2048,
|
|
344
353
|
license="mit",
|
|
@@ -1,15 +1,20 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_image_dependencies
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_implementations.colpali_models import COLPALI_TRAINING_DATA
|
|
11
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
12
|
-
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
13
18
|
|
|
14
19
|
JINA_CLIP_CITATION = """@article{koukounas2024jinaclip,
|
|
15
20
|
title={Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
|
|
@@ -139,6 +144,7 @@ jina_clip_v1 = ModelMeta(
|
|
|
139
144
|
release_date="2024-05-30",
|
|
140
145
|
modalities=["image", "text"],
|
|
141
146
|
n_parameters=223_000_000,
|
|
147
|
+
n_embedding_parameters=None,
|
|
142
148
|
memory_usage_mb=849,
|
|
143
149
|
max_tokens=8192,
|
|
144
150
|
embed_dim=768,
|
|
@@ -1,14 +1,13 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
4
|
from collections import defaultdict
|
|
3
|
-
from typing import Any, ClassVar
|
|
5
|
+
from typing import TYPE_CHECKING, Any, ClassVar
|
|
4
6
|
|
|
5
7
|
import numpy as np
|
|
6
8
|
import torch
|
|
7
|
-
from sentence_transformers import CrossEncoder
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
9
|
|
|
10
10
|
from mteb._requires_package import requires_package
|
|
11
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
11
|
from mteb.languages import PROGRAMMING_LANGS
|
|
13
12
|
from mteb.models.abs_encoder import AbsEncoder
|
|
14
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
@@ -16,7 +15,13 @@ from mteb.models.sentence_transformer_wrapper import (
|
|
|
16
15
|
CrossEncoderWrapper,
|
|
17
16
|
SentenceTransformerEncoderWrapper,
|
|
18
17
|
)
|
|
19
|
-
|
|
18
|
+
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from sentence_transformers import CrossEncoder
|
|
21
|
+
from torch.utils.data import DataLoader
|
|
22
|
+
|
|
23
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
24
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
20
25
|
|
|
21
26
|
logger = logging.getLogger(__name__)
|
|
22
27
|
|
|
@@ -728,6 +733,7 @@ jina_reranker_v3 = ModelMeta(
|
|
|
728
733
|
release_date="2025-09-18", # official release date
|
|
729
734
|
modalities=["text"],
|
|
730
735
|
n_parameters=int(0.6 * 1e9),
|
|
736
|
+
n_embedding_parameters=None,
|
|
731
737
|
memory_usage_mb=1138,
|
|
732
738
|
max_tokens=131072,
|
|
733
739
|
embed_dim=None,
|
|
@@ -771,6 +777,7 @@ jina_embeddings_v4 = ModelMeta(
|
|
|
771
777
|
release_date="2025-06-24", # official release date
|
|
772
778
|
modalities=["image", "text"],
|
|
773
779
|
n_parameters=int(3.8 * 1e9),
|
|
780
|
+
n_embedding_parameters=None,
|
|
774
781
|
memory_usage_mb=7500,
|
|
775
782
|
max_tokens=32768,
|
|
776
783
|
embed_dim=2048,
|
|
@@ -819,6 +826,7 @@ jina_embeddings_v3 = ModelMeta(
|
|
|
819
826
|
revision="215a6e121fa0183376388ac6b1ae230326bfeaed",
|
|
820
827
|
release_date="2024-09-18", # official release date
|
|
821
828
|
n_parameters=int(572 * 1e6),
|
|
829
|
+
n_embedding_parameters=None,
|
|
822
830
|
memory_usage_mb=1092,
|
|
823
831
|
max_tokens=8194,
|
|
824
832
|
embed_dim=1024,
|
|
@@ -879,6 +887,7 @@ jina_embeddings_v2_base_en = ModelMeta(
|
|
|
879
887
|
revision="6e85f575bc273f1fd840a658067d0157933c83f0",
|
|
880
888
|
release_date="2023-09-27",
|
|
881
889
|
n_parameters=137_000_000,
|
|
890
|
+
n_embedding_parameters=23_445_504,
|
|
882
891
|
memory_usage_mb=262,
|
|
883
892
|
embed_dim=768,
|
|
884
893
|
license="apache-2.0",
|
|
@@ -943,6 +952,7 @@ jina_embeddings_v2_small_en = ModelMeta(
|
|
|
943
952
|
revision="44e7d1d6caec8c883c2d4b207588504d519788d0",
|
|
944
953
|
release_date="2023-09-27",
|
|
945
954
|
n_parameters=32_700_000,
|
|
955
|
+
n_embedding_parameters=15_630_336,
|
|
946
956
|
memory_usage_mb=62,
|
|
947
957
|
embed_dim=512,
|
|
948
958
|
license="apache-2.0",
|
|
@@ -1004,6 +1014,7 @@ jina_embedding_b_en_v1 = ModelMeta(
|
|
|
1004
1014
|
revision="32aa658e5ceb90793454d22a57d8e3a14e699516",
|
|
1005
1015
|
release_date="2023-07-07",
|
|
1006
1016
|
n_parameters=110_000_000,
|
|
1017
|
+
n_embedding_parameters=24_674_304,
|
|
1007
1018
|
memory_usage_mb=420,
|
|
1008
1019
|
embed_dim=768,
|
|
1009
1020
|
license="apache-2.0",
|
|
@@ -1061,6 +1072,7 @@ jina_embedding_s_en_v1 = ModelMeta(
|
|
|
1061
1072
|
revision="5ac6cd473e2324c6d5f9e558a6a9f65abb57143e",
|
|
1062
1073
|
release_date="2023-07-07",
|
|
1063
1074
|
n_parameters=35_000_000,
|
|
1075
|
+
n_embedding_parameters=16_449_536,
|
|
1064
1076
|
memory_usage_mb=134,
|
|
1065
1077
|
embed_dim=512,
|
|
1066
1078
|
license="apache-2.0",
|
|
@@ -1,14 +1,20 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
9
9
|
from mteb.models.model_meta import ModelMeta
|
|
10
10
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
11
|
-
from mteb.types import
|
|
11
|
+
from mteb.types import PromptType
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput
|
|
12
18
|
|
|
13
19
|
logger = logging.getLogger(__name__)
|
|
14
20
|
|
|
@@ -774,6 +780,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v1 = ModelMeta(
|
|
|
774
780
|
release_date="2024-10-23",
|
|
775
781
|
languages=["eng-Latn", "zho-Hans"],
|
|
776
782
|
n_parameters=494032768,
|
|
783
|
+
n_embedding_parameters=136_134_656,
|
|
777
784
|
memory_usage_mb=1885,
|
|
778
785
|
max_tokens=512,
|
|
779
786
|
embed_dim=896,
|
|
@@ -799,6 +806,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_v1 = ModelMeta(
|
|
|
799
806
|
release_date="2024-08-27",
|
|
800
807
|
languages=["eng-Latn", "zho-Hans"],
|
|
801
808
|
n_parameters=494032768,
|
|
809
|
+
n_embedding_parameters=136_134_656,
|
|
802
810
|
memory_usage_mb=1885,
|
|
803
811
|
max_tokens=512,
|
|
804
812
|
embed_dim=896,
|
|
@@ -830,6 +838,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v1_5 = ModelMeta(
|
|
|
830
838
|
release_date="2024-12-26",
|
|
831
839
|
languages=["eng-Latn", "zho-Hans"],
|
|
832
840
|
n_parameters=494032768,
|
|
841
|
+
n_embedding_parameters=136_134_656,
|
|
833
842
|
memory_usage_mb=1885,
|
|
834
843
|
max_tokens=512,
|
|
835
844
|
embed_dim=896,
|
|
@@ -861,6 +870,7 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v2 = ModelMeta(
|
|
|
861
870
|
release_date="2025-06-25",
|
|
862
871
|
languages=["eng-Latn", "zho-Hans"],
|
|
863
872
|
n_parameters=494032768,
|
|
873
|
+
n_embedding_parameters=136_134_656,
|
|
864
874
|
memory_usage_mb=942,
|
|
865
875
|
max_tokens=512,
|
|
866
876
|
embed_dim=896,
|
|
@@ -892,6 +902,7 @@ KaLM_Embedding_KaLM_embedding_multilingual_mini_instruct_v2_5 = ModelMeta(
|
|
|
892
902
|
release_date="2025-09-30",
|
|
893
903
|
languages=["eng-Latn", "zho-Hans"],
|
|
894
904
|
n_parameters=494032768,
|
|
905
|
+
n_embedding_parameters=136_134_656,
|
|
895
906
|
memory_usage_mb=1885,
|
|
896
907
|
max_tokens=512,
|
|
897
908
|
embed_dim=896,
|
|
@@ -907,23 +918,23 @@ KaLM_Embedding_KaLM_embedding_multilingual_mini_instruct_v2_5 = ModelMeta(
|
|
|
907
918
|
adapted_from="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2",
|
|
908
919
|
superseded_by=None,
|
|
909
920
|
citation="""@misc{zhao2025kalmembeddingv2,
|
|
910
|
-
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
|
|
921
|
+
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
|
|
911
922
|
author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
|
|
912
923
|
year={2025},
|
|
913
924
|
eprint={2506.20923},
|
|
914
925
|
archivePrefix={arXiv},
|
|
915
926
|
primaryClass={cs.CL},
|
|
916
|
-
url={https://arxiv.org/abs/2506.20923},
|
|
927
|
+
url={https://arxiv.org/abs/2506.20923},
|
|
917
928
|
}
|
|
918
929
|
|
|
919
930
|
@misc{hu2025kalmembedding,
|
|
920
|
-
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
|
|
931
|
+
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
|
|
921
932
|
author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
|
|
922
933
|
year={2025},
|
|
923
934
|
eprint={2501.01028},
|
|
924
935
|
archivePrefix={arXiv},
|
|
925
936
|
primaryClass={cs.CL},
|
|
926
|
-
url={https://arxiv.org/abs/2501.01028},
|
|
937
|
+
url={https://arxiv.org/abs/2501.01028},
|
|
927
938
|
}""",
|
|
928
939
|
)
|
|
929
940
|
|
|
@@ -942,6 +953,7 @@ KaLM_Embedding_gemma_3_12b_2511 = ModelMeta(
|
|
|
942
953
|
open_weights=True,
|
|
943
954
|
release_date="2025-11-06",
|
|
944
955
|
n_parameters=11.76 * 1e9,
|
|
956
|
+
n_embedding_parameters=None,
|
|
945
957
|
memory_usage_mb=44884,
|
|
946
958
|
max_tokens=32768,
|
|
947
959
|
embed_dim=3840,
|
|
@@ -954,22 +966,22 @@ KaLM_Embedding_gemma_3_12b_2511 = ModelMeta(
|
|
|
954
966
|
public_training_data=None,
|
|
955
967
|
training_datasets=KaLM_Embedding_gemma_3_12b_training_data,
|
|
956
968
|
citation="""@misc{zhao2025kalmembeddingv2,
|
|
957
|
-
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
|
|
969
|
+
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
|
|
958
970
|
author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
|
|
959
971
|
year={2025},
|
|
960
972
|
eprint={2506.20923},
|
|
961
973
|
archivePrefix={arXiv},
|
|
962
974
|
primaryClass={cs.CL},
|
|
963
|
-
url={https://arxiv.org/abs/2506.20923},
|
|
975
|
+
url={https://arxiv.org/abs/2506.20923},
|
|
964
976
|
}
|
|
965
977
|
|
|
966
978
|
@misc{hu2025kalmembedding,
|
|
967
|
-
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
|
|
979
|
+
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
|
|
968
980
|
author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
|
|
969
981
|
year={2025},
|
|
970
982
|
eprint={2501.01028},
|
|
971
983
|
archivePrefix={arXiv},
|
|
972
984
|
primaryClass={cs.CL},
|
|
973
|
-
url={https://arxiv.org/abs/2501.01028},
|
|
985
|
+
url={https://arxiv.org/abs/2501.01028},
|
|
974
986
|
}""",
|
|
975
987
|
)
|
|
@@ -12,6 +12,7 @@ dfm_enc_large = ModelMeta(
|
|
|
12
12
|
revision="132c53391e7a780dc6a2f9a03724d0158fe7122c",
|
|
13
13
|
release_date="2023-07-12",
|
|
14
14
|
n_parameters=355087360,
|
|
15
|
+
n_embedding_parameters=51_200_000,
|
|
15
16
|
memory_usage_mb=1554,
|
|
16
17
|
embed_dim=1024,
|
|
17
18
|
license="mit",
|
|
@@ -47,6 +48,7 @@ dfm_enc_med = ModelMeta(
|
|
|
47
48
|
revision="701bce95d499fa97610d57e8823c54fd1fb79930",
|
|
48
49
|
release_date="2023-07-12",
|
|
49
50
|
n_parameters=124445952,
|
|
51
|
+
n_embedding_parameters=38_403_840,
|
|
50
52
|
memory_usage_mb=475,
|
|
51
53
|
embed_dim=768,
|
|
52
54
|
license="mit",
|