mteb 2.7.2__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +16 -9
- mteb/_evaluators/any_sts_evaluator.py +10 -5
- mteb/_evaluators/clustering_evaluator.py +10 -4
- mteb/_evaluators/evaluator.py +9 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +6 -4
- mteb/_evaluators/pair_classification_evaluator.py +10 -5
- mteb/_evaluators/retrieval_evaluator.py +19 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +14 -10
- mteb/_evaluators/text/bitext_mining_evaluator.py +8 -3
- mteb/_evaluators/text/summarization_evaluator.py +8 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +10 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +17 -9
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +15 -6
- mteb/abstasks/clustering.py +17 -8
- mteb/abstasks/clustering_legacy.py +14 -6
- mteb/abstasks/image/image_text_pair_classification.py +17 -7
- mteb/abstasks/multilabel_classification.py +11 -5
- mteb/abstasks/pair_classification.py +19 -9
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +28 -17
- mteb/abstasks/retrieval_dataset_loaders.py +11 -8
- mteb/abstasks/sts.py +19 -10
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +14 -7
- mteb/abstasks/text/summarization.py +17 -7
- mteb/abstasks/zeroshot_classification.py +15 -7
- mteb/benchmarks/_create_table.py +13 -3
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +20 -18
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +7 -3
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +11 -4
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +22 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +16 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +22 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +25 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +19 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +19 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +15 -9
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/clustering/nob/snl_clustering.py +7 -2
- mteb/tasks/clustering/nob/vg_clustering.py +7 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +3 -3
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/RECORD +238 -217
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -1,30 +1,36 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import heapq
|
|
2
4
|
import logging
|
|
3
5
|
import shutil
|
|
4
6
|
import tempfile
|
|
5
7
|
from pathlib import Path
|
|
6
|
-
from typing import Any
|
|
8
|
+
from typing import TYPE_CHECKING, Any
|
|
7
9
|
|
|
8
10
|
import torch
|
|
9
|
-
from torch.utils.data import DataLoader
|
|
10
11
|
|
|
11
12
|
from mteb._create_dataloaders import (
|
|
12
13
|
create_dataloader,
|
|
13
14
|
)
|
|
14
15
|
from mteb._requires_package import requires_package
|
|
15
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
17
17
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
18
|
-
from mteb.types import
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
18
|
+
from mteb.types import PromptType
|
|
19
|
+
|
|
20
|
+
if TYPE_CHECKING:
|
|
21
|
+
from torch.utils.data import DataLoader
|
|
22
|
+
|
|
23
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
24
|
+
from mteb.types import (
|
|
25
|
+
Array,
|
|
26
|
+
BatchedInput,
|
|
27
|
+
CorpusDatasetType,
|
|
28
|
+
EncodeKwargs,
|
|
29
|
+
QueryDatasetType,
|
|
30
|
+
RetrievalOutputType,
|
|
31
|
+
TopRankedDocumentsType,
|
|
32
|
+
)
|
|
33
|
+
|
|
28
34
|
|
|
29
35
|
logger = logging.getLogger(__name__)
|
|
30
36
|
|
|
@@ -346,6 +352,7 @@ colbert_v2 = ModelMeta(
|
|
|
346
352
|
public_training_data=None,
|
|
347
353
|
release_date="2024-09-21",
|
|
348
354
|
n_parameters=int(110 * 1e6),
|
|
355
|
+
n_embedding_parameters=23_440_896,
|
|
349
356
|
memory_usage_mb=418,
|
|
350
357
|
max_tokens=180,
|
|
351
358
|
embed_dim=None,
|
|
@@ -402,6 +409,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
402
409
|
public_training_data=None,
|
|
403
410
|
release_date="2024-08-16",
|
|
404
411
|
n_parameters=int(559 * 1e6),
|
|
412
|
+
n_embedding_parameters=None,
|
|
405
413
|
memory_usage_mb=1067,
|
|
406
414
|
max_tokens=8192,
|
|
407
415
|
embed_dim=None,
|
|
@@ -458,6 +466,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
458
466
|
public_training_data="https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma",
|
|
459
467
|
release_date="2025-04-30",
|
|
460
468
|
n_parameters=int(149 * 1e6),
|
|
469
|
+
n_embedding_parameters=None,
|
|
461
470
|
memory_usage_mb=None,
|
|
462
471
|
max_tokens=8192,
|
|
463
472
|
embed_dim=None,
|
|
@@ -36,6 +36,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
36
36
|
revision="84bbef079b32e8823ec226d4e9e92902706b0eb6",
|
|
37
37
|
release_date="2025-02-19",
|
|
38
38
|
n_parameters=1_780_000_000,
|
|
39
|
+
n_embedding_parameters=232_928_256,
|
|
39
40
|
memory_usage_mb=6776,
|
|
40
41
|
embed_dim=1536,
|
|
41
42
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -59,6 +60,7 @@ Qodo_Embed_1_7B = ModelMeta(
|
|
|
59
60
|
revision="f9edd9bf7f687c0e832424058e265120f603cd81",
|
|
60
61
|
release_date="2025-02-24",
|
|
61
62
|
n_parameters=7_613_000_000,
|
|
63
|
+
n_embedding_parameters=None,
|
|
62
64
|
memory_usage_mb=29040,
|
|
63
65
|
embed_dim=3584,
|
|
64
66
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -1,6 +1,13 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
1
5
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
6
|
from mteb.models.model_meta import ModelMeta
|
|
3
|
-
from mteb.
|
|
7
|
+
from mteb.types import PromptType
|
|
8
|
+
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
from mteb.models.models_protocols import EncoderProtocol
|
|
4
11
|
|
|
5
12
|
|
|
6
13
|
def instruction_template(
|
|
@@ -140,6 +147,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
140
147
|
revision="b22da495047858cce924d27d76261e96be6febc0", # Commit of @tomaarsen
|
|
141
148
|
release_date="2025-06-05",
|
|
142
149
|
n_parameters=595776512,
|
|
150
|
+
n_embedding_parameters=None,
|
|
143
151
|
memory_usage_mb=1136,
|
|
144
152
|
embed_dim=1024,
|
|
145
153
|
max_tokens=32768,
|
|
@@ -163,6 +171,7 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
163
171
|
revision="636cd9bf47d976946cdbb2b0c3ca0cb2f8eea5ff", # Commit of @tomaarsen
|
|
164
172
|
release_date="2025-06-05",
|
|
165
173
|
n_parameters=4021774336,
|
|
174
|
+
n_embedding_parameters=None,
|
|
166
175
|
memory_usage_mb=7671,
|
|
167
176
|
embed_dim=2560,
|
|
168
177
|
max_tokens=32768,
|
|
@@ -186,6 +195,7 @@ Qwen3_Embedding_8B = ModelMeta(
|
|
|
186
195
|
revision="4e423935c619ae4df87b646a3ce949610c66241c", # Commit of @tomaarsen
|
|
187
196
|
release_date="2025-06-05",
|
|
188
197
|
n_parameters=7567295488,
|
|
198
|
+
n_embedding_parameters=None,
|
|
189
199
|
memory_usage_mb=14433,
|
|
190
200
|
embed_dim=4096,
|
|
191
201
|
max_tokens=32768,
|
|
@@ -64,6 +64,7 @@ QZhou_Embedding = ModelMeta(
|
|
|
64
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
65
65
|
release_date="2025-08-24",
|
|
66
66
|
n_parameters=7_070_619_136,
|
|
67
|
+
n_embedding_parameters=None,
|
|
67
68
|
memory_usage_mb=14436,
|
|
68
69
|
embed_dim=3584,
|
|
69
70
|
license="apache-2.0",
|
|
@@ -98,6 +99,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
98
99
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
99
100
|
release_date="2025-09-28",
|
|
100
101
|
n_parameters=7_575_747_328,
|
|
102
|
+
n_embedding_parameters=None,
|
|
101
103
|
memory_usage_mb=29431,
|
|
102
104
|
embed_dim=1792,
|
|
103
105
|
license="apache-2.0",
|
|
@@ -5,18 +5,19 @@ from typing import TYPE_CHECKING, Any, Literal
|
|
|
5
5
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
import torch
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
8
|
|
|
10
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
11
9
|
from mteb.models.model_meta import ModelMeta
|
|
12
10
|
from mteb.similarity_functions import (
|
|
13
11
|
select_pairwise_similarity,
|
|
14
12
|
select_similarity,
|
|
15
13
|
)
|
|
16
|
-
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
17
14
|
|
|
18
15
|
if TYPE_CHECKING:
|
|
19
16
|
from PIL import Image
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
20
21
|
|
|
21
22
|
|
|
22
23
|
def _string_to_vector(text: str | None, size: int) -> np.ndarray:
|
|
@@ -36,12 +36,76 @@ REASONIR_TRAINING_DATA = {
|
|
|
36
36
|
"DuRetrieval",
|
|
37
37
|
"QuoraRetrieval",
|
|
38
38
|
}
|
|
39
|
+
_prompts_dict = {
|
|
40
|
+
"BrightBiologyRetrieval": {
|
|
41
|
+
"query": "Given a Biology post, retrieve relevant passages that help answer the post"
|
|
42
|
+
},
|
|
43
|
+
"BrightEarthScienceRetrieval": {
|
|
44
|
+
"query": "Given a Earth Science post, retrieve relevant passages that help answer the post"
|
|
45
|
+
},
|
|
46
|
+
"BrightEconomicsRetrieval": {
|
|
47
|
+
"query": "Given a Economics post, retrieve relevant passages that help answer the post"
|
|
48
|
+
},
|
|
49
|
+
"BrightPsychologyRetrieval": {
|
|
50
|
+
"query": "Given a Psychology post, retrieve relevant passages that help answer the post"
|
|
51
|
+
},
|
|
52
|
+
"BrightRoboticsRetrieval": {
|
|
53
|
+
"query": "Given a Robotics post, retrieve relevant passages that help answer the post"
|
|
54
|
+
},
|
|
55
|
+
"BrightStackoverflowRetrieval": {
|
|
56
|
+
"query": "Given a Stackoverflow post, retrieve relevant passages that help answer the post"
|
|
57
|
+
},
|
|
58
|
+
"BrightSustainableLivingRetrieval": {
|
|
59
|
+
"query": "Given a Sustainable Living post, retrieve relevant passages that help answer the post"
|
|
60
|
+
},
|
|
61
|
+
"BrightPonyRetrieval": {
|
|
62
|
+
"query": "Given a Pony question, retrieve relevant passages that help answer the question"
|
|
63
|
+
},
|
|
64
|
+
"BrightLeetcodeRetrieval": {
|
|
65
|
+
"query": "Given a coding problem, retrieve relevant examples that help answer the problem",
|
|
66
|
+
},
|
|
67
|
+
"BrightAopsRetrieval": {
|
|
68
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem"
|
|
69
|
+
},
|
|
70
|
+
"BrightTheoremQATheoremsRetrieval": {
|
|
71
|
+
"query": "Given a Math problem, retrieve relevant theorems that help answer the problem",
|
|
72
|
+
},
|
|
73
|
+
"BrightTheoremQAQuestionsRetrieval": {
|
|
74
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem",
|
|
75
|
+
},
|
|
76
|
+
"BrightBiologyLongRetrieval": {
|
|
77
|
+
"query": "Given a Biology post, retrieve relevant documents that help answer the post"
|
|
78
|
+
},
|
|
79
|
+
"BrightEarthScienceLongRetrieval": {
|
|
80
|
+
"query": "Given a Earth Science post, retrieve relevant documents that help answer the post"
|
|
81
|
+
},
|
|
82
|
+
"BrightEconomicsLongRetrieval": {
|
|
83
|
+
"query": "Given a Economics post, retrieve relevant documents that help answer the post"
|
|
84
|
+
},
|
|
85
|
+
"BrightPsychologyLongRetrieval": {
|
|
86
|
+
"query": "Given a Psychology post, retrieve relevant documents that help answer the post"
|
|
87
|
+
},
|
|
88
|
+
"BrightRoboticsLongRetrieval": {
|
|
89
|
+
"query": "Given a Robotics post, retrieve relevant documents that help answer the post"
|
|
90
|
+
},
|
|
91
|
+
"BrightStackoverflowLongRetrieval": {
|
|
92
|
+
"query": "Given a Stackoverflow post, retrieve relevant documents that help answer the post"
|
|
93
|
+
},
|
|
94
|
+
"BrightSustainableLivingLongRetrieval": {
|
|
95
|
+
"query": "Given a Sustainable Living post, retrieve relevant documents that help answer the post"
|
|
96
|
+
},
|
|
97
|
+
"BrightPonyLongRetrieval": {
|
|
98
|
+
"query": "Given a Pony question, retrieve relevant documents that help answer the question"
|
|
99
|
+
},
|
|
100
|
+
}
|
|
101
|
+
|
|
39
102
|
|
|
40
103
|
ReasonIR_8B = ModelMeta(
|
|
41
104
|
loader=InstructSentenceTransformerModel,
|
|
42
105
|
loader_kwargs=dict(
|
|
43
106
|
instruction_template=instruction_template,
|
|
44
107
|
trust_remote_code=True,
|
|
108
|
+
prompts_dict=_prompts_dict,
|
|
45
109
|
),
|
|
46
110
|
name="ReasonIR/ReasonIR-8B",
|
|
47
111
|
model_type=["dense"],
|
|
@@ -50,6 +114,7 @@ ReasonIR_8B = ModelMeta(
|
|
|
50
114
|
revision="c3d0690370ff4a8c3d3882d8dfa85c43650034fa",
|
|
51
115
|
release_date="2025-04-29",
|
|
52
116
|
n_parameters=7_500_000_000,
|
|
117
|
+
n_embedding_parameters=None,
|
|
53
118
|
memory_usage_mb=None,
|
|
54
119
|
embed_dim=4096,
|
|
55
120
|
license="cc-by-nc-4.0",
|
|
@@ -1,22 +1,29 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
import torch
|
|
7
8
|
import torch.nn.functional as F
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
9
|
from tqdm.auto import tqdm
|
|
10
10
|
|
|
11
11
|
from mteb._requires_package import requires_package
|
|
12
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
12
|
from mteb.models.abs_encoder import AbsEncoder
|
|
14
13
|
from mteb.models.model_meta import (
|
|
15
14
|
ModelMeta,
|
|
16
15
|
ScoringFunction,
|
|
17
16
|
)
|
|
18
|
-
from mteb.
|
|
19
|
-
|
|
17
|
+
from mteb.types import PromptType
|
|
18
|
+
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from collections.abc import Callable
|
|
21
|
+
|
|
22
|
+
from torch.utils.data import DataLoader
|
|
23
|
+
|
|
24
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
25
|
+
from mteb.models.models_protocols import EncoderProtocol
|
|
26
|
+
from mteb.types import Array, BatchedInput
|
|
20
27
|
|
|
21
28
|
logger = logging.getLogger(__name__)
|
|
22
29
|
|
|
@@ -172,6 +179,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
172
179
|
"mMARCO-NL", # translation not trained on
|
|
173
180
|
},
|
|
174
181
|
n_parameters=7_000_000,
|
|
182
|
+
n_embedding_parameters=131_072_000,
|
|
175
183
|
memory_usage_mb=27,
|
|
176
184
|
max_tokens=4096,
|
|
177
185
|
embed_dim=4096,
|
|
@@ -201,6 +209,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
201
209
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision
|
|
202
210
|
release_date="2024-09-15",
|
|
203
211
|
n_parameters=7_000_000,
|
|
212
|
+
n_embedding_parameters=None,
|
|
204
213
|
memory_usage_mb=27,
|
|
205
214
|
max_tokens=4096,
|
|
206
215
|
embed_dim=4096,
|
|
@@ -1,16 +1,22 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.model_meta import ModelMeta
|
|
10
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
11
10
|
|
|
12
11
|
from .bge_models import bge_m3_training_data
|
|
13
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
18
|
+
|
|
19
|
+
|
|
14
20
|
logger = logging.getLogger(__name__)
|
|
15
21
|
|
|
16
22
|
|
|
@@ -225,6 +231,7 @@ monobert_large = ModelMeta(
|
|
|
225
231
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
226
232
|
release_date="2020-05-28",
|
|
227
233
|
n_parameters=None,
|
|
234
|
+
n_embedding_parameters=31_254_528,
|
|
228
235
|
memory_usage_mb=None,
|
|
229
236
|
max_tokens=None,
|
|
230
237
|
embed_dim=None,
|
|
@@ -250,6 +257,7 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
250
257
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
251
258
|
release_date="2024-09-26",
|
|
252
259
|
n_parameters=None,
|
|
260
|
+
n_embedding_parameters=None,
|
|
253
261
|
memory_usage_mb=531,
|
|
254
262
|
max_tokens=None,
|
|
255
263
|
embed_dim=None,
|
|
@@ -313,6 +321,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
313
321
|
revision="953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e",
|
|
314
322
|
release_date="2024-06-24",
|
|
315
323
|
n_parameters=None,
|
|
324
|
+
n_embedding_parameters=256_002_048,
|
|
316
325
|
memory_usage_mb=2166,
|
|
317
326
|
max_tokens=None,
|
|
318
327
|
embed_dim=None,
|
|
@@ -1,15 +1,21 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.model_meta import ModelMeta
|
|
9
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
10
9
|
|
|
11
10
|
from .rerankers_custom import RerankerWrapper
|
|
12
11
|
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
17
|
+
|
|
18
|
+
|
|
13
19
|
logger = logging.getLogger(__name__)
|
|
14
20
|
|
|
15
21
|
|
|
@@ -321,6 +327,7 @@ monot5_small = ModelMeta(
|
|
|
321
327
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
322
328
|
release_date="2022-03-28",
|
|
323
329
|
n_parameters=None,
|
|
330
|
+
n_embedding_parameters=16_449_536,
|
|
324
331
|
memory_usage_mb=None,
|
|
325
332
|
max_tokens=None,
|
|
326
333
|
embed_dim=None,
|
|
@@ -363,6 +370,7 @@ monot5_base = ModelMeta(
|
|
|
363
370
|
url={https://arxiv.org/abs/2206.02873},
|
|
364
371
|
}""",
|
|
365
372
|
n_parameters=None,
|
|
373
|
+
n_embedding_parameters=24_674_304,
|
|
366
374
|
memory_usage_mb=None,
|
|
367
375
|
max_tokens=None,
|
|
368
376
|
embed_dim=None,
|
|
@@ -387,6 +395,7 @@ monot5_large = ModelMeta(
|
|
|
387
395
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
388
396
|
release_date="2022-03-28",
|
|
389
397
|
n_parameters=None,
|
|
398
|
+
n_embedding_parameters=32_899_072,
|
|
390
399
|
memory_usage_mb=None,
|
|
391
400
|
max_tokens=None,
|
|
392
401
|
embed_dim=None,
|
|
@@ -420,6 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
420
429
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
421
430
|
release_date="2022-03-28",
|
|
422
431
|
n_parameters=None,
|
|
432
|
+
n_embedding_parameters=32_899_072,
|
|
423
433
|
memory_usage_mb=None,
|
|
424
434
|
max_tokens=None,
|
|
425
435
|
embed_dim=None,
|
|
@@ -476,6 +486,7 @@ flant5_base = ModelMeta(
|
|
|
476
486
|
# "qed": ["train"],
|
|
477
487
|
),
|
|
478
488
|
n_parameters=None,
|
|
489
|
+
n_embedding_parameters=24_674_304,
|
|
479
490
|
memory_usage_mb=944,
|
|
480
491
|
max_tokens=None,
|
|
481
492
|
embed_dim=None,
|
|
@@ -522,6 +533,7 @@ flant5_large = ModelMeta(
|
|
|
522
533
|
# "qed": ["train"],
|
|
523
534
|
),
|
|
524
535
|
n_parameters=None,
|
|
536
|
+
n_embedding_parameters=32_899_072,
|
|
525
537
|
memory_usage_mb=2987,
|
|
526
538
|
max_tokens=None,
|
|
527
539
|
embed_dim=None,
|
|
@@ -568,6 +580,7 @@ flant5_xl = ModelMeta(
|
|
|
568
580
|
# "qed": ["train"],
|
|
569
581
|
),
|
|
570
582
|
n_parameters=None,
|
|
583
|
+
n_embedding_parameters=65_798_144,
|
|
571
584
|
memory_usage_mb=10871,
|
|
572
585
|
max_tokens=None,
|
|
573
586
|
embed_dim=None,
|
|
@@ -614,6 +627,7 @@ flant5_xxl = ModelMeta(
|
|
|
614
627
|
# "qed": ["train"],
|
|
615
628
|
),
|
|
616
629
|
n_parameters=None,
|
|
630
|
+
n_embedding_parameters=131_596_288,
|
|
617
631
|
memory_usage_mb=42980,
|
|
618
632
|
max_tokens=None,
|
|
619
633
|
embed_dim=None,
|
|
@@ -638,6 +652,7 @@ llama2_7b = ModelMeta(
|
|
|
638
652
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
639
653
|
release_date="2023-07-18",
|
|
640
654
|
n_parameters=None,
|
|
655
|
+
n_embedding_parameters=131_072_000,
|
|
641
656
|
memory_usage_mb=None,
|
|
642
657
|
max_tokens=None,
|
|
643
658
|
embed_dim=None,
|
|
@@ -680,6 +695,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
680
695
|
url={https://arxiv.org/abs/2307.09288},
|
|
681
696
|
}""",
|
|
682
697
|
n_parameters=None,
|
|
698
|
+
n_embedding_parameters=131_072_000,
|
|
683
699
|
memory_usage_mb=None,
|
|
684
700
|
max_tokens=None,
|
|
685
701
|
embed_dim=None,
|
|
@@ -704,6 +720,7 @@ mistral_7b = ModelMeta(
|
|
|
704
720
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
705
721
|
release_date="2023-12-11",
|
|
706
722
|
n_parameters=None,
|
|
723
|
+
n_embedding_parameters=None,
|
|
707
724
|
memory_usage_mb=None,
|
|
708
725
|
max_tokens=None,
|
|
709
726
|
embed_dim=None,
|
|
@@ -740,6 +757,7 @@ followir_7b = ModelMeta(
|
|
|
740
757
|
# "jhu-clsp/FollowIR-train"
|
|
741
758
|
),
|
|
742
759
|
n_parameters=None,
|
|
760
|
+
n_embedding_parameters=None,
|
|
743
761
|
memory_usage_mb=13813,
|
|
744
762
|
max_tokens=None,
|
|
745
763
|
embed_dim=None,
|
|
@@ -890,6 +908,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
890
908
|
""",
|
|
891
909
|
training_datasets={"MSMARCO"},
|
|
892
910
|
n_parameters=None,
|
|
911
|
+
n_embedding_parameters=192_086_016,
|
|
893
912
|
memory_usage_mb=None,
|
|
894
913
|
max_tokens=None,
|
|
895
914
|
embed_dim=None,
|
|
@@ -913,6 +932,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
913
932
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
914
933
|
release_date="2022-11-04",
|
|
915
934
|
n_parameters=None,
|
|
935
|
+
n_embedding_parameters=1_024_458_752,
|
|
916
936
|
memory_usage_mb=None,
|
|
917
937
|
max_tokens=None,
|
|
918
938
|
embed_dim=None,
|
|
@@ -244,6 +244,7 @@ rubert_tiny = ModelMeta(
|
|
|
244
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
245
245
|
release_date="2021-05-24",
|
|
246
246
|
n_parameters=11_900_000,
|
|
247
|
+
n_embedding_parameters=9_223_968,
|
|
247
248
|
memory_usage_mb=45,
|
|
248
249
|
embed_dim=312,
|
|
249
250
|
license="mit",
|
|
@@ -270,6 +271,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
270
271
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
271
272
|
release_date="2021-10-28",
|
|
272
273
|
n_parameters=29_400_000,
|
|
274
|
+
n_embedding_parameters=26_154_336,
|
|
273
275
|
memory_usage_mb=112,
|
|
274
276
|
embed_dim=312,
|
|
275
277
|
license="mit",
|
|
@@ -297,6 +299,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
297
299
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
298
300
|
release_date="2020-11-20",
|
|
299
301
|
n_parameters=427_000_000,
|
|
302
|
+
n_embedding_parameters=123_021_312,
|
|
300
303
|
memory_usage_mb=1629,
|
|
301
304
|
embed_dim=1024,
|
|
302
305
|
license="mit",
|
|
@@ -323,6 +326,7 @@ sbert_large_mt_nlu_ru = ModelMeta(
|
|
|
323
326
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
324
327
|
release_date="2021-05-18",
|
|
325
328
|
n_parameters=427_000_000,
|
|
329
|
+
n_embedding_parameters=123_021_312,
|
|
326
330
|
memory_usage_mb=1629,
|
|
327
331
|
embed_dim=1024,
|
|
328
332
|
license="not specified",
|
|
@@ -351,6 +355,7 @@ user_base_ru = ModelMeta(
|
|
|
351
355
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
352
356
|
release_date="2024-06-10",
|
|
353
357
|
n_parameters=427_000_000,
|
|
358
|
+
n_embedding_parameters=38_603_520,
|
|
354
359
|
memory_usage_mb=473,
|
|
355
360
|
embed_dim=768,
|
|
356
361
|
license="apache-2.0",
|
|
@@ -412,6 +417,7 @@ user_bge_m3 = ModelMeta(
|
|
|
412
417
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
413
418
|
release_date="2024-07-05",
|
|
414
419
|
n_parameters=359_026_688,
|
|
420
|
+
n_embedding_parameters=47_273_984,
|
|
415
421
|
memory_usage_mb=1370,
|
|
416
422
|
embed_dim=1024,
|
|
417
423
|
license="apache-2.0",
|
|
@@ -463,6 +469,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
463
469
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
464
470
|
release_date="2023-02-07",
|
|
465
471
|
n_parameters=124_000_000,
|
|
472
|
+
n_embedding_parameters=38_603_520,
|
|
466
473
|
memory_usage_mb=473,
|
|
467
474
|
embed_dim=768,
|
|
468
475
|
license="apache-2.0",
|
|
@@ -494,6 +501,7 @@ rubert_base_cased = ModelMeta(
|
|
|
494
501
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
495
502
|
release_date="2020-03-04",
|
|
496
503
|
n_parameters=1280_000_000,
|
|
504
|
+
n_embedding_parameters=91_812_096,
|
|
497
505
|
memory_usage_mb=4883,
|
|
498
506
|
embed_dim=768,
|
|
499
507
|
license="not specified",
|
|
@@ -530,6 +538,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
530
538
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
531
539
|
release_date="2022-06-28",
|
|
532
540
|
n_parameters=107_000_000,
|
|
541
|
+
n_embedding_parameters=91_812_096,
|
|
533
542
|
memory_usage_mb=408,
|
|
534
543
|
embed_dim=768,
|
|
535
544
|
license="not specified",
|
|
@@ -565,6 +574,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
565
574
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
566
575
|
release_date="2020-03-04",
|
|
567
576
|
n_parameters=107_000_000,
|
|
577
|
+
n_embedding_parameters=91_812_096,
|
|
568
578
|
memory_usage_mb=408,
|
|
569
579
|
embed_dim=768,
|
|
570
580
|
license="not specified",
|
|
@@ -590,6 +600,7 @@ labse_en_ru = ModelMeta(
|
|
|
590
600
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
591
601
|
release_date="2021-06-10",
|
|
592
602
|
n_parameters=129_000_000,
|
|
603
|
+
n_embedding_parameters=42_303_744,
|
|
593
604
|
memory_usage_mb=492,
|
|
594
605
|
embed_dim=768,
|
|
595
606
|
license="not specified",
|
|
@@ -618,6 +629,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
618
629
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
619
630
|
release_date="2024-06-21",
|
|
620
631
|
n_parameters=29_200_000,
|
|
632
|
+
n_embedding_parameters=26_154_336,
|
|
621
633
|
memory_usage_mb=111,
|
|
622
634
|
embed_dim=312,
|
|
623
635
|
license="mit",
|
|
@@ -641,6 +653,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
641
653
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
642
654
|
release_date="2025-03-02",
|
|
643
655
|
n_parameters=32_300_000,
|
|
656
|
+
n_embedding_parameters=26_154_336,
|
|
644
657
|
memory_usage_mb=123,
|
|
645
658
|
embed_dim=312,
|
|
646
659
|
license="mit",
|
|
@@ -669,6 +682,7 @@ labse_ru_turbo = ModelMeta(
|
|
|
669
682
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
670
683
|
release_date="2024-06-27",
|
|
671
684
|
n_parameters=129_000_000,
|
|
685
|
+
n_embedding_parameters=42_303_744,
|
|
672
686
|
memory_usage_mb=490,
|
|
673
687
|
embed_dim=768,
|
|
674
688
|
license="mit",
|
|
@@ -720,6 +734,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
720
734
|
use_instructions=True,
|
|
721
735
|
reference="https://huggingface.co/ai-forever/ru-en-RoSBERTa",
|
|
722
736
|
n_parameters=404_000_000,
|
|
737
|
+
n_embedding_parameters=100_869_120,
|
|
723
738
|
memory_usage_mb=1540,
|
|
724
739
|
max_tokens=512,
|
|
725
740
|
embed_dim=1024,
|
|
@@ -886,6 +901,7 @@ frida = ModelMeta(
|
|
|
886
901
|
use_instructions=True,
|
|
887
902
|
reference="https://huggingface.co/ai-forever/FRIDA",
|
|
888
903
|
n_parameters=823_000_000,
|
|
904
|
+
n_embedding_parameters=143_847_936,
|
|
889
905
|
memory_usage_mb=3141,
|
|
890
906
|
max_tokens=512,
|
|
891
907
|
embed_dim=1536,
|
|
@@ -918,6 +934,7 @@ giga_embeddings = ModelMeta(
|
|
|
918
934
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
919
935
|
release_date="2025-09-23",
|
|
920
936
|
n_parameters=3_227_176_961,
|
|
937
|
+
n_embedding_parameters=None,
|
|
921
938
|
memory_usage_mb=12865,
|
|
922
939
|
embed_dim=2048,
|
|
923
940
|
license="mit",
|
|
@@ -950,6 +967,7 @@ berta = ModelMeta(
|
|
|
950
967
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
951
968
|
release_date="2025-03-10",
|
|
952
969
|
n_parameters=128_000_000,
|
|
970
|
+
n_embedding_parameters=42_303_744,
|
|
953
971
|
memory_usage_mb=489,
|
|
954
972
|
embed_dim=768,
|
|
955
973
|
license="mit",
|
|
@@ -1025,6 +1043,7 @@ user2_small = ModelMeta(
|
|
|
1025
1043
|
use_instructions=True,
|
|
1026
1044
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1027
1045
|
n_parameters=34_400_000,
|
|
1046
|
+
n_embedding_parameters=None,
|
|
1028
1047
|
memory_usage_mb=131,
|
|
1029
1048
|
max_tokens=8192,
|
|
1030
1049
|
embed_dim=384,
|
|
@@ -1058,6 +1077,7 @@ user2_base = ModelMeta(
|
|
|
1058
1077
|
use_instructions=True,
|
|
1059
1078
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1060
1079
|
n_parameters=149_000_000,
|
|
1080
|
+
n_embedding_parameters=None,
|
|
1061
1081
|
memory_usage_mb=568,
|
|
1062
1082
|
max_tokens=8192,
|
|
1063
1083
|
embed_dim=768,
|