mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +16 -9
- mteb/_evaluators/any_sts_evaluator.py +10 -5
- mteb/_evaluators/clustering_evaluator.py +10 -4
- mteb/_evaluators/evaluator.py +9 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
- mteb/_evaluators/pair_classification_evaluator.py +10 -5
- mteb/_evaluators/retrieval_evaluator.py +19 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +14 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
- mteb/_evaluators/text/summarization_evaluator.py +8 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +17 -9
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +15 -6
- mteb/abstasks/clustering.py +17 -8
- mteb/abstasks/clustering_legacy.py +14 -6
- mteb/abstasks/image/image_text_pair_classification.py +17 -7
- mteb/abstasks/multilabel_classification.py +11 -5
- mteb/abstasks/pair_classification.py +19 -9
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +28 -17
- mteb/abstasks/retrieval_dataset_loaders.py +11 -8
- mteb/abstasks/sts.py +19 -10
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +14 -7
- mteb/abstasks/text/summarization.py +17 -7
- mteb/abstasks/zeroshot_classification.py +15 -7
- mteb/benchmarks/_create_table.py +13 -3
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +20 -18
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +7 -3
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +11 -4
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +22 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +16 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +22 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +25 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +19 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +19 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +15 -9
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/clustering/nob/snl_clustering.py +7 -2
- mteb/tasks/clustering/nob/vg_clustering.py +7 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -97,6 +97,7 @@ m3e_base = ModelMeta(
|
|
|
97
97
|
revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
|
|
98
98
|
release_date="2023-06-06", # first commit
|
|
99
99
|
n_parameters=int(102 * 1e6),
|
|
100
|
+
n_embedding_parameters=16_226_304,
|
|
100
101
|
memory_usage_mb=390,
|
|
101
102
|
embed_dim=768,
|
|
102
103
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -123,6 +124,7 @@ m3e_small = ModelMeta(
|
|
|
123
124
|
revision="44c696631b2a8c200220aaaad5f987f096e986df",
|
|
124
125
|
release_date="2023-06-02", # first commit
|
|
125
126
|
n_parameters=None,
|
|
127
|
+
n_embedding_parameters=10_817_536,
|
|
126
128
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
127
129
|
embed_dim=512,
|
|
128
130
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -149,6 +151,7 @@ m3e_large = ModelMeta(
|
|
|
149
151
|
revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
|
|
150
152
|
release_date="2023-06-21", # first commit
|
|
151
153
|
n_parameters=None,
|
|
154
|
+
n_embedding_parameters=21_635_072,
|
|
152
155
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
153
156
|
embed_dim=768,
|
|
154
157
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -12,6 +12,7 @@ nb_sbert = ModelMeta(
|
|
|
12
12
|
revision="b95656350a076aeafd2d23763660f80655408cc6",
|
|
13
13
|
release_date="2022-11-23",
|
|
14
14
|
n_parameters=1_780_000_000,
|
|
15
|
+
n_embedding_parameters=91_812_096,
|
|
15
16
|
memory_usage_mb=678,
|
|
16
17
|
embed_dim=4096,
|
|
17
18
|
license="apache-2.0",
|
|
@@ -34,6 +35,7 @@ nb_bert_large = ModelMeta(
|
|
|
34
35
|
revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
|
|
35
36
|
release_date="2021-04-29",
|
|
36
37
|
n_parameters=355087360,
|
|
38
|
+
n_embedding_parameters=51_200_000,
|
|
37
39
|
memory_usage_mb=1359,
|
|
38
40
|
embed_dim=1024,
|
|
39
41
|
license="cc-by-4.0",
|
|
@@ -56,6 +58,7 @@ nb_bert_base = ModelMeta(
|
|
|
56
58
|
revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
|
|
57
59
|
release_date="2021-01-13",
|
|
58
60
|
n_parameters=177853440,
|
|
61
|
+
n_embedding_parameters=91_812_096,
|
|
59
62
|
memory_usage_mb=681,
|
|
60
63
|
embed_dim=768,
|
|
61
64
|
license="cc-by-4.0",
|
|
@@ -1,15 +1,22 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
2
3
|
from itertools import islice
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
import torch
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
8
|
|
|
9
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
12
|
-
from mteb.types import
|
|
11
|
+
from mteb.types import PromptType
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from collections.abc import Generator
|
|
15
|
+
|
|
16
|
+
from torch.utils.data import DataLoader
|
|
17
|
+
|
|
18
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
19
|
+
from mteb.types import Array, BatchedInput
|
|
13
20
|
|
|
14
21
|
|
|
15
22
|
# https://docs.python.org/3/library/itertools.html#itertools.batched
|
|
@@ -103,6 +110,7 @@ no_instruct_small_v0 = ModelMeta(
|
|
|
103
110
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|
|
104
111
|
release_date="2024-05-01", # first commit
|
|
105
112
|
n_parameters=33_400_000,
|
|
113
|
+
n_embedding_parameters=11_720_448,
|
|
106
114
|
memory_usage_mb=127,
|
|
107
115
|
max_tokens=512,
|
|
108
116
|
embed_dim=384,
|
|
@@ -1,15 +1,21 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
7
|
import torch.nn.functional as F
|
|
6
8
|
from packaging.version import Version
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
9
|
|
|
9
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
11
|
from mteb.models.sentence_transformer_wrapper import SentenceTransformerEncoderWrapper
|
|
12
|
-
from mteb.types import
|
|
12
|
+
from mteb.types import PromptType
|
|
13
|
+
|
|
14
|
+
if TYPE_CHECKING:
|
|
15
|
+
from torch.utils.data import DataLoader
|
|
16
|
+
|
|
17
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
18
|
+
from mteb.types import Array, BatchedInput
|
|
13
19
|
|
|
14
20
|
logger = logging.getLogger(__name__)
|
|
15
21
|
|
|
@@ -209,6 +215,7 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
209
215
|
release_date="2024-02-10", # first commit
|
|
210
216
|
citation=NOMIC_CITATION,
|
|
211
217
|
n_parameters=137_000_000,
|
|
218
|
+
n_embedding_parameters=None,
|
|
212
219
|
memory_usage_mb=522,
|
|
213
220
|
max_tokens=8192,
|
|
214
221
|
embed_dim=768,
|
|
@@ -243,6 +250,7 @@ nomic_embed_v1 = ModelMeta(
|
|
|
243
250
|
revision="0759316f275aa0cb93a5b830973843ca66babcf5",
|
|
244
251
|
release_date="2024-01-31", # first commit
|
|
245
252
|
n_parameters=None,
|
|
253
|
+
n_embedding_parameters=None,
|
|
246
254
|
memory_usage_mb=522,
|
|
247
255
|
max_tokens=8192,
|
|
248
256
|
embed_dim=768,
|
|
@@ -278,6 +286,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
278
286
|
revision="7d948905c5d5d3874fa55a925d68e49dbf411e5f",
|
|
279
287
|
release_date="2024-01-15", # first commit
|
|
280
288
|
n_parameters=None,
|
|
289
|
+
n_embedding_parameters=None,
|
|
281
290
|
memory_usage_mb=None,
|
|
282
291
|
max_tokens=8192,
|
|
283
292
|
embed_dim=768,
|
|
@@ -306,6 +315,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
|
|
|
306
315
|
revision="b53d557b15ae63852847c222d336c1609eced93c",
|
|
307
316
|
release_date="2024-01-15", # first commit
|
|
308
317
|
n_parameters=None,
|
|
318
|
+
n_embedding_parameters=None,
|
|
309
319
|
memory_usage_mb=None,
|
|
310
320
|
max_tokens=8192,
|
|
311
321
|
embed_dim=768,
|
|
@@ -334,6 +344,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
334
344
|
revision="5960f1566fb7cb1adf1eb6e816639cf4646d9b12",
|
|
335
345
|
release_date="2024-12-29",
|
|
336
346
|
n_parameters=149_000_000,
|
|
347
|
+
n_embedding_parameters=None,
|
|
337
348
|
memory_usage_mb=568,
|
|
338
349
|
max_tokens=8192,
|
|
339
350
|
embed_dim=768,
|
|
@@ -473,6 +484,7 @@ nomic_embed_text_v2_moe = ModelMeta(
|
|
|
473
484
|
revision="1066b6599d099fbb93dfcb64f9c37a7c9e503e85",
|
|
474
485
|
release_date="2025-02-07",
|
|
475
486
|
n_parameters=475292928,
|
|
487
|
+
n_embedding_parameters=None,
|
|
476
488
|
memory_usage_mb=1813,
|
|
477
489
|
max_tokens=512,
|
|
478
490
|
embed_dim=768,
|
|
@@ -4,17 +4,18 @@ from typing import TYPE_CHECKING, Any
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
import torch.nn.functional as F
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
7
|
from tqdm.auto import tqdm
|
|
9
8
|
|
|
10
9
|
from mteb._requires_package import requires_package
|
|
11
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
13
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
15
12
|
|
|
16
13
|
if TYPE_CHECKING:
|
|
17
14
|
from PIL import Image
|
|
15
|
+
from torch.utils.data import DataLoader
|
|
16
|
+
|
|
17
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
18
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
18
19
|
|
|
19
20
|
NOMIC_EMBED_VISION_CITATION = """@article{nussbaum2024nomicembedvision,
|
|
20
21
|
title={Nomic Embed Vision: Expanding the Latent Space},
|
|
@@ -174,6 +175,7 @@ nomic_embed_vision_v1_5 = ModelMeta(
|
|
|
174
175
|
release_date="2024-06-08",
|
|
175
176
|
modalities=["image", "text"],
|
|
176
177
|
n_parameters=92_900_000,
|
|
178
|
+
n_embedding_parameters=None,
|
|
177
179
|
memory_usage_mb=355,
|
|
178
180
|
max_tokens=2048,
|
|
179
181
|
embed_dim=768,
|
|
@@ -1,14 +1,18 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
6
|
from packaging.version import Version
|
|
5
7
|
from torch.utils.data import DataLoader
|
|
6
8
|
from transformers import __version__ as transformers_version
|
|
7
9
|
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
11
|
from mteb.models.model_meta import ModelMeta
|
|
11
|
-
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
16
|
|
|
13
17
|
LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperforming,
|
|
14
18
|
title={Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model},
|
|
@@ -158,6 +162,7 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
158
162
|
release_date="2025-06-27",
|
|
159
163
|
modalities=["image", "text"],
|
|
160
164
|
n_parameters=2_418_000_000,
|
|
165
|
+
n_embedding_parameters=None,
|
|
161
166
|
memory_usage_mb=4610,
|
|
162
167
|
max_tokens=8192,
|
|
163
168
|
embed_dim=2048,
|
|
@@ -185,6 +190,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
185
190
|
release_date="2025-06-27",
|
|
186
191
|
modalities=["image", "text"],
|
|
187
192
|
n_parameters=4_407_000_000,
|
|
193
|
+
n_embedding_parameters=None,
|
|
188
194
|
memory_usage_mb=8403,
|
|
189
195
|
max_tokens=8192,
|
|
190
196
|
embed_dim=3072,
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import torch
|
|
6
7
|
import torch.nn.functional as F
|
|
7
8
|
from packaging.version import Version
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
9
|
from tqdm import tqdm
|
|
10
10
|
from transformers import AutoModel, AutoTokenizer
|
|
11
11
|
from transformers import __version__ as transformers_version
|
|
@@ -16,7 +16,15 @@ from mteb.models import CrossEncoderWrapper
|
|
|
16
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
17
17
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
18
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
19
|
-
from mteb.types import
|
|
19
|
+
from mteb.types import PromptType
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
|
|
24
|
+
from torch.utils.data import DataLoader
|
|
25
|
+
|
|
26
|
+
from mteb import TaskMetadata
|
|
27
|
+
from mteb.types import Array, BatchedInput
|
|
20
28
|
|
|
21
29
|
logger = logging.getLogger(__name__)
|
|
22
30
|
|
|
@@ -196,6 +204,7 @@ NV_embed_v2 = ModelMeta(
|
|
|
196
204
|
revision="7604d305b621f14095a1aa23d351674c2859553a",
|
|
197
205
|
release_date="2024-09-09", # initial commit of hf model.
|
|
198
206
|
n_parameters=7_850_000_000,
|
|
207
|
+
n_embedding_parameters=None,
|
|
199
208
|
memory_usage_mb=14975,
|
|
200
209
|
embed_dim=4096,
|
|
201
210
|
license="cc-by-nc-4.0",
|
|
@@ -227,6 +236,7 @@ NV_embed_v1 = ModelMeta(
|
|
|
227
236
|
revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c",
|
|
228
237
|
release_date="2024-09-13", # initial commit of hf model.
|
|
229
238
|
n_parameters=7_850_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
230
240
|
memory_usage_mb=14975,
|
|
231
241
|
embed_dim=4096,
|
|
232
242
|
license="cc-by-nc-4.0",
|
|
@@ -616,6 +626,7 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
616
626
|
revision="84a375593d27d3528beb4e104822515659e093b4",
|
|
617
627
|
release_date="2025-10-23",
|
|
618
628
|
n_parameters=7_504_924_672,
|
|
629
|
+
n_embedding_parameters=None,
|
|
619
630
|
memory_usage_mb=28629,
|
|
620
631
|
embed_dim=4096,
|
|
621
632
|
license="https://huggingface.co/nvidia/llama-embed-nemotron-8b/blob/main/LICENSE",
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
2
|
from mteb.models.model_meta import ModelMeta
|
|
3
|
-
from mteb.
|
|
3
|
+
from mteb.types import PromptType
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def instruction_template(
|
|
@@ -208,6 +208,7 @@ Octen_Embedding_4B = ModelMeta(
|
|
|
208
208
|
revision="6e188e3b072c3e3678b235ad84e6e97bcbb71e8f",
|
|
209
209
|
release_date="2025-12-30",
|
|
210
210
|
n_parameters=4021774336,
|
|
211
|
+
n_embedding_parameters=None,
|
|
211
212
|
memory_usage_mb=7671,
|
|
212
213
|
embed_dim=2560,
|
|
213
214
|
max_tokens=32768,
|
|
@@ -238,6 +239,7 @@ Octen_Embedding_8B = ModelMeta(
|
|
|
238
239
|
revision="f7db178d5a82fb841f606a6a67c423cead2fdbba",
|
|
239
240
|
release_date="2025-12-23",
|
|
240
241
|
n_parameters=7567295488,
|
|
242
|
+
n_embedding_parameters=None,
|
|
241
243
|
memory_usage_mb=14433,
|
|
242
244
|
embed_dim=4096,
|
|
243
245
|
max_tokens=32768,
|
|
@@ -1,15 +1,20 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any, ClassVar
|
|
4
|
+
from typing import TYPE_CHECKING, Any, ClassVar
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
from tqdm.auto import tqdm
|
|
7
8
|
|
|
8
9
|
from mteb._requires_package import requires_package
|
|
9
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
12
|
-
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
13
18
|
|
|
14
19
|
logger = logging.getLogger(__name__)
|
|
15
20
|
|
|
@@ -180,6 +185,7 @@ text_embedding_3_small = ModelMeta(
|
|
|
180
185
|
embed_dim=1536,
|
|
181
186
|
open_weights=False,
|
|
182
187
|
n_parameters=None,
|
|
188
|
+
n_embedding_parameters=None,
|
|
183
189
|
memory_usage_mb=None,
|
|
184
190
|
license=None,
|
|
185
191
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -208,6 +214,7 @@ text_embedding_3_large = ModelMeta(
|
|
|
208
214
|
framework=["API"],
|
|
209
215
|
use_instructions=False,
|
|
210
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
211
218
|
memory_usage_mb=None,
|
|
212
219
|
public_training_code=None,
|
|
213
220
|
public_training_data=None, # assumed
|
|
@@ -233,6 +240,7 @@ text_embedding_ada_002 = ModelMeta(
|
|
|
233
240
|
framework=["API"],
|
|
234
241
|
use_instructions=False,
|
|
235
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
236
244
|
memory_usage_mb=None,
|
|
237
245
|
public_training_code=None,
|
|
238
246
|
public_training_data=None, # assumed
|
|
@@ -257,6 +265,7 @@ text_embedding_3_small_512 = ModelMeta(
|
|
|
257
265
|
embed_dim=512,
|
|
258
266
|
open_weights=False,
|
|
259
267
|
n_parameters=None,
|
|
268
|
+
n_embedding_parameters=None,
|
|
260
269
|
memory_usage_mb=None,
|
|
261
270
|
license=None,
|
|
262
271
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -287,6 +296,7 @@ text_embedding_3_large_512 = ModelMeta(
|
|
|
287
296
|
framework=["API"],
|
|
288
297
|
use_instructions=False,
|
|
289
298
|
n_parameters=None,
|
|
299
|
+
n_embedding_parameters=None,
|
|
290
300
|
memory_usage_mb=None,
|
|
291
301
|
public_training_code=None,
|
|
292
302
|
public_training_data=None, # assumed
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_image_dependencies, requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
OPENCLIP_CITATION = """@inproceedings{cherti2023reproducible,
|
|
14
19
|
title={Reproducible scaling laws for contrastive language-image learning},
|
|
@@ -128,6 +133,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
128
133
|
release_date="2023-04-26",
|
|
129
134
|
modalities=["image", "text"],
|
|
130
135
|
n_parameters=428_000_000,
|
|
136
|
+
n_embedding_parameters=None,
|
|
131
137
|
memory_usage_mb=1633,
|
|
132
138
|
max_tokens=77,
|
|
133
139
|
embed_dim=768,
|
|
@@ -154,6 +160,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
154
160
|
release_date="2023-04-26",
|
|
155
161
|
modalities=["image", "text"],
|
|
156
162
|
n_parameters=151_000_000,
|
|
163
|
+
n_embedding_parameters=None,
|
|
157
164
|
memory_usage_mb=576,
|
|
158
165
|
max_tokens=77,
|
|
159
166
|
embed_dim=512,
|
|
@@ -180,6 +187,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
180
187
|
release_date="2023-04-26",
|
|
181
188
|
modalities=["image", "text"],
|
|
182
189
|
n_parameters=150_000_000,
|
|
190
|
+
n_embedding_parameters=None,
|
|
183
191
|
memory_usage_mb=572,
|
|
184
192
|
max_tokens=77,
|
|
185
193
|
embed_dim=512,
|
|
@@ -206,6 +214,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
206
214
|
release_date="2023-01-23",
|
|
207
215
|
modalities=["image", "text"],
|
|
208
216
|
n_parameters=2_540_000_000,
|
|
217
|
+
n_embedding_parameters=None,
|
|
209
218
|
memory_usage_mb=9689,
|
|
210
219
|
max_tokens=77,
|
|
211
220
|
embed_dim=1280,
|
|
@@ -232,6 +241,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
232
241
|
release_date="2023-03-06",
|
|
233
242
|
modalities=["image", "text"],
|
|
234
243
|
n_parameters=1_367_000_000,
|
|
244
|
+
n_embedding_parameters=None,
|
|
235
245
|
memory_usage_mb=5215,
|
|
236
246
|
max_tokens=77,
|
|
237
247
|
embed_dim=1024,
|
|
@@ -258,6 +268,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
258
268
|
release_date="2022-09-15",
|
|
259
269
|
modalities=["image", "text"],
|
|
260
270
|
n_parameters=986_000_000,
|
|
271
|
+
n_embedding_parameters=None,
|
|
261
272
|
memory_usage_mb=3762,
|
|
262
273
|
max_tokens=77,
|
|
263
274
|
embed_dim=1024,
|
|
@@ -284,6 +295,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
284
295
|
release_date="2022-09-15",
|
|
285
296
|
modalities=["image", "text"],
|
|
286
297
|
n_parameters=428_000_000,
|
|
298
|
+
n_embedding_parameters=None,
|
|
287
299
|
memory_usage_mb=1631,
|
|
288
300
|
max_tokens=77,
|
|
289
301
|
embed_dim=768,
|
|
@@ -310,6 +322,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
310
322
|
release_date="2022-09-15",
|
|
311
323
|
modalities=["image", "text"],
|
|
312
324
|
n_parameters=151_000_000,
|
|
325
|
+
n_embedding_parameters=None,
|
|
313
326
|
memory_usage_mb=577,
|
|
314
327
|
max_tokens=77,
|
|
315
328
|
embed_dim=512,
|
|
@@ -1,12 +1,18 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
|
|
6
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
7
7
|
from mteb.models.abs_encoder import AbsEncoder
|
|
8
8
|
from mteb.models.model_meta import ModelMeta
|
|
9
|
-
from mteb.types import
|
|
9
|
+
from mteb.types import PromptType
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput
|
|
10
16
|
|
|
11
17
|
v2_training_data = {
|
|
12
18
|
"MSMARCO",
|
|
@@ -134,6 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
|
134
140
|
revision="a8abaa916125ee512a7a8f4d706d07eb0128a8e6",
|
|
135
141
|
release_date="2025-06-18",
|
|
136
142
|
n_parameters=137_394_234,
|
|
143
|
+
n_embedding_parameters=23_440_896,
|
|
137
144
|
memory_usage_mb=549,
|
|
138
145
|
embed_dim=30522,
|
|
139
146
|
license="apache-2.0",
|
|
@@ -160,6 +167,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
|
160
167
|
revision="babf71f3c48695e2e53a978208e8aba48335e3c0",
|
|
161
168
|
release_date="2025-03-28",
|
|
162
169
|
n_parameters=66_985_530,
|
|
170
|
+
n_embedding_parameters=23_440_896,
|
|
163
171
|
memory_usage_mb=267,
|
|
164
172
|
embed_dim=30522,
|
|
165
173
|
license="apache-2.0",
|
|
@@ -182,6 +190,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
|
182
190
|
revision="8921a26c78b8559d6604eb1f5c0b74c079bee38f",
|
|
183
191
|
release_date="2024-07-17",
|
|
184
192
|
n_parameters=66_985_530,
|
|
193
|
+
n_embedding_parameters=23_440_896,
|
|
185
194
|
memory_usage_mb=267,
|
|
186
195
|
embed_dim=30522,
|
|
187
196
|
license="apache-2.0",
|
|
@@ -205,6 +214,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
|
205
214
|
revision="4af867a426867dfdd744097531046f4289a32fdd",
|
|
206
215
|
release_date="2024-07-18",
|
|
207
216
|
n_parameters=22_744_506,
|
|
217
|
+
n_embedding_parameters=11_720_448,
|
|
208
218
|
memory_usage_mb=86,
|
|
209
219
|
embed_dim=30522,
|
|
210
220
|
license="apache-2.0",
|
|
@@ -227,6 +237,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
|
|
|
227
237
|
revision="98cdcbd72867c547f72f2b7b7bed9cdf9f09922d",
|
|
228
238
|
release_date="2024-03-07",
|
|
229
239
|
n_parameters=132_955_194,
|
|
240
|
+
n_embedding_parameters=23_440_896,
|
|
230
241
|
memory_usage_mb=507,
|
|
231
242
|
embed_dim=30522,
|
|
232
243
|
license="apache-2.0",
|
|
@@ -1,8 +1,13 @@
|
|
|
1
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
2
4
|
|
|
3
5
|
from mteb.models.abs_encoder import AbsEncoder
|
|
4
6
|
from mteb.models.model_meta import ModelMeta
|
|
5
7
|
|
|
8
|
+
if TYPE_CHECKING:
|
|
9
|
+
from mteb.types import Array
|
|
10
|
+
|
|
6
11
|
|
|
7
12
|
class OPSWrapper(AbsEncoder):
|
|
8
13
|
def __init__(self, model_name: str, revision: str):
|
|
@@ -15,7 +20,7 @@ class OPSWrapper(AbsEncoder):
|
|
|
15
20
|
)
|
|
16
21
|
self.output_dim = 1536
|
|
17
22
|
|
|
18
|
-
def encode(self, sentences: list[str], **kwargs) ->
|
|
23
|
+
def encode(self, sentences: list[str], **kwargs) -> Array:
|
|
19
24
|
embeddings = self.model.encode(sentences, **kwargs)
|
|
20
25
|
return embeddings[:, : self.output_dim]
|
|
21
26
|
|
|
@@ -28,6 +33,7 @@ ops_moa_conan_embedding = ModelMeta(
|
|
|
28
33
|
languages=["zho-Hans"],
|
|
29
34
|
loader=OPSWrapper,
|
|
30
35
|
n_parameters=int(343 * 1e6),
|
|
36
|
+
n_embedding_parameters=21_635_072,
|
|
31
37
|
memory_usage_mb=1308,
|
|
32
38
|
max_tokens=512,
|
|
33
39
|
embed_dim=1536,
|
|
@@ -60,6 +66,7 @@ ops_moa_yuan_embedding = ModelMeta(
|
|
|
60
66
|
languages=["zho-Hans"],
|
|
61
67
|
loader=OPSWrapper,
|
|
62
68
|
n_parameters=int(343 * 1e6),
|
|
69
|
+
n_embedding_parameters=21_635_072,
|
|
63
70
|
memory_usage_mb=1242,
|
|
64
71
|
max_tokens=512,
|
|
65
72
|
embed_dim=1536,
|
|
@@ -12,6 +12,7 @@ piccolo_base_zh = ModelMeta(
|
|
|
12
12
|
revision="47c0a63b8f667c3482e05b2fd45577bb19252196",
|
|
13
13
|
release_date="2023-09-04", # first commit
|
|
14
14
|
n_parameters=None,
|
|
15
|
+
n_embedding_parameters=16_226_304,
|
|
15
16
|
memory_usage_mb=None, # can't see on model card
|
|
16
17
|
embed_dim=768,
|
|
17
18
|
license="mit",
|
|
@@ -37,6 +38,7 @@ piccolo_large_zh_v2 = ModelMeta(
|
|
|
37
38
|
revision="05948c1d889355936bdf9db7d30df57dd78d25a3",
|
|
38
39
|
release_date="2024-04-22", # first commit
|
|
39
40
|
n_parameters=None,
|
|
41
|
+
n_embedding_parameters=None,
|
|
40
42
|
memory_usage_mb=None, # we don't know because they removed the model
|
|
41
43
|
embed_dim=1024,
|
|
42
44
|
license="not specified",
|
|
@@ -1,15 +1,21 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import torch
|
|
6
|
-
from torch.utils.data import DataLoader
|
|
7
7
|
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
12
|
-
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from collections.abc import Callable
|
|
13
|
+
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.models.models_protocols import EncoderProtocol
|
|
18
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
13
19
|
|
|
14
20
|
from .repllama_models import RepLLaMAModel, model_prompts
|
|
15
21
|
|
|
@@ -81,6 +87,7 @@ promptriever_llama2 = ModelMeta(
|
|
|
81
87
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-30b14e3813c0fa45facfd01a594580c3fe5ecf23", # base-peft revision
|
|
82
88
|
release_date="2024-09-15",
|
|
83
89
|
n_parameters=7_000_000_000,
|
|
90
|
+
n_embedding_parameters=None,
|
|
84
91
|
memory_usage_mb=26703,
|
|
85
92
|
max_tokens=4096,
|
|
86
93
|
embed_dim=4096,
|
|
@@ -117,6 +124,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
117
124
|
},
|
|
118
125
|
release_date="2024-09-15",
|
|
119
126
|
n_parameters=8_000_000_000,
|
|
127
|
+
n_embedding_parameters=None,
|
|
120
128
|
memory_usage_mb=30518,
|
|
121
129
|
max_tokens=8192,
|
|
122
130
|
embed_dim=4096,
|
|
@@ -146,6 +154,7 @@ promptriever_llama3_instruct = ModelMeta(
|
|
|
146
154
|
revision="5206a32e0bd3067aef1ce90f5528ade7d866253f-8b677258615625122c2eb7329292b8c402612c21", # base-peft revision
|
|
147
155
|
release_date="2024-09-15",
|
|
148
156
|
n_parameters=8_000_000_000,
|
|
157
|
+
n_embedding_parameters=None,
|
|
149
158
|
memory_usage_mb=30518,
|
|
150
159
|
max_tokens=8192,
|
|
151
160
|
embed_dim=4096,
|
|
@@ -179,6 +188,7 @@ promptriever_mistral_v1 = ModelMeta(
|
|
|
179
188
|
revision="7231864981174d9bee8c7687c24c8344414eae6b-876d63e49b6115ecb6839893a56298fadee7e8f5", # base-peft revision
|
|
180
189
|
release_date="2024-09-15",
|
|
181
190
|
n_parameters=7_000_000_000,
|
|
191
|
+
n_embedding_parameters=131_072_000,
|
|
182
192
|
memory_usage_mb=26703,
|
|
183
193
|
training_datasets={
|
|
184
194
|
# "samaya-ai/msmarco-w-instructions",
|