mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +16 -9
- mteb/_evaluators/any_sts_evaluator.py +10 -5
- mteb/_evaluators/clustering_evaluator.py +10 -4
- mteb/_evaluators/evaluator.py +9 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
- mteb/_evaluators/pair_classification_evaluator.py +10 -5
- mteb/_evaluators/retrieval_evaluator.py +19 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +14 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
- mteb/_evaluators/text/summarization_evaluator.py +8 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +17 -9
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +15 -6
- mteb/abstasks/clustering.py +17 -8
- mteb/abstasks/clustering_legacy.py +14 -6
- mteb/abstasks/image/image_text_pair_classification.py +17 -7
- mteb/abstasks/multilabel_classification.py +11 -5
- mteb/abstasks/pair_classification.py +19 -9
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +28 -17
- mteb/abstasks/retrieval_dataset_loaders.py +11 -8
- mteb/abstasks/sts.py +19 -10
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +14 -7
- mteb/abstasks/text/summarization.py +17 -7
- mteb/abstasks/zeroshot_classification.py +15 -7
- mteb/benchmarks/_create_table.py +13 -3
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +20 -18
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +7 -3
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +11 -4
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +22 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +16 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +22 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +25 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +19 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +19 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +15 -9
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/clustering/nob/snl_clustering.py +7 -2
- mteb/tasks/clustering/nob/vg_clustering.py +7 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -18,6 +18,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
|
18
18
|
release_date="2024-10-31",
|
|
19
19
|
languages=["eng-Latn"],
|
|
20
20
|
n_parameters=7110660096,
|
|
21
|
+
n_embedding_parameters=None,
|
|
21
22
|
memory_usage_mb=13563,
|
|
22
23
|
max_tokens=32768.0,
|
|
23
24
|
embed_dim=None,
|
|
@@ -47,6 +48,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
47
48
|
languages=[],
|
|
48
49
|
loader=sentence_transformers_loader,
|
|
49
50
|
n_parameters=278043648,
|
|
51
|
+
n_embedding_parameters=192_001_536,
|
|
50
52
|
memory_usage_mb=1061,
|
|
51
53
|
max_tokens=514.0,
|
|
52
54
|
embed_dim=768,
|
|
@@ -148,6 +150,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
|
148
150
|
languages=["eng-Latn"],
|
|
149
151
|
loader=sentence_transformers_loader,
|
|
150
152
|
n_parameters=None,
|
|
153
|
+
n_embedding_parameters=None,
|
|
151
154
|
memory_usage_mb=None,
|
|
152
155
|
max_tokens=None,
|
|
153
156
|
embed_dim=768,
|
|
@@ -215,6 +218,7 @@ Jaume__gemma_2b_embeddings = ModelMeta(
|
|
|
215
218
|
languages=[],
|
|
216
219
|
loader=sentence_transformers_loader,
|
|
217
220
|
n_parameters=2506172416,
|
|
221
|
+
n_embedding_parameters=None,
|
|
218
222
|
memory_usage_mb=9560,
|
|
219
223
|
max_tokens=8192.0,
|
|
220
224
|
embed_dim=2048,
|
|
@@ -250,6 +254,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
|
250
254
|
trust_remote_code=True,
|
|
251
255
|
),
|
|
252
256
|
n_parameters=278043648,
|
|
257
|
+
n_embedding_parameters=192_001_536,
|
|
253
258
|
memory_usage_mb=1061,
|
|
254
259
|
max_tokens=514.0,
|
|
255
260
|
embed_dim=768,
|
|
@@ -299,6 +304,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
|
299
304
|
trust_remote_code=True,
|
|
300
305
|
),
|
|
301
306
|
n_parameters=559890432,
|
|
307
|
+
n_embedding_parameters=256_002_048,
|
|
302
308
|
memory_usage_mb=2136,
|
|
303
309
|
max_tokens=514.0,
|
|
304
310
|
embed_dim=1024,
|
|
@@ -348,6 +354,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
|
348
354
|
trust_remote_code=True,
|
|
349
355
|
),
|
|
350
356
|
n_parameters=117653760,
|
|
357
|
+
n_embedding_parameters=96_014_208,
|
|
351
358
|
memory_usage_mb=449,
|
|
352
359
|
max_tokens=512.0,
|
|
353
360
|
embed_dim=384,
|
|
@@ -394,6 +401,7 @@ Mihaiii__Bulbasaur = ModelMeta(
|
|
|
394
401
|
languages=None,
|
|
395
402
|
loader=sentence_transformers_loader,
|
|
396
403
|
n_parameters=17389824,
|
|
404
|
+
n_embedding_parameters=11_720_448,
|
|
397
405
|
memory_usage_mb=66,
|
|
398
406
|
max_tokens=512.0,
|
|
399
407
|
embed_dim=384,
|
|
@@ -418,6 +426,7 @@ Mihaiii__Ivysaur = ModelMeta(
|
|
|
418
426
|
languages=None,
|
|
419
427
|
loader=sentence_transformers_loader,
|
|
420
428
|
n_parameters=22713216,
|
|
429
|
+
n_embedding_parameters=11_720_448,
|
|
421
430
|
memory_usage_mb=87,
|
|
422
431
|
max_tokens=512.0,
|
|
423
432
|
embed_dim=384,
|
|
@@ -442,6 +451,7 @@ Mihaiii__Squirtle = ModelMeta(
|
|
|
442
451
|
languages=None,
|
|
443
452
|
loader=sentence_transformers_loader,
|
|
444
453
|
n_parameters=15615360,
|
|
454
|
+
n_embedding_parameters=11_720_448,
|
|
445
455
|
memory_usage_mb=60,
|
|
446
456
|
max_tokens=512.0,
|
|
447
457
|
embed_dim=384,
|
|
@@ -466,6 +476,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
466
476
|
languages=None,
|
|
467
477
|
loader=sentence_transformers_loader,
|
|
468
478
|
n_parameters=15615360,
|
|
479
|
+
n_embedding_parameters=11_720_448,
|
|
469
480
|
memory_usage_mb=60,
|
|
470
481
|
max_tokens=512.0,
|
|
471
482
|
embed_dim=384,
|
|
@@ -490,6 +501,7 @@ Mihaiii__Wartortle = ModelMeta(
|
|
|
490
501
|
languages=None,
|
|
491
502
|
loader=sentence_transformers_loader,
|
|
492
503
|
n_parameters=17389824,
|
|
504
|
+
n_embedding_parameters=11_720_448,
|
|
493
505
|
memory_usage_mb=66,
|
|
494
506
|
max_tokens=512.0,
|
|
495
507
|
embed_dim=384,
|
|
@@ -514,6 +526,7 @@ Mihaiii__gte_micro = ModelMeta(
|
|
|
514
526
|
languages=None,
|
|
515
527
|
loader=sentence_transformers_loader,
|
|
516
528
|
n_parameters=17389824,
|
|
529
|
+
n_embedding_parameters=11_720_448,
|
|
517
530
|
memory_usage_mb=66,
|
|
518
531
|
max_tokens=512.0,
|
|
519
532
|
embed_dim=384,
|
|
@@ -537,6 +550,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
|
|
|
537
550
|
languages=None,
|
|
538
551
|
loader=sentence_transformers_loader,
|
|
539
552
|
n_parameters=19164288,
|
|
553
|
+
n_embedding_parameters=11_720_448,
|
|
540
554
|
memory_usage_mb=73,
|
|
541
555
|
max_tokens=512.0,
|
|
542
556
|
embed_dim=384,
|
|
@@ -560,6 +574,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
|
560
574
|
languages=["fra-Latn"],
|
|
561
575
|
loader=sentence_transformers_loader,
|
|
562
576
|
n_parameters=559890432,
|
|
577
|
+
n_embedding_parameters=256_002_048,
|
|
563
578
|
memory_usage_mb=2136,
|
|
564
579
|
max_tokens=514.0,
|
|
565
580
|
embed_dim=1024,
|
|
@@ -583,6 +598,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
583
598
|
languages=["ara-Arab"],
|
|
584
599
|
loader=sentence_transformers_loader,
|
|
585
600
|
n_parameters=135193344,
|
|
601
|
+
n_embedding_parameters=49_152_000,
|
|
586
602
|
memory_usage_mb=516,
|
|
587
603
|
max_tokens=512.0,
|
|
588
604
|
embed_dim=768,
|
|
@@ -615,6 +631,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
|
|
|
615
631
|
languages=["ara-Arab"],
|
|
616
632
|
loader=sentence_transformers_loader,
|
|
617
633
|
n_parameters=117653760,
|
|
634
|
+
n_embedding_parameters=96_014_208,
|
|
618
635
|
memory_usage_mb=449,
|
|
619
636
|
max_tokens=512.0,
|
|
620
637
|
embed_dim=384,
|
|
@@ -640,6 +657,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
640
657
|
languages=["ara-Arab"],
|
|
641
658
|
loader=sentence_transformers_loader,
|
|
642
659
|
n_parameters=278043648,
|
|
660
|
+
n_embedding_parameters=192_001_536,
|
|
643
661
|
memory_usage_mb=1061,
|
|
644
662
|
max_tokens=514.0,
|
|
645
663
|
embed_dim=768,
|
|
@@ -674,6 +692,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
|
674
692
|
languages=["ara-Arab"],
|
|
675
693
|
loader=sentence_transformers_loader,
|
|
676
694
|
n_parameters=470926848,
|
|
695
|
+
n_embedding_parameters=384_885_504,
|
|
677
696
|
memory_usage_mb=1796,
|
|
678
697
|
max_tokens=512.0,
|
|
679
698
|
embed_dim=768,
|
|
@@ -708,6 +727,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
|
708
727
|
languages=["ara-Arab"],
|
|
709
728
|
loader=sentence_transformers_loader,
|
|
710
729
|
n_parameters=109486464,
|
|
730
|
+
n_embedding_parameters=23_444_736,
|
|
711
731
|
memory_usage_mb=418,
|
|
712
732
|
max_tokens=514.0,
|
|
713
733
|
embed_dim=768,
|
|
@@ -742,6 +762,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
742
762
|
languages=["ara-Arab"],
|
|
743
763
|
loader=sentence_transformers_loader,
|
|
744
764
|
n_parameters=162841344,
|
|
765
|
+
n_embedding_parameters=76_800_000,
|
|
745
766
|
memory_usage_mb=621,
|
|
746
767
|
max_tokens=512.0,
|
|
747
768
|
embed_dim=768,
|
|
@@ -774,6 +795,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
|
774
795
|
languages=None,
|
|
775
796
|
loader=sentence_transformers_loader,
|
|
776
797
|
n_parameters=None,
|
|
798
|
+
n_embedding_parameters=31_254_528,
|
|
777
799
|
memory_usage_mb=None,
|
|
778
800
|
max_tokens=512.0,
|
|
779
801
|
embed_dim=1024,
|
|
@@ -797,6 +819,7 @@ consciousai__cai_stellaris_text_embeddings = ModelMeta(
|
|
|
797
819
|
languages=None,
|
|
798
820
|
loader=sentence_transformers_loader,
|
|
799
821
|
n_parameters=None,
|
|
822
|
+
n_embedding_parameters=None,
|
|
800
823
|
memory_usage_mb=None,
|
|
801
824
|
max_tokens=514.0,
|
|
802
825
|
embed_dim=768,
|
|
@@ -829,6 +852,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
|
829
852
|
languages=None,
|
|
830
853
|
loader=sentence_transformers_loader,
|
|
831
854
|
n_parameters=1279887360,
|
|
855
|
+
n_embedding_parameters=65_536_000,
|
|
832
856
|
memory_usage_mb=2441,
|
|
833
857
|
max_tokens=2048.0,
|
|
834
858
|
embed_dim=2048,
|
|
@@ -852,6 +876,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
|
852
876
|
languages=None,
|
|
853
877
|
loader=sentence_transformers_loader,
|
|
854
878
|
n_parameters=1279887360,
|
|
879
|
+
n_embedding_parameters=65_536_000,
|
|
855
880
|
memory_usage_mb=2441,
|
|
856
881
|
max_tokens=2048.0,
|
|
857
882
|
embed_dim=2048,
|
|
@@ -875,6 +900,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
|
875
900
|
languages=["fra-Latn", "eng-Latn"],
|
|
876
901
|
loader=sentence_transformers_loader,
|
|
877
902
|
n_parameters=1279887360,
|
|
903
|
+
n_embedding_parameters=65_536_000,
|
|
878
904
|
memory_usage_mb=2441,
|
|
879
905
|
max_tokens=2048.0,
|
|
880
906
|
embed_dim=2048,
|
|
@@ -899,6 +925,7 @@ thenlper__gte_base = ModelMeta(
|
|
|
899
925
|
languages=["eng-Latn"],
|
|
900
926
|
loader=sentence_transformers_loader,
|
|
901
927
|
n_parameters=109482752,
|
|
928
|
+
n_embedding_parameters=23_440_896,
|
|
902
929
|
memory_usage_mb=209,
|
|
903
930
|
max_tokens=512.0,
|
|
904
931
|
embed_dim=768,
|
|
@@ -928,6 +955,7 @@ thenlper__gte_large = ModelMeta(
|
|
|
928
955
|
languages=["eng-Latn"],
|
|
929
956
|
loader=sentence_transformers_loader,
|
|
930
957
|
n_parameters=335142400,
|
|
958
|
+
n_embedding_parameters=31_254_528,
|
|
931
959
|
memory_usage_mb=639,
|
|
932
960
|
max_tokens=512.0,
|
|
933
961
|
embed_dim=1024,
|
|
@@ -957,6 +985,7 @@ thenlper__gte_small = ModelMeta(
|
|
|
957
985
|
languages=["eng-Latn"],
|
|
958
986
|
loader=sentence_transformers_loader,
|
|
959
987
|
n_parameters=33360512,
|
|
988
|
+
n_embedding_parameters=11_720_448,
|
|
960
989
|
memory_usage_mb=64,
|
|
961
990
|
max_tokens=512.0,
|
|
962
991
|
embed_dim=384,
|
|
@@ -986,6 +1015,7 @@ OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
|
986
1015
|
languages=["pol-Latn"],
|
|
987
1016
|
loader=sentence_transformers_loader,
|
|
988
1017
|
n_parameters=103705344,
|
|
1018
|
+
n_embedding_parameters=None,
|
|
989
1019
|
memory_usage_mb=396,
|
|
990
1020
|
max_tokens=512.0,
|
|
991
1021
|
embed_dim=768,
|
|
@@ -1009,6 +1039,7 @@ OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
|
1009
1039
|
languages=["pol-Latn"],
|
|
1010
1040
|
loader=sentence_transformers_loader,
|
|
1011
1041
|
n_parameters=None,
|
|
1042
|
+
n_embedding_parameters=None,
|
|
1012
1043
|
memory_usage_mb=None,
|
|
1013
1044
|
max_tokens=514.0,
|
|
1014
1045
|
embed_dim=768,
|
|
@@ -1032,6 +1063,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1032
1063
|
languages=["pol-Latn"],
|
|
1033
1064
|
loader=sentence_transformers_loader,
|
|
1034
1065
|
n_parameters=278043648,
|
|
1066
|
+
n_embedding_parameters=192_001_536,
|
|
1035
1067
|
memory_usage_mb=1061,
|
|
1036
1068
|
max_tokens=514.0,
|
|
1037
1069
|
embed_dim=768,
|
|
@@ -1063,6 +1095,7 @@ dwzhu__e5_base_4k = ModelMeta(
|
|
|
1063
1095
|
languages=["eng-Latn"],
|
|
1064
1096
|
loader=sentence_transformers_loader,
|
|
1065
1097
|
n_parameters=None,
|
|
1098
|
+
n_embedding_parameters=23_440_896,
|
|
1066
1099
|
memory_usage_mb=None,
|
|
1067
1100
|
max_tokens=4096.0,
|
|
1068
1101
|
embed_dim=None,
|
|
@@ -1092,6 +1125,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1092
1125
|
languages=["pol-Latn"],
|
|
1093
1126
|
loader=sentence_transformers_loader,
|
|
1094
1127
|
n_parameters=559890432,
|
|
1128
|
+
n_embedding_parameters=256_002_048,
|
|
1095
1129
|
memory_usage_mb=2136,
|
|
1096
1130
|
max_tokens=514.0,
|
|
1097
1131
|
embed_dim=1024,
|
|
@@ -1123,6 +1157,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1123
1157
|
languages=["pol-Latn"],
|
|
1124
1158
|
loader=sentence_transformers_loader,
|
|
1125
1159
|
n_parameters=117653760,
|
|
1160
|
+
n_embedding_parameters=96_014_208,
|
|
1126
1161
|
memory_usage_mb=449,
|
|
1127
1162
|
max_tokens=512.0,
|
|
1128
1163
|
embed_dim=384,
|
|
@@ -1154,6 +1189,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1154
1189
|
languages=["pol-Latn"],
|
|
1155
1190
|
loader=sentence_transformers_loader,
|
|
1156
1191
|
n_parameters=124442880,
|
|
1192
|
+
n_embedding_parameters=38_400_768,
|
|
1157
1193
|
memory_usage_mb=475,
|
|
1158
1194
|
max_tokens=514.0,
|
|
1159
1195
|
embed_dim=768,
|
|
@@ -1185,6 +1221,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
|
|
|
1185
1221
|
languages=["pol-Latn"],
|
|
1186
1222
|
loader=sentence_transformers_loader,
|
|
1187
1223
|
n_parameters=434961408,
|
|
1224
|
+
n_embedding_parameters=131_073_024,
|
|
1188
1225
|
memory_usage_mb=1659,
|
|
1189
1226
|
max_tokens=514.0,
|
|
1190
1227
|
embed_dim=1024,
|
|
@@ -1271,6 +1308,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
|
|
|
1271
1308
|
languages=udever_languages,
|
|
1272
1309
|
loader=sentence_transformers_loader,
|
|
1273
1310
|
n_parameters=None,
|
|
1311
|
+
n_embedding_parameters=385_351_680,
|
|
1274
1312
|
memory_usage_mb=None,
|
|
1275
1313
|
max_tokens=None,
|
|
1276
1314
|
embed_dim=None,
|
|
@@ -1300,6 +1338,7 @@ izhx__udever_bloom_3b = ModelMeta(
|
|
|
1300
1338
|
languages=udever_languages,
|
|
1301
1339
|
loader=sentence_transformers_loader,
|
|
1302
1340
|
n_parameters=None,
|
|
1341
|
+
n_embedding_parameters=642_252_800,
|
|
1303
1342
|
memory_usage_mb=None,
|
|
1304
1343
|
max_tokens=None,
|
|
1305
1344
|
embed_dim=None,
|
|
@@ -1329,6 +1368,7 @@ izhx__udever_bloom_560m = ModelMeta(
|
|
|
1329
1368
|
languages=udever_languages,
|
|
1330
1369
|
loader=sentence_transformers_loader,
|
|
1331
1370
|
n_parameters=None,
|
|
1371
|
+
n_embedding_parameters=256_901_120,
|
|
1332
1372
|
memory_usage_mb=None,
|
|
1333
1373
|
max_tokens=None,
|
|
1334
1374
|
embed_dim=None,
|
|
@@ -1358,6 +1398,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
|
|
|
1358
1398
|
languages=udever_languages,
|
|
1359
1399
|
loader=sentence_transformers_loader,
|
|
1360
1400
|
n_parameters=None,
|
|
1401
|
+
n_embedding_parameters=1_027_604_480,
|
|
1361
1402
|
memory_usage_mb=None,
|
|
1362
1403
|
max_tokens=None,
|
|
1363
1404
|
embed_dim=None,
|
|
@@ -1387,6 +1428,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
|
1387
1428
|
languages=["eng-Latn"],
|
|
1388
1429
|
loader=sentence_transformers_loader,
|
|
1389
1430
|
n_parameters=109482240,
|
|
1431
|
+
n_embedding_parameters=23_440_896,
|
|
1390
1432
|
memory_usage_mb=418,
|
|
1391
1433
|
max_tokens=512.0,
|
|
1392
1434
|
embed_dim=768,
|
|
@@ -1437,6 +1479,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
|
1437
1479
|
languages=["eng-Latn"],
|
|
1438
1480
|
loader=sentence_transformers_loader,
|
|
1439
1481
|
n_parameters=22713216,
|
|
1482
|
+
n_embedding_parameters=11_720_448,
|
|
1440
1483
|
memory_usage_mb=87,
|
|
1441
1484
|
max_tokens=512.0,
|
|
1442
1485
|
embed_dim=384,
|
|
@@ -1487,6 +1530,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
|
1487
1530
|
languages=["eng-Latn"],
|
|
1488
1531
|
loader=sentence_transformers_loader,
|
|
1489
1532
|
n_parameters=335141888,
|
|
1533
|
+
n_embedding_parameters=31_254_528,
|
|
1490
1534
|
memory_usage_mb=1278,
|
|
1491
1535
|
max_tokens=512.0,
|
|
1492
1536
|
embed_dim=1024,
|
|
@@ -1537,6 +1581,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
|
1537
1581
|
languages=["eng-Latn"],
|
|
1538
1582
|
loader=sentence_transformers_loader,
|
|
1539
1583
|
n_parameters=33360000,
|
|
1584
|
+
n_embedding_parameters=11_720_448,
|
|
1540
1585
|
memory_usage_mb=127,
|
|
1541
1586
|
max_tokens=512.0,
|
|
1542
1587
|
embed_dim=384,
|
|
@@ -1587,6 +1632,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
|
1587
1632
|
languages=None,
|
|
1588
1633
|
loader=sentence_transformers_loader,
|
|
1589
1634
|
n_parameters=None,
|
|
1635
|
+
n_embedding_parameters=1_026_793_472,
|
|
1590
1636
|
memory_usage_mb=None,
|
|
1591
1637
|
max_tokens=None,
|
|
1592
1638
|
embed_dim=4096,
|
|
@@ -1616,6 +1662,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
|
1616
1662
|
languages=["deu-Latn"],
|
|
1617
1663
|
loader=sentence_transformers_loader,
|
|
1618
1664
|
n_parameters=335736320,
|
|
1665
|
+
n_embedding_parameters=31_848_448,
|
|
1619
1666
|
memory_usage_mb=1281,
|
|
1620
1667
|
max_tokens=512.0,
|
|
1621
1668
|
embed_dim=1024,
|
|
@@ -1640,6 +1687,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
|
|
|
1640
1687
|
languages=["eng-Latn"],
|
|
1641
1688
|
loader=sentence_transformers_loader,
|
|
1642
1689
|
n_parameters=33360000,
|
|
1690
|
+
n_embedding_parameters=11_720_448,
|
|
1643
1691
|
memory_usage_mb=127,
|
|
1644
1692
|
max_tokens=512.0,
|
|
1645
1693
|
embed_dim=384,
|
|
@@ -1678,6 +1726,7 @@ avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
|
|
|
1678
1726
|
languages=["eng-Latn"],
|
|
1679
1727
|
loader=sentence_transformers_loader,
|
|
1680
1728
|
n_parameters=33360000,
|
|
1729
|
+
n_embedding_parameters=11720448,
|
|
1681
1730
|
memory_usage_mb=127,
|
|
1682
1731
|
max_tokens=512.0,
|
|
1683
1732
|
embed_dim=384,
|
|
@@ -1701,6 +1750,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
|
|
|
1701
1750
|
languages=["eng-Latn"],
|
|
1702
1751
|
loader=sentence_transformers_loader,
|
|
1703
1752
|
n_parameters=22713216,
|
|
1753
|
+
n_embedding_parameters=11_720_448,
|
|
1704
1754
|
memory_usage_mb=87,
|
|
1705
1755
|
max_tokens=512.0,
|
|
1706
1756
|
embed_dim=384,
|
|
@@ -1724,6 +1774,7 @@ deepfile__embedder_100p = ModelMeta(
|
|
|
1724
1774
|
languages=None,
|
|
1725
1775
|
loader=sentence_transformers_loader,
|
|
1726
1776
|
n_parameters=None,
|
|
1777
|
+
n_embedding_parameters=192_001_536,
|
|
1727
1778
|
memory_usage_mb=1061,
|
|
1728
1779
|
max_tokens=514.0,
|
|
1729
1780
|
embed_dim=768,
|
|
@@ -1747,6 +1798,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
|
|
|
1747
1798
|
languages=["eng-Latn"],
|
|
1748
1799
|
loader=sentence_transformers_loader,
|
|
1749
1800
|
n_parameters=None,
|
|
1801
|
+
n_embedding_parameters=23_440_896,
|
|
1750
1802
|
memory_usage_mb=None,
|
|
1751
1803
|
max_tokens=512.0,
|
|
1752
1804
|
embed_dim=None,
|
|
@@ -1770,6 +1822,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
|
|
|
1770
1822
|
languages=None,
|
|
1771
1823
|
loader=sentence_transformers_loader,
|
|
1772
1824
|
n_parameters=98688000,
|
|
1825
|
+
n_embedding_parameters=None,
|
|
1773
1826
|
memory_usage_mb=158,
|
|
1774
1827
|
max_tokens=512.0,
|
|
1775
1828
|
embed_dim=1024,
|
|
@@ -1793,6 +1846,7 @@ omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
|
|
|
1793
1846
|
languages=["ara-Arab", "eng-Latn"],
|
|
1794
1847
|
loader=sentence_transformers_loader,
|
|
1795
1848
|
n_parameters=559890432,
|
|
1849
|
+
n_embedding_parameters=256_002_048,
|
|
1796
1850
|
memory_usage_mb=2136,
|
|
1797
1851
|
max_tokens=514.0,
|
|
1798
1852
|
embed_dim=1024,
|
|
@@ -1833,6 +1887,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1833
1887
|
release_date="2024-09-04",
|
|
1834
1888
|
languages=["zho-Hans", "eng-Latn"],
|
|
1835
1889
|
n_parameters=2724880896,
|
|
1890
|
+
n_embedding_parameters=282_822_912,
|
|
1836
1891
|
memory_usage_mb=5197,
|
|
1837
1892
|
max_tokens=512.0,
|
|
1838
1893
|
embed_dim=2304,
|
|
@@ -1857,6 +1912,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
|
1857
1912
|
languages=["ara-Arab", "eng-Latn"],
|
|
1858
1913
|
loader=sentence_transformers_loader,
|
|
1859
1914
|
n_parameters=135193344,
|
|
1915
|
+
n_embedding_parameters=49_152_000,
|
|
1860
1916
|
memory_usage_mb=516,
|
|
1861
1917
|
max_tokens=512.0,
|
|
1862
1918
|
embed_dim=768,
|
|
@@ -1888,6 +1944,7 @@ sbert_chinese_general_v1 = ModelMeta(
|
|
|
1888
1944
|
languages=["zho-Hans"],
|
|
1889
1945
|
loader=sentence_transformers_loader,
|
|
1890
1946
|
n_parameters=None,
|
|
1947
|
+
n_embedding_parameters=16_226_304,
|
|
1891
1948
|
memory_usage_mb=None, # Not visible on repo
|
|
1892
1949
|
max_tokens=512,
|
|
1893
1950
|
embed_dim=128,
|
|
@@ -1916,6 +1973,7 @@ dmeta_embedding_zh_small = ModelMeta(
|
|
|
1916
1973
|
languages=["zho-Hans"],
|
|
1917
1974
|
loader=sentence_transformers_loader,
|
|
1918
1975
|
n_parameters=int(74.2 * 1e6),
|
|
1976
|
+
n_embedding_parameters=16_226_304,
|
|
1919
1977
|
memory_usage_mb=283,
|
|
1920
1978
|
max_tokens=1024,
|
|
1921
1979
|
embed_dim=768,
|
|
@@ -1939,6 +1997,7 @@ xiaobu_embedding = ModelMeta(
|
|
|
1939
1997
|
languages=["zho-Hans"],
|
|
1940
1998
|
loader=sentence_transformers_loader,
|
|
1941
1999
|
n_parameters=int(326 * 1e6),
|
|
2000
|
+
n_embedding_parameters=21_635_072,
|
|
1942
2001
|
memory_usage_mb=1244,
|
|
1943
2002
|
max_tokens=512,
|
|
1944
2003
|
embed_dim=1024,
|
|
@@ -1963,6 +2022,7 @@ xiaobu_embedding_v2 = ModelMeta(
|
|
|
1963
2022
|
languages=["zho-Hans"],
|
|
1964
2023
|
loader=sentence_transformers_loader,
|
|
1965
2024
|
n_parameters=int(326 * 1e6),
|
|
2025
|
+
n_embedding_parameters=21_635_072,
|
|
1966
2026
|
memory_usage_mb=1242,
|
|
1967
2027
|
max_tokens=512,
|
|
1968
2028
|
embed_dim=768,
|
|
@@ -1987,6 +2047,7 @@ yinka_embedding = ModelMeta(
|
|
|
1987
2047
|
languages=["zho-Hans"],
|
|
1988
2048
|
loader=sentence_transformers_loader,
|
|
1989
2049
|
n_parameters=int(326 * 1e6),
|
|
2050
|
+
n_embedding_parameters=21_635_072,
|
|
1990
2051
|
memory_usage_mb=1244,
|
|
1991
2052
|
max_tokens=512,
|
|
1992
2053
|
embed_dim=1024,
|
|
@@ -2010,6 +2071,7 @@ conan_embedding = ModelMeta(
|
|
|
2010
2071
|
languages=["zho-Hans"],
|
|
2011
2072
|
loader=sentence_transformers_loader,
|
|
2012
2073
|
n_parameters=int(326 * 1e6),
|
|
2074
|
+
n_embedding_parameters=21_635_072,
|
|
2013
2075
|
memory_usage_mb=1242,
|
|
2014
2076
|
max_tokens=512,
|
|
2015
2077
|
embed_dim=768,
|
|
@@ -2043,6 +2105,7 @@ ember_v1 = ModelMeta(
|
|
|
2043
2105
|
release_date="2023-10-10",
|
|
2044
2106
|
languages=["eng-Latn"],
|
|
2045
2107
|
n_parameters=int(335 * 1e6),
|
|
2108
|
+
n_embedding_parameters=31_254_528,
|
|
2046
2109
|
memory_usage_mb=1278,
|
|
2047
2110
|
max_tokens=512,
|
|
2048
2111
|
embed_dim=1024,
|
|
@@ -31,6 +31,7 @@ mxbai_embed_large_v1 = ModelMeta(
|
|
|
31
31
|
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
32
32
|
release_date="2024-03-07", # initial commit of hf model.
|
|
33
33
|
n_parameters=335_000_000,
|
|
34
|
+
n_embedding_parameters=31_254_528,
|
|
34
35
|
memory_usage_mb=639,
|
|
35
36
|
max_tokens=512,
|
|
36
37
|
embed_dim=1024,
|
|
@@ -75,6 +76,7 @@ mxbai_embed_2d_large_v1 = ModelMeta(
|
|
|
75
76
|
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
76
77
|
release_date="2024-03-04", # initial commit of hf model.
|
|
77
78
|
n_parameters=335_000_000,
|
|
79
|
+
n_embedding_parameters=31_254_528,
|
|
78
80
|
memory_usage_mb=None,
|
|
79
81
|
max_tokens=512,
|
|
80
82
|
embed_dim=768,
|
|
@@ -106,6 +108,7 @@ mxbai_embed_xsmall_v1 = ModelMeta(
|
|
|
106
108
|
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
107
109
|
release_date="2024-08-13", # initial commit of hf model.
|
|
108
110
|
n_parameters=24_100_000,
|
|
111
|
+
n_embedding_parameters=11_720_448,
|
|
109
112
|
memory_usage_mb=None,
|
|
110
113
|
max_tokens=512,
|
|
111
114
|
embed_dim=384,
|
|
@@ -16,7 +16,8 @@ mme5_mllama = ModelMeta(
|
|
|
16
16
|
revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
|
|
17
17
|
release_date="2025-02-12",
|
|
18
18
|
languages=["eng-Latn"],
|
|
19
|
-
n_parameters=10_600_000_000,
|
|
19
|
+
n_parameters=10_600_000_000,
|
|
20
|
+
n_embedding_parameters=None, # 10.6B
|
|
20
21
|
memory_usage_mb=20300,
|
|
21
22
|
max_tokens=128_000,
|
|
22
23
|
embed_dim=4096,
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_image_dependencies, requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
MOCOV3_CITATION = """@Article{chen2021mocov3,
|
|
14
19
|
author = {Xinlei Chen* and Saining Xie* and Kaiming He},
|
|
@@ -125,6 +130,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
125
130
|
release_date="2024-06-03",
|
|
126
131
|
modalities=["image"],
|
|
127
132
|
n_parameters=86_600_000,
|
|
133
|
+
n_embedding_parameters=None,
|
|
128
134
|
memory_usage_mb=330,
|
|
129
135
|
max_tokens=None,
|
|
130
136
|
embed_dim=768,
|
|
@@ -149,6 +155,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
149
155
|
release_date="2024-06-03",
|
|
150
156
|
modalities=["image"],
|
|
151
157
|
n_parameters=304_000_000,
|
|
158
|
+
n_embedding_parameters=None,
|
|
152
159
|
memory_usage_mb=1161,
|
|
153
160
|
max_tokens=None,
|
|
154
161
|
embed_dim=1024,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
2
|
from mteb.models.model_meta import ModelMeta
|
|
3
|
-
from mteb.
|
|
3
|
+
from mteb.types import PromptType
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def instruction_template(
|
|
@@ -175,6 +175,7 @@ MoD_Embedding = ModelMeta(
|
|
|
175
175
|
revision="acbb5b70fdab262226a6af2bc62001de8021b05c",
|
|
176
176
|
release_date="2025-12-14",
|
|
177
177
|
n_parameters=4021774336,
|
|
178
|
+
n_embedding_parameters=None,
|
|
178
179
|
memory_usage_mb=7671,
|
|
179
180
|
embed_dim=2560,
|
|
180
181
|
max_tokens=32768,
|
|
@@ -1,17 +1,23 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
12
11
|
|
|
13
12
|
from .bge_models import bge_training_data
|
|
14
13
|
|
|
14
|
+
if TYPE_CHECKING:
|
|
15
|
+
from torch.utils.data import DataLoader
|
|
16
|
+
|
|
17
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
18
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
19
|
+
|
|
20
|
+
|
|
15
21
|
logger = logging.getLogger(__name__)
|
|
16
22
|
|
|
17
23
|
MODEL2VEC_CITATION = """@software{minishlab2024model2vec,
|
|
@@ -167,6 +173,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
167
173
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
168
174
|
release_date="2024-09-21",
|
|
169
175
|
n_parameters=int(103 * 1e6),
|
|
176
|
+
n_embedding_parameters=int(103 * 1e6),
|
|
170
177
|
memory_usage_mb=391,
|
|
171
178
|
max_tokens=np.inf, # Theoretically infinite
|
|
172
179
|
embed_dim=256,
|
|
@@ -193,6 +200,7 @@ m2v_base_glove = ModelMeta(
|
|
|
193
200
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
194
201
|
release_date="2024-09-21",
|
|
195
202
|
n_parameters=int(102 * 1e6),
|
|
203
|
+
n_embedding_parameters=int(102 * 1e6),
|
|
196
204
|
memory_usage_mb=391,
|
|
197
205
|
max_tokens=np.inf,
|
|
198
206
|
embed_dim=256,
|
|
@@ -218,6 +226,7 @@ m2v_base_output = ModelMeta(
|
|
|
218
226
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
219
227
|
release_date="2024-09-21",
|
|
220
228
|
n_parameters=int(7.56 * 1e6),
|
|
229
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
221
230
|
memory_usage_mb=29,
|
|
222
231
|
max_tokens=np.inf,
|
|
223
232
|
embed_dim=256,
|
|
@@ -243,6 +252,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
243
252
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
244
253
|
release_date="2024-09-21",
|
|
245
254
|
n_parameters=int(128 * 1e6),
|
|
255
|
+
n_embedding_parameters=int(128 * 1e6),
|
|
246
256
|
memory_usage_mb=489,
|
|
247
257
|
max_tokens=np.inf,
|
|
248
258
|
embed_dim=256,
|
|
@@ -268,6 +278,7 @@ potion_base_2m = ModelMeta(
|
|
|
268
278
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
269
279
|
release_date="2024-10-29",
|
|
270
280
|
n_parameters=int(2 * 1e6),
|
|
281
|
+
n_embedding_parameters=int(2 * 1e6),
|
|
271
282
|
memory_usage_mb=7,
|
|
272
283
|
max_tokens=np.inf,
|
|
273
284
|
embed_dim=64,
|
|
@@ -293,6 +304,7 @@ potion_base_4m = ModelMeta(
|
|
|
293
304
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
294
305
|
release_date="2024-10-29",
|
|
295
306
|
n_parameters=int(3.78 * 1e6),
|
|
307
|
+
n_embedding_parameters=int(3.78 * 1e6),
|
|
296
308
|
memory_usage_mb=14,
|
|
297
309
|
max_tokens=np.inf,
|
|
298
310
|
embed_dim=128,
|
|
@@ -318,6 +330,7 @@ potion_base_8m = ModelMeta(
|
|
|
318
330
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
319
331
|
release_date="2024-10-29",
|
|
320
332
|
n_parameters=int(7.56 * 1e6),
|
|
333
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
321
334
|
memory_usage_mb=29,
|
|
322
335
|
max_tokens=np.inf,
|
|
323
336
|
embed_dim=256,
|
|
@@ -343,6 +356,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
343
356
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
344
357
|
release_date="2025-05-23",
|
|
345
358
|
n_parameters=128 * 1e6,
|
|
359
|
+
n_embedding_parameters=128 * 1e6,
|
|
346
360
|
memory_usage_mb=489,
|
|
347
361
|
max_tokens=np.inf,
|
|
348
362
|
embed_dim=256,
|
|
@@ -368,6 +382,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
368
382
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
369
383
|
release_date="2025-01-03",
|
|
370
384
|
n_parameters=1 * 1e5,
|
|
385
|
+
n_embedding_parameters=1 * 1e5,
|
|
371
386
|
memory_usage_mb=0,
|
|
372
387
|
max_tokens=np.inf,
|
|
373
388
|
embed_dim=64,
|
|
@@ -392,6 +407,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
392
407
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
393
408
|
release_date="2025-01-03",
|
|
394
409
|
n_parameters=5 * 1e5,
|
|
410
|
+
n_embedding_parameters=5 * 1e5,
|
|
395
411
|
memory_usage_mb=2,
|
|
396
412
|
max_tokens=np.inf,
|
|
397
413
|
embed_dim=64,
|
|
@@ -416,6 +432,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
416
432
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
417
433
|
release_date="2025-01-03",
|
|
418
434
|
n_parameters=1 * 1e6,
|
|
435
|
+
n_embedding_parameters=1 * 1e6,
|
|
419
436
|
memory_usage_mb=2,
|
|
420
437
|
max_tokens=np.inf,
|
|
421
438
|
embed_dim=64,
|
|
@@ -440,6 +457,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
440
457
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
441
458
|
release_date="2025-01-03",
|
|
442
459
|
n_parameters=1.95 * 1e6,
|
|
460
|
+
n_embedding_parameters=1.95 * 1e6,
|
|
443
461
|
memory_usage_mb=7,
|
|
444
462
|
max_tokens=np.inf,
|
|
445
463
|
embed_dim=64,
|
|
@@ -464,6 +482,7 @@ pubmed_bert_8m = ModelMeta(
|
|
|
464
482
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
465
483
|
release_date="2025-01-03",
|
|
466
484
|
n_parameters=7.81 * 1e6,
|
|
485
|
+
n_embedding_parameters=7.81 * 1e6,
|
|
467
486
|
memory_usage_mb=30,
|
|
468
487
|
max_tokens=np.inf,
|
|
469
488
|
embed_dim=256,
|