mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +16 -9
- mteb/_evaluators/any_sts_evaluator.py +10 -5
- mteb/_evaluators/clustering_evaluator.py +10 -4
- mteb/_evaluators/evaluator.py +9 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
- mteb/_evaluators/pair_classification_evaluator.py +10 -5
- mteb/_evaluators/retrieval_evaluator.py +19 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +14 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
- mteb/_evaluators/text/summarization_evaluator.py +8 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +17 -9
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +15 -6
- mteb/abstasks/clustering.py +17 -8
- mteb/abstasks/clustering_legacy.py +14 -6
- mteb/abstasks/image/image_text_pair_classification.py +17 -7
- mteb/abstasks/multilabel_classification.py +11 -5
- mteb/abstasks/pair_classification.py +19 -9
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +28 -17
- mteb/abstasks/retrieval_dataset_loaders.py +11 -8
- mteb/abstasks/sts.py +19 -10
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +14 -7
- mteb/abstasks/text/summarization.py +17 -7
- mteb/abstasks/zeroshot_classification.py +15 -7
- mteb/benchmarks/_create_table.py +13 -3
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +20 -18
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +7 -3
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +11 -4
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +22 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +16 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +22 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +25 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +19 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +19 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +15 -9
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/clustering/nob/snl_clustering.py +7 -2
- mteb/tasks/clustering/nob/vg_clustering.py +7 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -38,6 +38,7 @@ cl_nagoya_ruri_v3_30m = ModelMeta(
|
|
|
38
38
|
revision="24899e5de370b56d179604a007c0d727bf144504",
|
|
39
39
|
release_date="2025-04-07",
|
|
40
40
|
n_parameters=36_705_536,
|
|
41
|
+
n_embedding_parameters=None,
|
|
41
42
|
memory_usage_mb=140,
|
|
42
43
|
embed_dim=256,
|
|
43
44
|
license="apache-2.0",
|
|
@@ -69,6 +70,7 @@ cl_nagoya_ruri_v3_70m = ModelMeta(
|
|
|
69
70
|
revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
|
|
70
71
|
release_date="2025-04-09",
|
|
71
72
|
n_parameters=36_705_536,
|
|
73
|
+
n_embedding_parameters=None,
|
|
72
74
|
memory_usage_mb=140,
|
|
73
75
|
embed_dim=256,
|
|
74
76
|
license="apache-2.0",
|
|
@@ -98,6 +100,7 @@ cl_nagoya_ruri_v3_130m = ModelMeta(
|
|
|
98
100
|
revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
|
|
99
101
|
release_date="2025-04-09",
|
|
100
102
|
n_parameters=132_140_544,
|
|
103
|
+
n_embedding_parameters=None,
|
|
101
104
|
memory_usage_mb=504,
|
|
102
105
|
embed_dim=512,
|
|
103
106
|
license="apache-2.0",
|
|
@@ -127,6 +130,7 @@ cl_nagoya_ruri_v3_310m = ModelMeta(
|
|
|
127
130
|
revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
|
|
128
131
|
release_date="2025-04-09",
|
|
129
132
|
n_parameters=314_611_968,
|
|
133
|
+
n_embedding_parameters=None,
|
|
130
134
|
memory_usage_mb=1200,
|
|
131
135
|
embed_dim=768,
|
|
132
136
|
license="apache-2.0",
|
|
@@ -157,6 +161,7 @@ cl_nagoya_ruri_small_v2 = ModelMeta(
|
|
|
157
161
|
revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
|
|
158
162
|
release_date="2024-12-05",
|
|
159
163
|
n_parameters=68_087_808,
|
|
164
|
+
n_embedding_parameters=25_165_824,
|
|
160
165
|
memory_usage_mb=260,
|
|
161
166
|
embed_dim=768,
|
|
162
167
|
license="apache-2.0",
|
|
@@ -186,6 +191,7 @@ cl_nagoya_ruri_base_v2 = ModelMeta(
|
|
|
186
191
|
revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
|
|
187
192
|
release_date="2024-12-05",
|
|
188
193
|
n_parameters=111_207_168,
|
|
194
|
+
n_embedding_parameters=25_165_824,
|
|
189
195
|
memory_usage_mb=424,
|
|
190
196
|
embed_dim=768,
|
|
191
197
|
license="apache-2.0",
|
|
@@ -215,6 +221,7 @@ cl_nagoya_ruri_large_v2 = ModelMeta(
|
|
|
215
221
|
revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
|
|
216
222
|
release_date="2024-12-06",
|
|
217
223
|
n_parameters=337_441_792,
|
|
224
|
+
n_embedding_parameters=33_554_432,
|
|
218
225
|
memory_usage_mb=1287,
|
|
219
226
|
embed_dim=1024,
|
|
220
227
|
license="apache-2.0",
|
|
@@ -245,6 +252,7 @@ cl_nagoya_ruri_small_v1 = ModelMeta(
|
|
|
245
252
|
revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
|
|
246
253
|
release_date="2024-08-28",
|
|
247
254
|
n_parameters=68_087_808,
|
|
255
|
+
n_embedding_parameters=25_165_824,
|
|
248
256
|
memory_usage_mb=130,
|
|
249
257
|
embed_dim=768,
|
|
250
258
|
license="apache-2.0",
|
|
@@ -274,6 +282,7 @@ cl_nagoya_ruri_base_v1 = ModelMeta(
|
|
|
274
282
|
revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
|
|
275
283
|
release_date="2024-08-28",
|
|
276
284
|
n_parameters=111_207_168,
|
|
285
|
+
n_embedding_parameters=25_165_824,
|
|
277
286
|
memory_usage_mb=212,
|
|
278
287
|
embed_dim=768,
|
|
279
288
|
license="apache-2.0",
|
|
@@ -304,6 +313,7 @@ cl_nagoya_ruri_large_v1 = ModelMeta(
|
|
|
304
313
|
revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
|
|
305
314
|
release_date="2024-08-28",
|
|
306
315
|
n_parameters=337_441_792,
|
|
316
|
+
n_embedding_parameters=33_554_432,
|
|
307
317
|
memory_usage_mb=644,
|
|
308
318
|
embed_dim=1024,
|
|
309
319
|
license="apache-2.0",
|
|
@@ -1,12 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
1
5
|
from mteb.models.instruct_wrapper import (
|
|
2
6
|
InstructSentenceTransformerModel,
|
|
3
7
|
instruct_wrapper,
|
|
4
8
|
)
|
|
5
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
6
|
-
from mteb.types import PromptType
|
|
7
10
|
|
|
8
11
|
from .e5_instruct import E5_MISTRAL_TRAINING_DATA
|
|
9
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from mteb.types import PromptType
|
|
15
|
+
|
|
10
16
|
|
|
11
17
|
def instruction_template(
|
|
12
18
|
instruction: str, prompt_type: PromptType | None = None
|
|
@@ -52,6 +58,7 @@ SFR_Embedding_2_R = ModelMeta(
|
|
|
52
58
|
revision="91762139d94ed4371a9fa31db5551272e0b83818",
|
|
53
59
|
release_date="2024-06-14", # initial commit of hf model.
|
|
54
60
|
n_parameters=7_110_000_000,
|
|
61
|
+
n_embedding_parameters=None,
|
|
55
62
|
memory_usage_mb=13563,
|
|
56
63
|
embed_dim=4096,
|
|
57
64
|
license="cc-by-nc-4.0",
|
|
@@ -90,6 +97,7 @@ SFR_Embedding_Code_2B_R = ModelMeta(
|
|
|
90
97
|
revision="c73d8631a005876ed5abde34db514b1fb6566973",
|
|
91
98
|
release_date="2025-01-17", # initial commit of hf model.
|
|
92
99
|
n_parameters=2_610_000_000,
|
|
100
|
+
n_embedding_parameters=None,
|
|
93
101
|
memory_usage_mb=4986,
|
|
94
102
|
embed_dim=2304,
|
|
95
103
|
license="cc-by-nc-4.0",
|
|
@@ -128,6 +136,7 @@ SFR_Embedding_Mistral = ModelMeta(
|
|
|
128
136
|
revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
|
|
129
137
|
release_date="2024-01-24", # initial commit of hf model.
|
|
130
138
|
n_parameters=7_110_000_000,
|
|
139
|
+
n_embedding_parameters=None,
|
|
131
140
|
memory_usage_mb=13563,
|
|
132
141
|
embed_dim=4096,
|
|
133
142
|
license="cc-by-nc-4.0",
|
|
@@ -124,6 +124,7 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
|
124
124
|
revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
|
|
125
125
|
release_date="2025-07-30",
|
|
126
126
|
n_parameters=1_224_038_144,
|
|
127
|
+
n_embedding_parameters=183_500_800,
|
|
127
128
|
memory_usage_mb=4669,
|
|
128
129
|
embed_dim=1792,
|
|
129
130
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE",
|
|
@@ -150,6 +151,7 @@ sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
|
|
|
150
151
|
revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
|
|
151
152
|
release_date="2024-11-22",
|
|
152
153
|
n_parameters=1_224_038_144,
|
|
154
|
+
n_embedding_parameters=183_500_800,
|
|
153
155
|
memory_usage_mb=4669,
|
|
154
156
|
embed_dim=1792,
|
|
155
157
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE",
|
|
@@ -13,16 +13,18 @@ import torch
|
|
|
13
13
|
from torch.utils.data import DataLoader
|
|
14
14
|
|
|
15
15
|
from mteb._requires_package import requires_package
|
|
16
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
18
17
|
from mteb.models.model_implementations.bge_models import bge_chinese_training_data
|
|
19
18
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
20
19
|
from mteb.models.model_meta import ModelMeta
|
|
21
|
-
from mteb.types import
|
|
20
|
+
from mteb.types import PromptType
|
|
22
21
|
|
|
23
22
|
if TYPE_CHECKING:
|
|
24
23
|
from PIL import Image
|
|
25
24
|
|
|
25
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
26
|
+
from mteb.types import Array, BatchedInput
|
|
27
|
+
|
|
26
28
|
|
|
27
29
|
logger = logging.getLogger(__name__)
|
|
28
30
|
|
|
@@ -429,6 +431,7 @@ seed_embedding = ModelMeta(
|
|
|
429
431
|
embed_dim=2048,
|
|
430
432
|
open_weights=False,
|
|
431
433
|
n_parameters=None,
|
|
434
|
+
n_embedding_parameters=None,
|
|
432
435
|
memory_usage_mb=None,
|
|
433
436
|
license=None,
|
|
434
437
|
reference="https://seed1-6-embedding.github.io/",
|
|
@@ -15,15 +15,18 @@ from torch.utils.data import DataLoader
|
|
|
15
15
|
from tqdm import tqdm
|
|
16
16
|
|
|
17
17
|
from mteb._requires_package import requires_package
|
|
18
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
19
18
|
from mteb.models.abs_encoder import AbsEncoder
|
|
20
19
|
from mteb.models.model_implementations.bge_models import bge_chinese_training_data
|
|
21
20
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
22
21
|
from mteb.models.model_meta import ModelMeta
|
|
23
|
-
from mteb.types import
|
|
22
|
+
from mteb.types import PromptType
|
|
24
23
|
|
|
25
24
|
if TYPE_CHECKING:
|
|
26
25
|
from PIL import Image
|
|
26
|
+
from torch.utils.data import DataLoader
|
|
27
|
+
|
|
28
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
29
|
+
from mteb.types import Array, BatchedInput
|
|
27
30
|
|
|
28
31
|
|
|
29
32
|
logger = logging.getLogger(__name__)
|
|
@@ -613,6 +616,7 @@ seed_embedding = ModelMeta(
|
|
|
613
616
|
embed_dim=2048,
|
|
614
617
|
open_weights=False,
|
|
615
618
|
n_parameters=None,
|
|
619
|
+
n_embedding_parameters=None,
|
|
616
620
|
memory_usage_mb=None,
|
|
617
621
|
license=None,
|
|
618
622
|
reference="https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-embedding-vision",
|
|
@@ -9,7 +9,7 @@ from tqdm.auto import tqdm
|
|
|
9
9
|
from mteb._requires_package import requires_package
|
|
10
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
11
|
from mteb.models.model_meta import ModelMeta
|
|
12
|
-
from mteb.
|
|
12
|
+
from mteb.types import PromptType
|
|
13
13
|
|
|
14
14
|
from .bge_models import bge_chinese_training_data
|
|
15
15
|
from .nvidia_models import nvidia_training_datasets
|
|
@@ -253,6 +253,7 @@ seed_embedding = ModelMeta(
|
|
|
253
253
|
embed_dim=2048,
|
|
254
254
|
open_weights=False,
|
|
255
255
|
n_parameters=None,
|
|
256
|
+
n_embedding_parameters=None,
|
|
256
257
|
memory_usage_mb=None,
|
|
257
258
|
license=None,
|
|
258
259
|
reference="https://seed1-5-embedding.github.io/",
|
|
@@ -121,6 +121,7 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
121
121
|
revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
|
|
122
122
|
release_date="2021-08-30",
|
|
123
123
|
n_parameters=22_700_000,
|
|
124
|
+
n_embedding_parameters=11_720_448,
|
|
124
125
|
memory_usage_mb=87,
|
|
125
126
|
embed_dim=384,
|
|
126
127
|
license="apache-2.0",
|
|
@@ -152,6 +153,7 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
152
153
|
revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
|
|
153
154
|
release_date="2021-08-30",
|
|
154
155
|
n_parameters=33_400_000,
|
|
156
|
+
n_embedding_parameters=11_720_448,
|
|
155
157
|
memory_usage_mb=127,
|
|
156
158
|
embed_dim=384,
|
|
157
159
|
license="apache-2.0",
|
|
@@ -183,6 +185,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
183
185
|
revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
|
|
184
186
|
release_date="2019-11-01", # release date of paper
|
|
185
187
|
n_parameters=118_000_000,
|
|
188
|
+
n_embedding_parameters=96_014_208,
|
|
186
189
|
memory_usage_mb=449,
|
|
187
190
|
embed_dim=768,
|
|
188
191
|
license="apache-2.0",
|
|
@@ -214,6 +217,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
214
217
|
revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
|
|
215
218
|
release_date="2019-11-01", # release date of paper
|
|
216
219
|
n_parameters=278_000_000,
|
|
220
|
+
n_embedding_parameters=192_001_536,
|
|
217
221
|
memory_usage_mb=1061,
|
|
218
222
|
embed_dim=768,
|
|
219
223
|
license="apache-2.0",
|
|
@@ -256,6 +260,7 @@ labse = ModelMeta(
|
|
|
256
260
|
revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
|
|
257
261
|
release_date="2019-11-01", # release date of paper
|
|
258
262
|
n_parameters=471_000_000,
|
|
263
|
+
n_embedding_parameters=384_885_504,
|
|
259
264
|
memory_usage_mb=1796,
|
|
260
265
|
embed_dim=768,
|
|
261
266
|
license="apache-2.0",
|
|
@@ -294,6 +299,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
294
299
|
revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
|
|
295
300
|
release_date="2021-08-30",
|
|
296
301
|
n_parameters=22_700_000,
|
|
302
|
+
n_embedding_parameters=11_720_448,
|
|
297
303
|
memory_usage_mb=87,
|
|
298
304
|
embed_dim=384,
|
|
299
305
|
license="apache-2.0",
|
|
@@ -325,6 +331,7 @@ all_mpnet_base_v2 = ModelMeta(
|
|
|
325
331
|
revision="9a3225965996d404b775526de6dbfe85d3368642",
|
|
326
332
|
release_date="2021-08-30",
|
|
327
333
|
n_parameters=109_000_000,
|
|
334
|
+
n_embedding_parameters=23_444_736,
|
|
328
335
|
memory_usage_mb=418,
|
|
329
336
|
embed_dim=768,
|
|
330
337
|
license="apache-2.0",
|
|
@@ -435,6 +442,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
435
442
|
revision="7264ea07c5365a11d7e6d87dbb6195889a13054f",
|
|
436
443
|
release_date="2025-01-15",
|
|
437
444
|
n_parameters=108_420_096,
|
|
445
|
+
n_embedding_parameters=None,
|
|
438
446
|
memory_usage_mb=413,
|
|
439
447
|
embed_dim=1024,
|
|
440
448
|
license="apache-2.0",
|
|
@@ -468,6 +476,7 @@ contriever = ModelMeta(
|
|
|
468
476
|
revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
|
|
469
477
|
release_date="2022-06-25", # release date of model on HF
|
|
470
478
|
n_parameters=150_000_000,
|
|
479
|
+
n_embedding_parameters=23_440_896,
|
|
471
480
|
memory_usage_mb=572,
|
|
472
481
|
embed_dim=768,
|
|
473
482
|
license=None,
|
|
@@ -498,6 +507,7 @@ microllama_text_embedding = ModelMeta(
|
|
|
498
507
|
revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
|
|
499
508
|
release_date="2024-11-10",
|
|
500
509
|
n_parameters=272_000_000,
|
|
510
|
+
n_embedding_parameters=32_769_024,
|
|
501
511
|
memory_usage_mb=1037,
|
|
502
512
|
embed_dim=1024,
|
|
503
513
|
license="apache-2.0",
|
|
@@ -544,6 +554,7 @@ sentence_t5_base = ModelMeta(
|
|
|
544
554
|
revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
|
|
545
555
|
release_date="2022-02-09",
|
|
546
556
|
n_parameters=110_000_000,
|
|
557
|
+
n_embedding_parameters=24_674_304,
|
|
547
558
|
memory_usage_mb=209,
|
|
548
559
|
embed_dim=768,
|
|
549
560
|
license="apache-2.0",
|
|
@@ -567,6 +578,7 @@ sentence_t5_large = ModelMeta(
|
|
|
567
578
|
revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
|
|
568
579
|
release_date="2022-02-09",
|
|
569
580
|
n_parameters=335_000_000,
|
|
581
|
+
n_embedding_parameters=32_899_072,
|
|
570
582
|
memory_usage_mb=639,
|
|
571
583
|
embed_dim=768,
|
|
572
584
|
license="apache-2.0",
|
|
@@ -590,6 +602,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
590
602
|
revision="2965d31b368fb14117688e0bde77cbd720e91f53",
|
|
591
603
|
release_date="2024-03-27",
|
|
592
604
|
n_parameters=3_000_000_000,
|
|
605
|
+
n_embedding_parameters=32_899_072,
|
|
593
606
|
memory_usage_mb=2367,
|
|
594
607
|
embed_dim=768,
|
|
595
608
|
license="apache-2.0",
|
|
@@ -613,6 +626,7 @@ sentence_t5_xxl = ModelMeta(
|
|
|
613
626
|
revision="4d122282ba80e807e9e6eb8c358269e92796365d",
|
|
614
627
|
release_date="2024-03-27",
|
|
615
628
|
n_parameters=11_000_000_000,
|
|
629
|
+
n_embedding_parameters=None,
|
|
616
630
|
memory_usage_mb=9279,
|
|
617
631
|
embed_dim=768,
|
|
618
632
|
license="apache-2.0",
|
|
@@ -646,6 +660,7 @@ gtr_t5_large = ModelMeta(
|
|
|
646
660
|
revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
|
|
647
661
|
release_date="2022-02-09",
|
|
648
662
|
n_parameters=335_000_000,
|
|
663
|
+
n_embedding_parameters=32_899_072,
|
|
649
664
|
memory_usage_mb=639,
|
|
650
665
|
embed_dim=768,
|
|
651
666
|
license="apache-2.0",
|
|
@@ -681,6 +696,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
681
696
|
revision="23a8d667a1ad2578af181ce762867003c498d1bf",
|
|
682
697
|
release_date="2022-02-09",
|
|
683
698
|
n_parameters=1_240_000_000,
|
|
699
|
+
n_embedding_parameters=32_899_072,
|
|
684
700
|
memory_usage_mb=2367,
|
|
685
701
|
embed_dim=768,
|
|
686
702
|
license="apache-2.0",
|
|
@@ -715,6 +731,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
715
731
|
revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
|
|
716
732
|
release_date="2022-02-09",
|
|
717
733
|
n_parameters=4_860_000_000,
|
|
734
|
+
n_embedding_parameters=None,
|
|
718
735
|
memory_usage_mb=9279,
|
|
719
736
|
embed_dim=768,
|
|
720
737
|
license="apache-2.0",
|
|
@@ -750,6 +767,7 @@ gtr_t5_base = ModelMeta(
|
|
|
750
767
|
revision="7027e9594267928589816394bdd295273ddc0739",
|
|
751
768
|
release_date="2022-02-09",
|
|
752
769
|
n_parameters=110_000_000,
|
|
770
|
+
n_embedding_parameters=24_674_304,
|
|
753
771
|
memory_usage_mb=209,
|
|
754
772
|
embed_dim=768,
|
|
755
773
|
license="apache-2.0",
|
|
@@ -1,13 +1,18 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
9
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
10
|
-
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
11
16
|
|
|
12
17
|
SIGLIP_CITATION = """@misc{zhai2023sigmoid,
|
|
13
18
|
title={Sigmoid Loss for Language Image Pre-Training},
|
|
@@ -131,6 +136,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
131
136
|
release_date="2024-01-08",
|
|
132
137
|
modalities=["image", "text"],
|
|
133
138
|
n_parameters=877_000_000,
|
|
139
|
+
n_embedding_parameters=None,
|
|
134
140
|
memory_usage_mb=3347,
|
|
135
141
|
max_tokens=16,
|
|
136
142
|
embed_dim=1152,
|
|
@@ -155,6 +161,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
155
161
|
release_date="2024-01-08",
|
|
156
162
|
modalities=["image", "text"],
|
|
157
163
|
n_parameters=878_000_000,
|
|
164
|
+
n_embedding_parameters=None,
|
|
158
165
|
memory_usage_mb=3349,
|
|
159
166
|
max_tokens=64,
|
|
160
167
|
embed_dim=1152,
|
|
@@ -179,6 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
179
186
|
release_date="2024-01-08",
|
|
180
187
|
modalities=["image", "text"],
|
|
181
188
|
n_parameters=1_130_000_000,
|
|
189
|
+
n_embedding_parameters=None,
|
|
182
190
|
memory_usage_mb=4306,
|
|
183
191
|
max_tokens=64,
|
|
184
192
|
embed_dim=1152,
|
|
@@ -203,6 +211,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
203
211
|
release_date="2024-01-08",
|
|
204
212
|
modalities=["image", "text"],
|
|
205
213
|
n_parameters=371_000_000,
|
|
214
|
+
n_embedding_parameters=None,
|
|
206
215
|
memory_usage_mb=1414,
|
|
207
216
|
max_tokens=64,
|
|
208
217
|
embed_dim=768,
|
|
@@ -227,6 +236,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
227
236
|
release_date="2024-01-08",
|
|
228
237
|
modalities=["image", "text"],
|
|
229
238
|
n_parameters=203_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
230
240
|
memory_usage_mb=775,
|
|
231
241
|
max_tokens=64,
|
|
232
242
|
embed_dim=768,
|
|
@@ -251,6 +261,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
251
261
|
release_date="2024-01-08",
|
|
252
262
|
modalities=["image", "text"],
|
|
253
263
|
n_parameters=204_000_000,
|
|
264
|
+
n_embedding_parameters=None,
|
|
254
265
|
memory_usage_mb=777,
|
|
255
266
|
max_tokens=64,
|
|
256
267
|
embed_dim=768,
|
|
@@ -275,6 +286,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
275
286
|
release_date="2024-01-08",
|
|
276
287
|
modalities=["image", "text"],
|
|
277
288
|
n_parameters=203_000_000,
|
|
289
|
+
n_embedding_parameters=None,
|
|
278
290
|
memory_usage_mb=776,
|
|
279
291
|
max_tokens=64,
|
|
280
292
|
embed_dim=768,
|
|
@@ -299,6 +311,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
299
311
|
release_date="2024-01-08",
|
|
300
312
|
modalities=["image", "text"],
|
|
301
313
|
n_parameters=203_000_000,
|
|
314
|
+
n_embedding_parameters=None,
|
|
302
315
|
memory_usage_mb=775,
|
|
303
316
|
max_tokens=64,
|
|
304
317
|
embed_dim=768,
|
|
@@ -323,6 +336,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
323
336
|
release_date="2024-01-08",
|
|
324
337
|
modalities=["image", "text"],
|
|
325
338
|
n_parameters=652_000_000,
|
|
339
|
+
n_embedding_parameters=None,
|
|
326
340
|
memory_usage_mb=2488,
|
|
327
341
|
max_tokens=64,
|
|
328
342
|
embed_dim=1024,
|
|
@@ -347,6 +361,7 @@ siglip_large_patch16_384 = ModelMeta(
|
|
|
347
361
|
release_date="2024-01-08",
|
|
348
362
|
modalities=["image", "text"],
|
|
349
363
|
n_parameters=652_000_000,
|
|
364
|
+
n_embedding_parameters=None,
|
|
350
365
|
memory_usage_mb=2489,
|
|
351
366
|
max_tokens=64,
|
|
352
367
|
embed_dim=1024,
|
|
@@ -13,24 +13,27 @@ Based on:
|
|
|
13
13
|
from __future__ import annotations
|
|
14
14
|
|
|
15
15
|
import logging
|
|
16
|
-
from typing import Any
|
|
16
|
+
from typing import TYPE_CHECKING, Any
|
|
17
17
|
|
|
18
18
|
import torch
|
|
19
|
-
from torch.utils.data import DataLoader
|
|
20
19
|
from tqdm.auto import tqdm
|
|
21
20
|
|
|
22
21
|
from mteb._requires_package import (
|
|
23
22
|
requires_image_dependencies,
|
|
24
23
|
requires_package,
|
|
25
24
|
)
|
|
26
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
27
25
|
from mteb.models.abs_encoder import AbsEncoder
|
|
28
26
|
from mteb.models.model_implementations.colpali_models import (
|
|
29
27
|
COLPALI_CITATION,
|
|
30
28
|
COLPALI_TRAINING_DATA,
|
|
31
29
|
)
|
|
32
30
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
33
|
-
|
|
31
|
+
|
|
32
|
+
if TYPE_CHECKING:
|
|
33
|
+
from torch.utils.data import DataLoader
|
|
34
|
+
|
|
35
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
36
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
34
37
|
|
|
35
38
|
logger = logging.getLogger(__name__)
|
|
36
39
|
|
|
@@ -224,7 +224,8 @@ sonar = ModelMeta(
|
|
|
224
224
|
use_instructions=False, # it does take a language code as input
|
|
225
225
|
revision="a551c586dcf4a49c8fd847de369412d556a7f2f2",
|
|
226
226
|
release_date="2021-05-21",
|
|
227
|
-
n_parameters=None,
|
|
227
|
+
n_parameters=None,
|
|
228
|
+
n_embedding_parameters=None, # it is really multiple models so not sure how to calculate this
|
|
228
229
|
max_tokens=512, # https://github.com/facebookresearch/SONAR/blob/549d287466443bd8720f938047882630c1c5c3f7/sonar/models/sonar_text/builder.py#L139
|
|
229
230
|
embed_dim=1024,
|
|
230
231
|
license="mit",
|
|
@@ -12,6 +12,7 @@ spartan8806_atles_champion_embedding = ModelMeta(
|
|
|
12
12
|
revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
|
|
13
13
|
release_date="2025-11-15",
|
|
14
14
|
n_parameters=110_000_000,
|
|
15
|
+
n_embedding_parameters=23_444_736,
|
|
15
16
|
memory_usage_mb=420,
|
|
16
17
|
max_tokens=512,
|
|
17
18
|
embed_dim=768,
|
|
@@ -66,6 +66,7 @@ stella_en_400m = ModelMeta(
|
|
|
66
66
|
revision="1bb50bc7bb726810eac2140e62155b88b0df198f",
|
|
67
67
|
release_date="2024-07-12",
|
|
68
68
|
n_parameters=435_000_000,
|
|
69
|
+
n_embedding_parameters=None,
|
|
69
70
|
memory_usage_mb=1660,
|
|
70
71
|
max_tokens=8192,
|
|
71
72
|
embed_dim=4096,
|
|
@@ -101,6 +102,7 @@ stella_en_1_5b = ModelMeta(
|
|
|
101
102
|
revision="d03be74b361d4eb24f42a2fe5bd2e29917df4604",
|
|
102
103
|
release_date="2024-07-12",
|
|
103
104
|
n_parameters=1_540_000_000,
|
|
105
|
+
n_embedding_parameters=232_928_256,
|
|
104
106
|
memory_usage_mb=5887,
|
|
105
107
|
max_tokens=131072,
|
|
106
108
|
embed_dim=8960,
|
|
@@ -130,6 +132,7 @@ stella_large_zh_v3_1792d = ModelMeta(
|
|
|
130
132
|
revision="d5d39eb8cd11c80a63df53314e59997074469f09",
|
|
131
133
|
release_date="2024-02-17",
|
|
132
134
|
n_parameters=None,
|
|
135
|
+
n_embedding_parameters=21_635_072,
|
|
133
136
|
memory_usage_mb=None, # can't see on model card
|
|
134
137
|
embed_dim=1792,
|
|
135
138
|
license="not specified",
|
|
@@ -157,6 +160,7 @@ stella_base_zh_v3_1792d = ModelMeta(
|
|
|
157
160
|
revision="82254892a0fba125aa2abf3a4800d2dd12821343",
|
|
158
161
|
release_date="2024-02-17",
|
|
159
162
|
n_parameters=None,
|
|
163
|
+
n_embedding_parameters=16_226_304,
|
|
160
164
|
memory_usage_mb=None, # can't see on model card
|
|
161
165
|
embed_dim=1792,
|
|
162
166
|
license="mit",
|
|
@@ -185,6 +189,7 @@ stella_mrl_large_zh_v3_5_1792d = ModelMeta(
|
|
|
185
189
|
revision="17bb1c32a93a8fc5f6fc9e91d5ea86da99983cfe",
|
|
186
190
|
release_date="2024-02-27",
|
|
187
191
|
n_parameters=int(326 * 1e6),
|
|
192
|
+
n_embedding_parameters=21_635_072,
|
|
188
193
|
memory_usage_mb=1242,
|
|
189
194
|
embed_dim=1792,
|
|
190
195
|
license="mit",
|
|
@@ -209,6 +214,7 @@ zpoint_large_embedding_zh = ModelMeta(
|
|
|
209
214
|
revision="b1075144f440ab4409c05622c1179130ebd57d03",
|
|
210
215
|
release_date="2024-06-04",
|
|
211
216
|
n_parameters=int(326 * 1e6),
|
|
217
|
+
n_embedding_parameters=21_635_072,
|
|
212
218
|
memory_usage_mb=1242,
|
|
213
219
|
embed_dim=1792,
|
|
214
220
|
license="mit",
|
|
@@ -327,6 +327,7 @@ tarka_embedding_150m_v1 = ModelMeta(
|
|
|
327
327
|
revision="b0ffecc4ef0d873e517507ed080e43b88b2704b9",
|
|
328
328
|
release_date="2025-11-04",
|
|
329
329
|
n_parameters=155_714_304,
|
|
330
|
+
n_embedding_parameters=None,
|
|
330
331
|
embed_dim=768,
|
|
331
332
|
max_tokens=2048,
|
|
332
333
|
license="gemma",
|
|
@@ -361,6 +362,7 @@ tarka_embedding_350m_v1 = ModelMeta(
|
|
|
361
362
|
revision="a850d6a329145474727424fed6b12b62096b8ba3",
|
|
362
363
|
release_date="2025-11-11",
|
|
363
364
|
n_parameters=354_483_968,
|
|
365
|
+
n_embedding_parameters=None,
|
|
364
366
|
memory_usage_mb=676,
|
|
365
367
|
embed_dim=1024,
|
|
366
368
|
max_tokens=128000,
|
|
@@ -22,6 +22,7 @@ text2vec_base_chinese = ModelMeta(
|
|
|
22
22
|
revision="183bb99aa7af74355fb58d16edf8c13ae7c5433e",
|
|
23
23
|
release_date="2022-01-23",
|
|
24
24
|
n_parameters=int(102 * 1e6),
|
|
25
|
+
n_embedding_parameters=16_226_304,
|
|
25
26
|
embed_dim=768,
|
|
26
27
|
license="apache-2.0",
|
|
27
28
|
max_tokens=512,
|
|
@@ -51,6 +52,7 @@ text2vec_base_chinese_paraphrase = ModelMeta(
|
|
|
51
52
|
revision="e90c150a9c7fb55a67712a766d6820c55fb83cdd",
|
|
52
53
|
release_date="2023-06-19",
|
|
53
54
|
n_parameters=118 * 1e6,
|
|
55
|
+
n_embedding_parameters=30_720_000,
|
|
54
56
|
memory_usage_mb=450,
|
|
55
57
|
embed_dim=768,
|
|
56
58
|
license="apache-2.0",
|
|
@@ -95,6 +97,7 @@ text2vec_base_multilingual = ModelMeta(
|
|
|
95
97
|
# So probably best not to.
|
|
96
98
|
loader=sentence_transformers_loader,
|
|
97
99
|
n_parameters=117654272,
|
|
100
|
+
n_embedding_parameters=96_014_208,
|
|
98
101
|
memory_usage_mb=449,
|
|
99
102
|
embed_dim=384,
|
|
100
103
|
license="apache-2.0",
|
|
@@ -1,13 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
9
9
|
from mteb.models.sentence_transformer_wrapper import SentenceTransformerEncoderWrapper
|
|
10
|
-
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
11
16
|
|
|
12
17
|
logger = logging.getLogger(__name__)
|
|
13
18
|
|
|
@@ -67,6 +72,7 @@ uae_large_v1 = ModelMeta(
|
|
|
67
72
|
revision="369c368f70f16a613f19f5598d4f12d9f44235d4",
|
|
68
73
|
release_date="2023-12-04", # initial commit of hf model.
|
|
69
74
|
n_parameters=int(335 * 1e6),
|
|
75
|
+
n_embedding_parameters=31_254_528,
|
|
70
76
|
memory_usage_mb=1278,
|
|
71
77
|
max_tokens=512,
|
|
72
78
|
embed_dim=1024,
|
|
@@ -1,6 +1,12 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
1
5
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
6
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
3
|
-
|
|
7
|
+
|
|
8
|
+
if TYPE_CHECKING:
|
|
9
|
+
from mteb.types import PromptType
|
|
4
10
|
|
|
5
11
|
|
|
6
12
|
def instruction_template(
|
|
@@ -32,6 +38,7 @@ vdr_2b_multi_v1 = ModelMeta(
|
|
|
32
38
|
release_date="2024-01-08",
|
|
33
39
|
modalities=["text"], # TODO: integrate with image
|
|
34
40
|
n_parameters=2_000_000_000,
|
|
41
|
+
n_embedding_parameters=233_373_696,
|
|
35
42
|
memory_usage_mb=4213,
|
|
36
43
|
max_tokens=32768,
|
|
37
44
|
embed_dim=1536,
|