mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (238) hide show
  1. mteb/_create_dataloaders.py +16 -9
  2. mteb/_evaluators/any_sts_evaluator.py +10 -5
  3. mteb/_evaluators/clustering_evaluator.py +10 -4
  4. mteb/_evaluators/evaluator.py +9 -4
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
  6. mteb/_evaluators/pair_classification_evaluator.py +10 -5
  7. mteb/_evaluators/retrieval_evaluator.py +19 -13
  8. mteb/_evaluators/retrieval_metrics.py +9 -3
  9. mteb/_evaluators/sklearn_evaluator.py +14 -10
  10. mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
  11. mteb/_evaluators/text/summarization_evaluator.py +8 -4
  12. mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
  13. mteb/_helpful_enum.py +5 -1
  14. mteb/abstasks/_data_filter/filters.py +8 -2
  15. mteb/abstasks/_data_filter/task_pipelines.py +7 -2
  16. mteb/abstasks/_statistics_calculation.py +6 -4
  17. mteb/abstasks/abstask.py +17 -9
  18. mteb/abstasks/aggregate_task_metadata.py +20 -9
  19. mteb/abstasks/aggregated_task.py +15 -8
  20. mteb/abstasks/classification.py +15 -6
  21. mteb/abstasks/clustering.py +17 -8
  22. mteb/abstasks/clustering_legacy.py +14 -6
  23. mteb/abstasks/image/image_text_pair_classification.py +17 -7
  24. mteb/abstasks/multilabel_classification.py +11 -5
  25. mteb/abstasks/pair_classification.py +19 -9
  26. mteb/abstasks/regression.py +14 -6
  27. mteb/abstasks/retrieval.py +28 -17
  28. mteb/abstasks/retrieval_dataset_loaders.py +11 -8
  29. mteb/abstasks/sts.py +19 -10
  30. mteb/abstasks/task_metadata.py +17 -8
  31. mteb/abstasks/text/bitext_mining.py +14 -7
  32. mteb/abstasks/text/summarization.py +17 -7
  33. mteb/abstasks/zeroshot_classification.py +15 -7
  34. mteb/benchmarks/_create_table.py +13 -3
  35. mteb/benchmarks/benchmark.py +11 -1
  36. mteb/benchmarks/benchmarks/__init__.py +2 -0
  37. mteb/benchmarks/benchmarks/benchmarks.py +41 -2
  38. mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
  39. mteb/cache.py +10 -5
  40. mteb/cli/_display_tasks.py +9 -3
  41. mteb/cli/build_cli.py +5 -2
  42. mteb/cli/generate_model_card.py +9 -2
  43. mteb/deprecated_evaluator.py +16 -12
  44. mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
  45. mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
  46. mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
  47. mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
  48. mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
  49. mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
  50. mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
  51. mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
  52. mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
  53. mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
  54. mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
  55. mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
  56. mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
  57. mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
  58. mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
  59. mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
  60. mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
  61. mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
  62. mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
  63. mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
  64. mteb/evaluate.py +20 -18
  65. mteb/filter_tasks.py +12 -7
  66. mteb/get_tasks.py +9 -4
  67. mteb/languages/language_scripts.py +8 -3
  68. mteb/leaderboard/app.py +7 -3
  69. mteb/leaderboard/table.py +7 -2
  70. mteb/load_results.py +9 -3
  71. mteb/models/abs_encoder.py +22 -12
  72. mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
  73. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
  74. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
  75. mteb/models/cache_wrappers/cache_wrapper.py +14 -9
  76. mteb/models/get_model_meta.py +11 -4
  77. mteb/models/instruct_wrapper.py +13 -5
  78. mteb/models/model_implementations/align_models.py +10 -4
  79. mteb/models/model_implementations/amazon_models.py +1 -0
  80. mteb/models/model_implementations/andersborges.py +2 -0
  81. mteb/models/model_implementations/ara_models.py +1 -0
  82. mteb/models/model_implementations/arctic_models.py +8 -0
  83. mteb/models/model_implementations/b1ade_models.py +1 -0
  84. mteb/models/model_implementations/bedrock_models.py +20 -6
  85. mteb/models/model_implementations/bge_models.py +40 -1
  86. mteb/models/model_implementations/bica_model.py +1 -0
  87. mteb/models/model_implementations/blip2_models.py +11 -4
  88. mteb/models/model_implementations/blip_models.py +17 -4
  89. mteb/models/model_implementations/bm25.py +22 -14
  90. mteb/models/model_implementations/bmretriever_models.py +10 -2
  91. mteb/models/model_implementations/cadet_models.py +1 -0
  92. mteb/models/model_implementations/cde_models.py +11 -5
  93. mteb/models/model_implementations/clip_models.py +12 -4
  94. mteb/models/model_implementations/clips_models.py +3 -0
  95. mteb/models/model_implementations/codefuse_models.py +5 -0
  96. mteb/models/model_implementations/codesage_models.py +3 -0
  97. mteb/models/model_implementations/cohere_models.py +14 -4
  98. mteb/models/model_implementations/cohere_v.py +14 -4
  99. mteb/models/model_implementations/colpali_models.py +7 -3
  100. mteb/models/model_implementations/colqwen_models.py +17 -31
  101. mteb/models/model_implementations/colsmol_models.py +3 -1
  102. mteb/models/model_implementations/conan_models.py +11 -4
  103. mteb/models/model_implementations/dino_models.py +28 -4
  104. mteb/models/model_implementations/e5_instruct.py +4 -0
  105. mteb/models/model_implementations/e5_models.py +9 -0
  106. mteb/models/model_implementations/e5_v.py +10 -4
  107. mteb/models/model_implementations/eagerworks_models.py +11 -4
  108. mteb/models/model_implementations/emillykkejensen_models.py +3 -0
  109. mteb/models/model_implementations/en_code_retriever.py +1 -0
  110. mteb/models/model_implementations/euler_models.py +1 -0
  111. mteb/models/model_implementations/evaclip_models.py +13 -4
  112. mteb/models/model_implementations/fa_models.py +9 -0
  113. mteb/models/model_implementations/facebookai.py +2 -0
  114. mteb/models/model_implementations/geogpt_models.py +1 -0
  115. mteb/models/model_implementations/gme_v_models.py +7 -3
  116. mteb/models/model_implementations/google_models.py +15 -4
  117. mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
  118. mteb/models/model_implementations/gritlm_models.py +2 -0
  119. mteb/models/model_implementations/gte_models.py +9 -0
  120. mteb/models/model_implementations/hinvec_models.py +6 -1
  121. mteb/models/model_implementations/human.py +1 -0
  122. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  123. mteb/models/model_implementations/inf_models.py +2 -0
  124. mteb/models/model_implementations/jasper_models.py +14 -5
  125. mteb/models/model_implementations/jina_clip.py +10 -4
  126. mteb/models/model_implementations/jina_models.py +17 -5
  127. mteb/models/model_implementations/kalm_models.py +24 -12
  128. mteb/models/model_implementations/kblab.py +1 -0
  129. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
  130. mteb/models/model_implementations/kfst.py +1 -0
  131. mteb/models/model_implementations/kowshik24_models.py +1 -0
  132. mteb/models/model_implementations/lens_models.py +2 -0
  133. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  134. mteb/models/model_implementations/linq_models.py +7 -1
  135. mteb/models/model_implementations/listconranker.py +10 -4
  136. mteb/models/model_implementations/llm2clip_models.py +12 -4
  137. mteb/models/model_implementations/llm2vec_models.py +20 -6
  138. mteb/models/model_implementations/mcinext_models.py +8 -2
  139. mteb/models/model_implementations/mdbr_models.py +2 -0
  140. mteb/models/model_implementations/misc_models.py +63 -0
  141. mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
  142. mteb/models/model_implementations/mme5_models.py +2 -1
  143. mteb/models/model_implementations/moco_models.py +11 -4
  144. mteb/models/model_implementations/mod_models.py +2 -1
  145. mteb/models/model_implementations/model2vec_models.py +23 -4
  146. mteb/models/model_implementations/moka_models.py +3 -0
  147. mteb/models/model_implementations/nbailab.py +3 -0
  148. mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
  149. mteb/models/model_implementations/nomic_models.py +16 -4
  150. mteb/models/model_implementations/nomic_models_vision.py +5 -3
  151. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
  152. mteb/models/model_implementations/nvidia_models.py +15 -4
  153. mteb/models/model_implementations/octen_models.py +3 -1
  154. mteb/models/model_implementations/openai_models.py +14 -4
  155. mteb/models/model_implementations/openclip_models.py +17 -4
  156. mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
  157. mteb/models/model_implementations/ops_moa_models.py +9 -2
  158. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
  159. mteb/models/model_implementations/pawan_models.py +1 -0
  160. mteb/models/model_implementations/piccolo_models.py +2 -0
  161. mteb/models/model_implementations/promptriever_models.py +16 -6
  162. mteb/models/model_implementations/pylate_models.py +22 -13
  163. mteb/models/model_implementations/qodo_models.py +2 -0
  164. mteb/models/model_implementations/qtack_models.py +1 -0
  165. mteb/models/model_implementations/qwen3_models.py +11 -1
  166. mteb/models/model_implementations/qzhou_models.py +2 -0
  167. mteb/models/model_implementations/random_baseline.py +4 -3
  168. mteb/models/model_implementations/rasgaard_models.py +1 -0
  169. mteb/models/model_implementations/reasonir_model.py +65 -0
  170. mteb/models/model_implementations/repllama_models.py +15 -6
  171. mteb/models/model_implementations/rerankers_custom.py +13 -4
  172. mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
  173. mteb/models/model_implementations/richinfoai_models.py +1 -0
  174. mteb/models/model_implementations/ru_sentence_models.py +20 -0
  175. mteb/models/model_implementations/ruri_models.py +10 -0
  176. mteb/models/model_implementations/salesforce_models.py +10 -1
  177. mteb/models/model_implementations/samilpwc_models.py +1 -0
  178. mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
  179. mteb/models/model_implementations/searchmap_models.py +1 -0
  180. mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
  181. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
  182. mteb/models/model_implementations/seed_models.py +2 -1
  183. mteb/models/model_implementations/sentence_transformers_models.py +18 -0
  184. mteb/models/model_implementations/shuu_model.py +1 -0
  185. mteb/models/model_implementations/siglip_models.py +19 -4
  186. mteb/models/model_implementations/slm_models.py +7 -4
  187. mteb/models/model_implementations/sonar_models.py +2 -1
  188. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
  189. mteb/models/model_implementations/stella_models.py +6 -0
  190. mteb/models/model_implementations/tarka_models.py +2 -0
  191. mteb/models/model_implementations/text2vec_models.py +3 -0
  192. mteb/models/model_implementations/ua_sentence_models.py +1 -0
  193. mteb/models/model_implementations/uae_models.py +10 -4
  194. mteb/models/model_implementations/vdr_models.py +8 -1
  195. mteb/models/model_implementations/vi_vn_models.py +6 -0
  196. mteb/models/model_implementations/vista_models.py +11 -4
  197. mteb/models/model_implementations/vlm2vec_models.py +11 -4
  198. mteb/models/model_implementations/voyage_models.py +25 -4
  199. mteb/models/model_implementations/voyage_v.py +11 -6
  200. mteb/models/model_implementations/xyz_models.py +1 -0
  201. mteb/models/model_implementations/youtu_models.py +1 -0
  202. mteb/models/model_implementations/yuan_models.py +1 -0
  203. mteb/models/model_implementations/yuan_models_en.py +2 -1
  204. mteb/models/model_meta.py +47 -9
  205. mteb/models/models_protocols.py +19 -18
  206. mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
  207. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
  208. mteb/models/search_wrappers.py +19 -12
  209. mteb/models/sentence_transformer_wrapper.py +4 -3
  210. mteb/models/vllm_wrapper.py +8 -6
  211. mteb/results/benchmark_results.py +22 -17
  212. mteb/results/model_result.py +21 -15
  213. mteb/results/task_result.py +15 -9
  214. mteb/similarity_functions.py +8 -2
  215. mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
  216. mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
  217. mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
  218. mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
  219. mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
  220. mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
  221. mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
  222. mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
  223. mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
  224. mteb/tasks/clustering/nob/snl_clustering.py +7 -2
  225. mteb/tasks/clustering/nob/vg_clustering.py +7 -2
  226. mteb/tasks/retrieval/eng/__init__.py +42 -0
  227. mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
  228. mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
  229. mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
  230. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
  231. mteb/types/_encoder_io.py +1 -1
  232. mteb/types/statistics.py +9 -2
  233. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
  234. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
  235. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
  236. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
  237. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
  238. {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
@@ -38,6 +38,7 @@ cl_nagoya_ruri_v3_30m = ModelMeta(
38
38
  revision="24899e5de370b56d179604a007c0d727bf144504",
39
39
  release_date="2025-04-07",
40
40
  n_parameters=36_705_536,
41
+ n_embedding_parameters=None,
41
42
  memory_usage_mb=140,
42
43
  embed_dim=256,
43
44
  license="apache-2.0",
@@ -69,6 +70,7 @@ cl_nagoya_ruri_v3_70m = ModelMeta(
69
70
  revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
70
71
  release_date="2025-04-09",
71
72
  n_parameters=36_705_536,
73
+ n_embedding_parameters=None,
72
74
  memory_usage_mb=140,
73
75
  embed_dim=256,
74
76
  license="apache-2.0",
@@ -98,6 +100,7 @@ cl_nagoya_ruri_v3_130m = ModelMeta(
98
100
  revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
99
101
  release_date="2025-04-09",
100
102
  n_parameters=132_140_544,
103
+ n_embedding_parameters=None,
101
104
  memory_usage_mb=504,
102
105
  embed_dim=512,
103
106
  license="apache-2.0",
@@ -127,6 +130,7 @@ cl_nagoya_ruri_v3_310m = ModelMeta(
127
130
  revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
128
131
  release_date="2025-04-09",
129
132
  n_parameters=314_611_968,
133
+ n_embedding_parameters=None,
130
134
  memory_usage_mb=1200,
131
135
  embed_dim=768,
132
136
  license="apache-2.0",
@@ -157,6 +161,7 @@ cl_nagoya_ruri_small_v2 = ModelMeta(
157
161
  revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
158
162
  release_date="2024-12-05",
159
163
  n_parameters=68_087_808,
164
+ n_embedding_parameters=25_165_824,
160
165
  memory_usage_mb=260,
161
166
  embed_dim=768,
162
167
  license="apache-2.0",
@@ -186,6 +191,7 @@ cl_nagoya_ruri_base_v2 = ModelMeta(
186
191
  revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
187
192
  release_date="2024-12-05",
188
193
  n_parameters=111_207_168,
194
+ n_embedding_parameters=25_165_824,
189
195
  memory_usage_mb=424,
190
196
  embed_dim=768,
191
197
  license="apache-2.0",
@@ -215,6 +221,7 @@ cl_nagoya_ruri_large_v2 = ModelMeta(
215
221
  revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
216
222
  release_date="2024-12-06",
217
223
  n_parameters=337_441_792,
224
+ n_embedding_parameters=33_554_432,
218
225
  memory_usage_mb=1287,
219
226
  embed_dim=1024,
220
227
  license="apache-2.0",
@@ -245,6 +252,7 @@ cl_nagoya_ruri_small_v1 = ModelMeta(
245
252
  revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
246
253
  release_date="2024-08-28",
247
254
  n_parameters=68_087_808,
255
+ n_embedding_parameters=25_165_824,
248
256
  memory_usage_mb=130,
249
257
  embed_dim=768,
250
258
  license="apache-2.0",
@@ -274,6 +282,7 @@ cl_nagoya_ruri_base_v1 = ModelMeta(
274
282
  revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
275
283
  release_date="2024-08-28",
276
284
  n_parameters=111_207_168,
285
+ n_embedding_parameters=25_165_824,
277
286
  memory_usage_mb=212,
278
287
  embed_dim=768,
279
288
  license="apache-2.0",
@@ -304,6 +313,7 @@ cl_nagoya_ruri_large_v1 = ModelMeta(
304
313
  revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
305
314
  release_date="2024-08-28",
306
315
  n_parameters=337_441_792,
316
+ n_embedding_parameters=33_554_432,
307
317
  memory_usage_mb=644,
308
318
  embed_dim=1024,
309
319
  license="apache-2.0",
@@ -1,12 +1,18 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
1
5
  from mteb.models.instruct_wrapper import (
2
6
  InstructSentenceTransformerModel,
3
7
  instruct_wrapper,
4
8
  )
5
9
  from mteb.models.model_meta import ModelMeta, ScoringFunction
6
- from mteb.types import PromptType
7
10
 
8
11
  from .e5_instruct import E5_MISTRAL_TRAINING_DATA
9
12
 
13
+ if TYPE_CHECKING:
14
+ from mteb.types import PromptType
15
+
10
16
 
11
17
  def instruction_template(
12
18
  instruction: str, prompt_type: PromptType | None = None
@@ -52,6 +58,7 @@ SFR_Embedding_2_R = ModelMeta(
52
58
  revision="91762139d94ed4371a9fa31db5551272e0b83818",
53
59
  release_date="2024-06-14", # initial commit of hf model.
54
60
  n_parameters=7_110_000_000,
61
+ n_embedding_parameters=None,
55
62
  memory_usage_mb=13563,
56
63
  embed_dim=4096,
57
64
  license="cc-by-nc-4.0",
@@ -90,6 +97,7 @@ SFR_Embedding_Code_2B_R = ModelMeta(
90
97
  revision="c73d8631a005876ed5abde34db514b1fb6566973",
91
98
  release_date="2025-01-17", # initial commit of hf model.
92
99
  n_parameters=2_610_000_000,
100
+ n_embedding_parameters=None,
93
101
  memory_usage_mb=4986,
94
102
  embed_dim=2304,
95
103
  license="cc-by-nc-4.0",
@@ -128,6 +136,7 @@ SFR_Embedding_Mistral = ModelMeta(
128
136
  revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
129
137
  release_date="2024-01-24", # initial commit of hf model.
130
138
  n_parameters=7_110_000_000,
139
+ n_embedding_parameters=None,
131
140
  memory_usage_mb=13563,
132
141
  embed_dim=4096,
133
142
  license="cc-by-nc-4.0",
@@ -51,6 +51,7 @@ samilpwc_expr = ModelMeta(
51
51
  revision="33358978be40f36491045f9c2a359d38c3f50047",
52
52
  release_date="2025-08-12",
53
53
  n_parameters=560_000_000,
54
+ n_embedding_parameters=256_002_048,
54
55
  memory_usage_mb=2136,
55
56
  embed_dim=1024,
56
57
  license="apache-2.0",
@@ -124,6 +124,7 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
124
124
  revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
125
125
  release_date="2025-07-30",
126
126
  n_parameters=1_224_038_144,
127
+ n_embedding_parameters=183_500_800,
127
128
  memory_usage_mb=4669,
128
129
  embed_dim=1792,
129
130
  license="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE",
@@ -150,6 +151,7 @@ sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
150
151
  revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
151
152
  release_date="2024-11-22",
152
153
  n_parameters=1_224_038_144,
154
+ n_embedding_parameters=183_500_800,
153
155
  memory_usage_mb=4669,
154
156
  embed_dim=1792,
155
157
  license="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE",
@@ -27,6 +27,7 @@ searchmap_preview = ModelMeta(
27
27
  use_instructions=True,
28
28
  release_date="2025-03-05",
29
29
  n_parameters=435_000_000,
30
+ n_embedding_parameters=None,
30
31
  memory_usage_mb=1660,
31
32
  embed_dim=4096,
32
33
  license="mit",
@@ -13,16 +13,18 @@ import torch
13
13
  from torch.utils.data import DataLoader
14
14
 
15
15
  from mteb._requires_package import requires_package
16
- from mteb.abstasks.task_metadata import TaskMetadata
17
16
  from mteb.models.abs_encoder import AbsEncoder
18
17
  from mteb.models.model_implementations.bge_models import bge_chinese_training_data
19
18
  from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
20
19
  from mteb.models.model_meta import ModelMeta
21
- from mteb.types import Array, BatchedInput, PromptType
20
+ from mteb.types import PromptType
22
21
 
23
22
  if TYPE_CHECKING:
24
23
  from PIL import Image
25
24
 
25
+ from mteb.abstasks.task_metadata import TaskMetadata
26
+ from mteb.types import Array, BatchedInput
27
+
26
28
 
27
29
  logger = logging.getLogger(__name__)
28
30
 
@@ -429,6 +431,7 @@ seed_embedding = ModelMeta(
429
431
  embed_dim=2048,
430
432
  open_weights=False,
431
433
  n_parameters=None,
434
+ n_embedding_parameters=None,
432
435
  memory_usage_mb=None,
433
436
  license=None,
434
437
  reference="https://seed1-6-embedding.github.io/",
@@ -15,15 +15,18 @@ from torch.utils.data import DataLoader
15
15
  from tqdm import tqdm
16
16
 
17
17
  from mteb._requires_package import requires_package
18
- from mteb.abstasks.task_metadata import TaskMetadata
19
18
  from mteb.models.abs_encoder import AbsEncoder
20
19
  from mteb.models.model_implementations.bge_models import bge_chinese_training_data
21
20
  from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
22
21
  from mteb.models.model_meta import ModelMeta
23
- from mteb.types import Array, BatchedInput, PromptType
22
+ from mteb.types import PromptType
24
23
 
25
24
  if TYPE_CHECKING:
26
25
  from PIL import Image
26
+ from torch.utils.data import DataLoader
27
+
28
+ from mteb.abstasks.task_metadata import TaskMetadata
29
+ from mteb.types import Array, BatchedInput
27
30
 
28
31
 
29
32
  logger = logging.getLogger(__name__)
@@ -613,6 +616,7 @@ seed_embedding = ModelMeta(
613
616
  embed_dim=2048,
614
617
  open_weights=False,
615
618
  n_parameters=None,
619
+ n_embedding_parameters=None,
616
620
  memory_usage_mb=None,
617
621
  license=None,
618
622
  reference="https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-embedding-vision",
@@ -9,7 +9,7 @@ from tqdm.auto import tqdm
9
9
  from mteb._requires_package import requires_package
10
10
  from mteb.models.abs_encoder import AbsEncoder
11
11
  from mteb.models.model_meta import ModelMeta
12
- from mteb.models.models_protocols import PromptType
12
+ from mteb.types import PromptType
13
13
 
14
14
  from .bge_models import bge_chinese_training_data
15
15
  from .nvidia_models import nvidia_training_datasets
@@ -253,6 +253,7 @@ seed_embedding = ModelMeta(
253
253
  embed_dim=2048,
254
254
  open_weights=False,
255
255
  n_parameters=None,
256
+ n_embedding_parameters=None,
256
257
  memory_usage_mb=None,
257
258
  license=None,
258
259
  reference="https://seed1-5-embedding.github.io/",
@@ -121,6 +121,7 @@ all_minilm_l6_v2 = ModelMeta(
121
121
  revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
122
122
  release_date="2021-08-30",
123
123
  n_parameters=22_700_000,
124
+ n_embedding_parameters=11_720_448,
124
125
  memory_usage_mb=87,
125
126
  embed_dim=384,
126
127
  license="apache-2.0",
@@ -152,6 +153,7 @@ all_minilm_l12_v2 = ModelMeta(
152
153
  revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
153
154
  release_date="2021-08-30",
154
155
  n_parameters=33_400_000,
156
+ n_embedding_parameters=11_720_448,
155
157
  memory_usage_mb=127,
156
158
  embed_dim=384,
157
159
  license="apache-2.0",
@@ -183,6 +185,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
183
185
  revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
184
186
  release_date="2019-11-01", # release date of paper
185
187
  n_parameters=118_000_000,
188
+ n_embedding_parameters=96_014_208,
186
189
  memory_usage_mb=449,
187
190
  embed_dim=768,
188
191
  license="apache-2.0",
@@ -214,6 +217,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
214
217
  revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
215
218
  release_date="2019-11-01", # release date of paper
216
219
  n_parameters=278_000_000,
220
+ n_embedding_parameters=192_001_536,
217
221
  memory_usage_mb=1061,
218
222
  embed_dim=768,
219
223
  license="apache-2.0",
@@ -256,6 +260,7 @@ labse = ModelMeta(
256
260
  revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
257
261
  release_date="2019-11-01", # release date of paper
258
262
  n_parameters=471_000_000,
263
+ n_embedding_parameters=384_885_504,
259
264
  memory_usage_mb=1796,
260
265
  embed_dim=768,
261
266
  license="apache-2.0",
@@ -294,6 +299,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
294
299
  revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
295
300
  release_date="2021-08-30",
296
301
  n_parameters=22_700_000,
302
+ n_embedding_parameters=11_720_448,
297
303
  memory_usage_mb=87,
298
304
  embed_dim=384,
299
305
  license="apache-2.0",
@@ -325,6 +331,7 @@ all_mpnet_base_v2 = ModelMeta(
325
331
  revision="9a3225965996d404b775526de6dbfe85d3368642",
326
332
  release_date="2021-08-30",
327
333
  n_parameters=109_000_000,
334
+ n_embedding_parameters=23_444_736,
328
335
  memory_usage_mb=418,
329
336
  embed_dim=768,
330
337
  license="apache-2.0",
@@ -435,6 +442,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
435
442
  revision="7264ea07c5365a11d7e6d87dbb6195889a13054f",
436
443
  release_date="2025-01-15",
437
444
  n_parameters=108_420_096,
445
+ n_embedding_parameters=None,
438
446
  memory_usage_mb=413,
439
447
  embed_dim=1024,
440
448
  license="apache-2.0",
@@ -468,6 +476,7 @@ contriever = ModelMeta(
468
476
  revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
469
477
  release_date="2022-06-25", # release date of model on HF
470
478
  n_parameters=150_000_000,
479
+ n_embedding_parameters=23_440_896,
471
480
  memory_usage_mb=572,
472
481
  embed_dim=768,
473
482
  license=None,
@@ -498,6 +507,7 @@ microllama_text_embedding = ModelMeta(
498
507
  revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
499
508
  release_date="2024-11-10",
500
509
  n_parameters=272_000_000,
510
+ n_embedding_parameters=32_769_024,
501
511
  memory_usage_mb=1037,
502
512
  embed_dim=1024,
503
513
  license="apache-2.0",
@@ -544,6 +554,7 @@ sentence_t5_base = ModelMeta(
544
554
  revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
545
555
  release_date="2022-02-09",
546
556
  n_parameters=110_000_000,
557
+ n_embedding_parameters=24_674_304,
547
558
  memory_usage_mb=209,
548
559
  embed_dim=768,
549
560
  license="apache-2.0",
@@ -567,6 +578,7 @@ sentence_t5_large = ModelMeta(
567
578
  revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
568
579
  release_date="2022-02-09",
569
580
  n_parameters=335_000_000,
581
+ n_embedding_parameters=32_899_072,
570
582
  memory_usage_mb=639,
571
583
  embed_dim=768,
572
584
  license="apache-2.0",
@@ -590,6 +602,7 @@ sentence_t5_xl = ModelMeta(
590
602
  revision="2965d31b368fb14117688e0bde77cbd720e91f53",
591
603
  release_date="2024-03-27",
592
604
  n_parameters=3_000_000_000,
605
+ n_embedding_parameters=32_899_072,
593
606
  memory_usage_mb=2367,
594
607
  embed_dim=768,
595
608
  license="apache-2.0",
@@ -613,6 +626,7 @@ sentence_t5_xxl = ModelMeta(
613
626
  revision="4d122282ba80e807e9e6eb8c358269e92796365d",
614
627
  release_date="2024-03-27",
615
628
  n_parameters=11_000_000_000,
629
+ n_embedding_parameters=None,
616
630
  memory_usage_mb=9279,
617
631
  embed_dim=768,
618
632
  license="apache-2.0",
@@ -646,6 +660,7 @@ gtr_t5_large = ModelMeta(
646
660
  revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
647
661
  release_date="2022-02-09",
648
662
  n_parameters=335_000_000,
663
+ n_embedding_parameters=32_899_072,
649
664
  memory_usage_mb=639,
650
665
  embed_dim=768,
651
666
  license="apache-2.0",
@@ -681,6 +696,7 @@ gtr_t5_xl = ModelMeta(
681
696
  revision="23a8d667a1ad2578af181ce762867003c498d1bf",
682
697
  release_date="2022-02-09",
683
698
  n_parameters=1_240_000_000,
699
+ n_embedding_parameters=32_899_072,
684
700
  memory_usage_mb=2367,
685
701
  embed_dim=768,
686
702
  license="apache-2.0",
@@ -715,6 +731,7 @@ gtr_t5_xxl = ModelMeta(
715
731
  revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
716
732
  release_date="2022-02-09",
717
733
  n_parameters=4_860_000_000,
734
+ n_embedding_parameters=None,
718
735
  memory_usage_mb=9279,
719
736
  embed_dim=768,
720
737
  license="apache-2.0",
@@ -750,6 +767,7 @@ gtr_t5_base = ModelMeta(
750
767
  revision="7027e9594267928589816394bdd295273ddc0739",
751
768
  release_date="2022-02-09",
752
769
  n_parameters=110_000_000,
770
+ n_embedding_parameters=24_674_304,
753
771
  memory_usage_mb=209,
754
772
  embed_dim=768,
755
773
  license="apache-2.0",
@@ -10,6 +10,7 @@ codemodernbert_crow_meta = ModelMeta(
10
10
  revision="044a7a4b552f86e284817234c336bccf16f895ce",
11
11
  release_date="2025-04-21",
12
12
  n_parameters=151668480,
13
+ n_embedding_parameters=None,
13
14
  memory_usage_mb=607,
14
15
  embed_dim=768,
15
16
  license="apache-2.0",
@@ -1,13 +1,18 @@
1
- from typing import Any
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, Any
2
4
 
3
5
  import torch
4
- from torch.utils.data import DataLoader
5
6
  from tqdm.auto import tqdm
6
7
 
7
- from mteb.abstasks.task_metadata import TaskMetadata
8
8
  from mteb.models.abs_encoder import AbsEncoder
9
9
  from mteb.models.model_meta import ModelMeta, ScoringFunction
10
- from mteb.types import Array, BatchedInput, PromptType
10
+
11
+ if TYPE_CHECKING:
12
+ from torch.utils.data import DataLoader
13
+
14
+ from mteb.abstasks.task_metadata import TaskMetadata
15
+ from mteb.types import Array, BatchedInput, PromptType
11
16
 
12
17
  SIGLIP_CITATION = """@misc{zhai2023sigmoid,
13
18
  title={Sigmoid Loss for Language Image Pre-Training},
@@ -131,6 +136,7 @@ siglip_so400m_patch14_224 = ModelMeta(
131
136
  release_date="2024-01-08",
132
137
  modalities=["image", "text"],
133
138
  n_parameters=877_000_000,
139
+ n_embedding_parameters=None,
134
140
  memory_usage_mb=3347,
135
141
  max_tokens=16,
136
142
  embed_dim=1152,
@@ -155,6 +161,7 @@ siglip_so400m_patch14_384 = ModelMeta(
155
161
  release_date="2024-01-08",
156
162
  modalities=["image", "text"],
157
163
  n_parameters=878_000_000,
164
+ n_embedding_parameters=None,
158
165
  memory_usage_mb=3349,
159
166
  max_tokens=64,
160
167
  embed_dim=1152,
@@ -179,6 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
179
186
  release_date="2024-01-08",
180
187
  modalities=["image", "text"],
181
188
  n_parameters=1_130_000_000,
189
+ n_embedding_parameters=None,
182
190
  memory_usage_mb=4306,
183
191
  max_tokens=64,
184
192
  embed_dim=1152,
@@ -203,6 +211,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
203
211
  release_date="2024-01-08",
204
212
  modalities=["image", "text"],
205
213
  n_parameters=371_000_000,
214
+ n_embedding_parameters=None,
206
215
  memory_usage_mb=1414,
207
216
  max_tokens=64,
208
217
  embed_dim=768,
@@ -227,6 +236,7 @@ siglip_base_patch16_256 = ModelMeta(
227
236
  release_date="2024-01-08",
228
237
  modalities=["image", "text"],
229
238
  n_parameters=203_000_000,
239
+ n_embedding_parameters=None,
230
240
  memory_usage_mb=775,
231
241
  max_tokens=64,
232
242
  embed_dim=768,
@@ -251,6 +261,7 @@ siglip_base_patch16_512 = ModelMeta(
251
261
  release_date="2024-01-08",
252
262
  modalities=["image", "text"],
253
263
  n_parameters=204_000_000,
264
+ n_embedding_parameters=None,
254
265
  memory_usage_mb=777,
255
266
  max_tokens=64,
256
267
  embed_dim=768,
@@ -275,6 +286,7 @@ siglip_base_patch16_384 = ModelMeta(
275
286
  release_date="2024-01-08",
276
287
  modalities=["image", "text"],
277
288
  n_parameters=203_000_000,
289
+ n_embedding_parameters=None,
278
290
  memory_usage_mb=776,
279
291
  max_tokens=64,
280
292
  embed_dim=768,
@@ -299,6 +311,7 @@ siglip_base_patch16_224 = ModelMeta(
299
311
  release_date="2024-01-08",
300
312
  modalities=["image", "text"],
301
313
  n_parameters=203_000_000,
314
+ n_embedding_parameters=None,
302
315
  memory_usage_mb=775,
303
316
  max_tokens=64,
304
317
  embed_dim=768,
@@ -323,6 +336,7 @@ siglip_large_patch16_256 = ModelMeta(
323
336
  release_date="2024-01-08",
324
337
  modalities=["image", "text"],
325
338
  n_parameters=652_000_000,
339
+ n_embedding_parameters=None,
326
340
  memory_usage_mb=2488,
327
341
  max_tokens=64,
328
342
  embed_dim=1024,
@@ -347,6 +361,7 @@ siglip_large_patch16_384 = ModelMeta(
347
361
  release_date="2024-01-08",
348
362
  modalities=["image", "text"],
349
363
  n_parameters=652_000_000,
364
+ n_embedding_parameters=None,
350
365
  memory_usage_mb=2489,
351
366
  max_tokens=64,
352
367
  embed_dim=1024,
@@ -13,24 +13,27 @@ Based on:
13
13
  from __future__ import annotations
14
14
 
15
15
  import logging
16
- from typing import Any
16
+ from typing import TYPE_CHECKING, Any
17
17
 
18
18
  import torch
19
- from torch.utils.data import DataLoader
20
19
  from tqdm.auto import tqdm
21
20
 
22
21
  from mteb._requires_package import (
23
22
  requires_image_dependencies,
24
23
  requires_package,
25
24
  )
26
- from mteb.abstasks.task_metadata import TaskMetadata
27
25
  from mteb.models.abs_encoder import AbsEncoder
28
26
  from mteb.models.model_implementations.colpali_models import (
29
27
  COLPALI_CITATION,
30
28
  COLPALI_TRAINING_DATA,
31
29
  )
32
30
  from mteb.models.model_meta import ModelMeta, ScoringFunction
33
- from mteb.types import Array, BatchedInput, PromptType
31
+
32
+ if TYPE_CHECKING:
33
+ from torch.utils.data import DataLoader
34
+
35
+ from mteb.abstasks.task_metadata import TaskMetadata
36
+ from mteb.types import Array, BatchedInput, PromptType
34
37
 
35
38
  logger = logging.getLogger(__name__)
36
39
 
@@ -224,7 +224,8 @@ sonar = ModelMeta(
224
224
  use_instructions=False, # it does take a language code as input
225
225
  revision="a551c586dcf4a49c8fd847de369412d556a7f2f2",
226
226
  release_date="2021-05-21",
227
- n_parameters=None, # it is really multiple models so not sure how to calculate this
227
+ n_parameters=None,
228
+ n_embedding_parameters=None, # it is really multiple models so not sure how to calculate this
228
229
  max_tokens=512, # https://github.com/facebookresearch/SONAR/blob/549d287466443bd8720f938047882630c1c5c3f7/sonar/models/sonar_text/builder.py#L139
229
230
  embed_dim=1024,
230
231
  license="mit",
@@ -12,6 +12,7 @@ spartan8806_atles_champion_embedding = ModelMeta(
12
12
  revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
13
13
  release_date="2025-11-15",
14
14
  n_parameters=110_000_000,
15
+ n_embedding_parameters=23_444_736,
15
16
  memory_usage_mb=420,
16
17
  max_tokens=512,
17
18
  embed_dim=768,
@@ -66,6 +66,7 @@ stella_en_400m = ModelMeta(
66
66
  revision="1bb50bc7bb726810eac2140e62155b88b0df198f",
67
67
  release_date="2024-07-12",
68
68
  n_parameters=435_000_000,
69
+ n_embedding_parameters=None,
69
70
  memory_usage_mb=1660,
70
71
  max_tokens=8192,
71
72
  embed_dim=4096,
@@ -101,6 +102,7 @@ stella_en_1_5b = ModelMeta(
101
102
  revision="d03be74b361d4eb24f42a2fe5bd2e29917df4604",
102
103
  release_date="2024-07-12",
103
104
  n_parameters=1_540_000_000,
105
+ n_embedding_parameters=232_928_256,
104
106
  memory_usage_mb=5887,
105
107
  max_tokens=131072,
106
108
  embed_dim=8960,
@@ -130,6 +132,7 @@ stella_large_zh_v3_1792d = ModelMeta(
130
132
  revision="d5d39eb8cd11c80a63df53314e59997074469f09",
131
133
  release_date="2024-02-17",
132
134
  n_parameters=None,
135
+ n_embedding_parameters=21_635_072,
133
136
  memory_usage_mb=None, # can't see on model card
134
137
  embed_dim=1792,
135
138
  license="not specified",
@@ -157,6 +160,7 @@ stella_base_zh_v3_1792d = ModelMeta(
157
160
  revision="82254892a0fba125aa2abf3a4800d2dd12821343",
158
161
  release_date="2024-02-17",
159
162
  n_parameters=None,
163
+ n_embedding_parameters=16_226_304,
160
164
  memory_usage_mb=None, # can't see on model card
161
165
  embed_dim=1792,
162
166
  license="mit",
@@ -185,6 +189,7 @@ stella_mrl_large_zh_v3_5_1792d = ModelMeta(
185
189
  revision="17bb1c32a93a8fc5f6fc9e91d5ea86da99983cfe",
186
190
  release_date="2024-02-27",
187
191
  n_parameters=int(326 * 1e6),
192
+ n_embedding_parameters=21_635_072,
188
193
  memory_usage_mb=1242,
189
194
  embed_dim=1792,
190
195
  license="mit",
@@ -209,6 +214,7 @@ zpoint_large_embedding_zh = ModelMeta(
209
214
  revision="b1075144f440ab4409c05622c1179130ebd57d03",
210
215
  release_date="2024-06-04",
211
216
  n_parameters=int(326 * 1e6),
217
+ n_embedding_parameters=21_635_072,
212
218
  memory_usage_mb=1242,
213
219
  embed_dim=1792,
214
220
  license="mit",
@@ -327,6 +327,7 @@ tarka_embedding_150m_v1 = ModelMeta(
327
327
  revision="b0ffecc4ef0d873e517507ed080e43b88b2704b9",
328
328
  release_date="2025-11-04",
329
329
  n_parameters=155_714_304,
330
+ n_embedding_parameters=None,
330
331
  embed_dim=768,
331
332
  max_tokens=2048,
332
333
  license="gemma",
@@ -361,6 +362,7 @@ tarka_embedding_350m_v1 = ModelMeta(
361
362
  revision="a850d6a329145474727424fed6b12b62096b8ba3",
362
363
  release_date="2025-11-11",
363
364
  n_parameters=354_483_968,
365
+ n_embedding_parameters=None,
364
366
  memory_usage_mb=676,
365
367
  embed_dim=1024,
366
368
  max_tokens=128000,
@@ -22,6 +22,7 @@ text2vec_base_chinese = ModelMeta(
22
22
  revision="183bb99aa7af74355fb58d16edf8c13ae7c5433e",
23
23
  release_date="2022-01-23",
24
24
  n_parameters=int(102 * 1e6),
25
+ n_embedding_parameters=16_226_304,
25
26
  embed_dim=768,
26
27
  license="apache-2.0",
27
28
  max_tokens=512,
@@ -51,6 +52,7 @@ text2vec_base_chinese_paraphrase = ModelMeta(
51
52
  revision="e90c150a9c7fb55a67712a766d6820c55fb83cdd",
52
53
  release_date="2023-06-19",
53
54
  n_parameters=118 * 1e6,
55
+ n_embedding_parameters=30_720_000,
54
56
  memory_usage_mb=450,
55
57
  embed_dim=768,
56
58
  license="apache-2.0",
@@ -95,6 +97,7 @@ text2vec_base_multilingual = ModelMeta(
95
97
  # So probably best not to.
96
98
  loader=sentence_transformers_loader,
97
99
  n_parameters=117654272,
100
+ n_embedding_parameters=96_014_208,
98
101
  memory_usage_mb=449,
99
102
  embed_dim=384,
100
103
  license="apache-2.0",
@@ -8,6 +8,7 @@ xlm_roberta_ua_distilled = ModelMeta(
8
8
  model_type=["dense"],
9
9
  loader=sentence_transformers_loader,
10
10
  n_parameters=278_000_000,
11
+ n_embedding_parameters=192_001_536,
11
12
  memory_usage_mb=1061,
12
13
  max_tokens=512,
13
14
  embed_dim=768,
@@ -1,13 +1,18 @@
1
+ from __future__ import annotations
2
+
1
3
  import logging
2
- from typing import Any
4
+ from typing import TYPE_CHECKING, Any
3
5
 
4
6
  import torch
5
- from torch.utils.data import DataLoader
6
7
 
7
- from mteb.abstasks.task_metadata import TaskMetadata
8
8
  from mteb.models.model_meta import ModelMeta, ScoringFunction
9
9
  from mteb.models.sentence_transformer_wrapper import SentenceTransformerEncoderWrapper
10
- from mteb.types import Array, BatchedInput, PromptType
10
+
11
+ if TYPE_CHECKING:
12
+ from torch.utils.data import DataLoader
13
+
14
+ from mteb.abstasks.task_metadata import TaskMetadata
15
+ from mteb.types import Array, BatchedInput, PromptType
11
16
 
12
17
  logger = logging.getLogger(__name__)
13
18
 
@@ -67,6 +72,7 @@ uae_large_v1 = ModelMeta(
67
72
  revision="369c368f70f16a613f19f5598d4f12d9f44235d4",
68
73
  release_date="2023-12-04", # initial commit of hf model.
69
74
  n_parameters=int(335 * 1e6),
75
+ n_embedding_parameters=31_254_528,
70
76
  memory_usage_mb=1278,
71
77
  max_tokens=512,
72
78
  embed_dim=1024,
@@ -1,6 +1,12 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
1
5
  from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
2
6
  from mteb.models.model_meta import ModelMeta, ScoringFunction
3
- from mteb.types import PromptType
7
+
8
+ if TYPE_CHECKING:
9
+ from mteb.types import PromptType
4
10
 
5
11
 
6
12
  def instruction_template(
@@ -32,6 +38,7 @@ vdr_2b_multi_v1 = ModelMeta(
32
38
  release_date="2024-01-08",
33
39
  modalities=["text"], # TODO: integrate with image
34
40
  n_parameters=2_000_000_000,
41
+ n_embedding_parameters=233_373_696,
35
42
  memory_usage_mb=4213,
36
43
  max_tokens=32768,
37
44
  embed_dim=1536,