melage 0.0.65__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- assets/copyright.png +0 -0
- assets/resource/color/FreeSurferColorLUT.txt +2006 -0
- assets/resource/color/LUT_30.txt +31 -0
- assets/resource/color/SynthSeg.txt +34 -0
- assets/resource/color/lut_prostate.txt +20 -0
- assets/resource/horizontalview.png +0 -0
- assets/resource/main.ico +0 -0
- assets/resource/theme/create_ticks.py +85 -0
- assets/resource/theme/rc/checkbox_checked.png +0 -0
- assets/resource/theme/rc/checkbox_checked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- assets/resource/verticalview.png +0 -0
- assets/resource/zoom_in.png +0 -0
- assets/resource/zoom_neutral (copy).png +0 -0
- assets/resource/zoom_neutral.png +0 -0
- assets/resource/zoom_out.png +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a.nii +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_masked.nii.gz +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_seg.nii.gz +0 -0
- docs/manual_images/3D_rightc.png +0 -0
- docs/manual_images/3D_rightc_goto.png +0 -0
- docs/manual_images/3D_rightc_paint.png +0 -0
- docs/manual_images/3D_rightc_paint_draw1.png +0 -0
- docs/manual_images/3D_rightc_paint_draw2.png +0 -0
- docs/manual_images/3D_rightc_paint_render.png +0 -0
- docs/manual_images/3D_rightc_paint_render2.png +0 -0
- docs/manual_images/3D_rightc_paint_render3.png +0 -0
- docs/manual_images/3D_rightc_paint_render4.png +0 -0
- docs/manual_images/3D_rightc_paint_render5.png +0 -0
- docs/manual_images/3D_rightc_paint_render6.png +0 -0
- docs/manual_images/3D_rightc_seg.png +0 -0
- docs/manual_images/exit_toolbar.png +0 -0
- docs/manual_images/load_image_file.png +0 -0
- docs/manual_images/load_image_file_openp.png +0 -0
- docs/manual_images/main_page.png +0 -0
- docs/manual_images/menu_file.png +0 -0
- docs/manual_images/menu_file_export.png +0 -0
- docs/manual_images/menu_file_import.png +0 -0
- docs/manual_images/menu_file_settings.png +0 -0
- docs/manual_images/menu_file_ss.png +0 -0
- docs/manual_images/open_save_load.png +0 -0
- docs/manual_images/panning_toolbar.png +0 -0
- docs/manual_images/segmentation_toolbar.png +0 -0
- docs/manual_images/tab_mri.png +0 -0
- docs/manual_images/tab_us.png +0 -0
- docs/manual_images/tabs.png +0 -0
- docs/manual_images/toolbar_tools.png +0 -0
- docs/manual_images/tools_basic.png +0 -0
- docs/manual_images/tools_bet.png +0 -0
- docs/manual_images/tools_cs.png +0 -0
- docs/manual_images/tools_deepbet.png +0 -0
- docs/manual_images/tools_imageinfo.png +0 -0
- docs/manual_images/tools_maskO.png +0 -0
- docs/manual_images/tools_masking.png +0 -0
- docs/manual_images/tools_n4b.png +0 -0
- docs/manual_images/tools_resize.png +0 -0
- docs/manual_images/tools_ruler.png +0 -0
- docs/manual_images/tools_seg.png +0 -0
- docs/manual_images/tools_threshold.png +0 -0
- docs/manual_images/tools_tools.png +0 -0
- docs/manual_images/widget_color.png +0 -0
- docs/manual_images/widget_color_add.png +0 -0
- docs/manual_images/widget_color_add2.png +0 -0
- docs/manual_images/widget_color_additional.png +0 -0
- docs/manual_images/widget_images.png +0 -0
- docs/manual_images/widget_images2.png +0 -0
- docs/manual_images/widget_images3.png +0 -0
- docs/manual_images/widget_marker.png +0 -0
- docs/manual_images/widget_mri.png +0 -0
- docs/manual_images/widget_mri2.png +0 -0
- docs/manual_images/widget_segintensity.png +0 -0
- docs/manual_images/widget_tab_mutualview.png +0 -0
- docs/manual_images/widget_tab_mutualview2.png +0 -0
- docs/manual_images/widget_table.png +0 -0
- docs/manual_images/widget_table2.png +0 -0
- docs/manual_images/widget_us.png +0 -0
- melage/__init__.py +1 -1
- melage/config/__init__.py +100 -0
- melage/core/Registration/registration.py +54 -0
- melage/{utils/readData.py → core/io.py} +12 -4
- melage/{widgets/melageAbout.py → dialogs/AboutDialog.py} +1 -1
- melage/dialogs/MaskOperationsDialog.py +146 -0
- melage/dialogs/MaskingDialog.py +139 -0
- melage/dialogs/RegistrationDialog.py +311 -0
- melage/{widgets/ImageThresholding.py → dialogs/ThresholdingDialog.py} +2 -2
- melage/dialogs/TransformationDialog.py +275 -0
- melage/dialogs/__init__.py +9 -0
- melage/dialogs/dynamic_gui.py +327 -0
- melage/{widgets/fileDialog_widget.py → dialogs/helpers/FileDialog.py} +226 -1
- melage/dialogs/helpers/__init__.py +5 -0
- melage/main.py +13 -13
- melage/{widgets/mainwindow_widget.py → mainwindow_widget.py} +1434 -1408
- melage/plugins/N4_bias/N4.py +115 -0
- melage/plugins/N4_bias/N4_schema.py +40 -0
- melage/plugins/N4_bias/main/utils.py +46 -0
- melage/plugins/__init__.py +2 -0
- melage/plugins/bet/bet.py +176 -0
- melage/plugins/bet/bet_schema.py +73 -0
- melage/{widgets/brain_extraction.py → plugins/bet/main/BET.py} +51 -316
- melage/plugins/change_coord/change_coord.py +197 -0
- melage/plugins/change_coord/change_coord_schema.py +31 -0
- melage/plugins/change_coord/main/utils.py +15 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/FCM.py +3 -5
- melage/plugins/esfcm/main/test.py +57 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/utils.py +20 -0
- melage/plugins/esfcm/tissue_segmentation.py +124 -0
- melage/plugins/esfcm/tissue_segmentation_schema.py +33 -0
- melage/plugins/masking_operation/mo.py +115 -0
- melage/plugins/masking_operation/mo_schema.py +33 -0
- melage/plugins/mga_net/MGA_Net.py +145 -0
- melage/plugins/mga_net/MGA_Net_schema.py +29 -0
- melage/plugins/mga_net/main/figures/Network.txt +1 -0
- melage/{widgets/DeepLModels/new_unet.py → plugins/mga_net/main/model/mga_net.py} +3 -3
- melage/plugins/mga_net/main/model/utils.py +258 -0
- melage/plugins/mga_net/main/test_mgaNet.py +134 -0
- melage/plugins/resize/resize.py +136 -0
- melage/plugins/resize/resize_schema.py +41 -0
- melage/plugins/ui_helpers.py +144 -0
- melage/plugins/warpseg/WarpSeg.py +195 -0
- melage/plugins/warpseg/WarpSeg_schema.py +41 -0
- melage/plugins/warpseg/__init__.py +2 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSet.py +303 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSetSeg.py +279 -0
- melage/plugins/warpseg/warpseg_main/data_reader/__init__.py +60 -0
- melage/plugins/warpseg/warpseg_main/data_reader/baseData.py +18 -0
- melage/plugins/warpseg/warpseg_main/data_reader/utils.py +267 -0
- melage/plugins/warpseg/warpseg_main/dist_utils.py +18 -0
- melage/plugins/warpseg/warpseg_main/requirements.txt +10 -0
- melage/plugins/warpseg/warpseg_main/test.py +272 -0
- melage/plugins/warpseg/warpseg_main/train.py +432 -0
- melage/plugins/warpseg/warpseg_main/train_reg.py +373 -0
- melage/plugins/warpseg/warpseg_main/verify_post_process.py +73 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/__init__.py +45 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/__init__.py +1 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/utils.py +99 -0
- melage/{widgets/Synthstrip.py → plugins/warpseg/warpseg_main/voxelmorph/torch/Unet.py} +71 -51
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/__init__.py +4 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/layers.py +97 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/losses.py +462 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/modelio.py +77 -0
- melage/{widgets/DeepLModels/InfantSegment/Unet.py → plugins/warpseg/warpseg_main/voxelmorph/torch/multi_stage_net.py} +76 -52
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/networks.py +308 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/utils.py +470 -0
- melage/{utils/DispalyIm.py → rendering/DisplayIm.py} +67 -79
- melage/{utils → rendering}/glScientific.py +1 -1
- melage/utils/__init__.py +1 -0
- melage/utils/utils.py +343 -196
- melage/widgets/{dockWidgets.py → DockWidgets.py} +123 -55
- melage/widgets/SettingsWidget.py +98 -0
- melage/widgets/__init__.py +49 -0
- melage/widgets/openglWidgets.py +344 -156
- melage/widgets/openglWidgets_bu.py +645 -0
- melage/widgets/plugin_manager.py +62 -0
- melage-1.0.0.dist-info/METADATA +953 -0
- melage-1.0.0.dist-info/RECORD +571 -0
- melage-1.0.0.dist-info/entry_points.txt +2 -0
- melage-1.0.0.dist-info/top_level.txt +4 -0
- melage/requirements22.txt +0 -25
- melage/requirements_old.txt +0 -28
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/some_notes.txt +0 -3
- melage/utils/GMM.py +0 -720
- melage/utils/Shaders_bu.py +0 -314
- melage/utils/__init__0.py +0 -7
- melage/utils/glScientific_bc.py +0 -1585
- melage/utils/registration.py +0 -512
- melage/utils/source_folder.py +0 -18
- melage/version.txt +0 -1
- melage/widgets/ApplyMask.py +0 -212
- melage/widgets/ChangeSystem.py +0 -152
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +0 -149
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +0 -146
- melage/widgets/DeepLModels/NPP/models/model.py +0 -272
- melage/widgets/DeepLModels/NPP/models/utils.py +0 -303
- melage/widgets/DeepLModels/NPP/npp.py +0 -116
- melage/widgets/DeepLModels/NPP/requirements.txt +0 -8
- melage/widgets/DeepLModels/NPP/train/train.py +0 -116
- melage/widgets/DeepLModels/Unet3DAtt.py +0 -657
- melage/widgets/DeepLModels/Unet3D_basic.py +0 -648
- melage/widgets/DeepLModels/new_unet_old.py +0 -639
- melage/widgets/DeepLModels/new_unet_old2.py +0 -658
- melage/widgets/MaskOperations.py +0 -147
- melage/widgets/N4Dialog.py +0 -241
- melage/widgets/Segmentation/__init__.py +0 -588
- melage/widgets/SemiAutoSeg.py +0 -666
- melage/widgets/__init__0.py +0 -5
- melage/widgets/about.py +0 -246
- melage/widgets/activator.py +0 -147
- melage/widgets/be_dl.py +0 -409
- melage/widgets/be_dl_unet3d.py +0 -441
- melage/widgets/brain_extraction_dl.py +0 -887
- melage/widgets/brain_extraction_dl_bu.py +0 -869
- melage/widgets/registrationWidget.py +0 -342
- melage/widgets/settings_widget.py +0 -77
- melage/widgets/tranformationWidget.py +0 -275
- melage-0.0.65.dist-info/METADATA +0 -742
- melage-0.0.65.dist-info/RECORD +0 -501
- melage-0.0.65.dist-info/entry_points.txt +0 -2
- melage-0.0.65.dist-info/top_level.txt +0 -1
- {melage/resource → assets}/main.ico +0 -0
- {melage → assets}/resource/0circle.png +0 -0
- {melage → assets}/resource/0circle_faded.png +0 -0
- {melage → assets}/resource/3d.png +0 -0
- {melage → assets}/resource/3d.psd +0 -0
- {melage → assets}/resource/3dFaded.png +0 -0
- {melage → assets}/resource/Eraser.png +0 -0
- {melage → assets}/resource/EraserFaded.png +0 -0
- {melage → assets}/resource/EraserX.png +0 -0
- {melage → assets}/resource/EraserXFaded.png +0 -0
- {melage → assets}/resource/Eraser_icon.svg +0 -0
- {melage → assets}/resource/Hand.png +0 -0
- {melage → assets}/resource/HandIcons_0.png +0 -0
- {melage → assets}/resource/Hand_IX.png +0 -0
- {melage → assets}/resource/Hand_IXFaded.png +0 -0
- {melage → assets}/resource/Handsqueezed.png +0 -0
- {melage → assets}/resource/Handwriting (copy).png +0 -0
- {melage → assets}/resource/Handwriting.png +0 -0
- {melage → assets}/resource/HandwritingMinus.png +0 -0
- {melage → assets}/resource/HandwritingMinusX.png +0 -0
- {melage → assets}/resource/HandwritingPlus.png +0 -0
- {melage → assets}/resource/HandwritingPlusX.png +0 -0
- {melage → assets}/resource/Move_icon.svg +0 -0
- {melage → assets}/resource/PngItem_2422924.png +0 -0
- {melage → assets}/resource/about.png +0 -0
- {melage → assets}/resource/about_logo.png +0 -0
- {melage → assets}/resource/about_logo0.png +0 -0
- {melage → assets}/resource/action_check.png +0 -0
- {melage → assets}/resource/action_check_OFF.png +0 -0
- {melage → assets}/resource/arrow).png +0 -0
- {melage → assets}/resource/arrow.png +0 -0
- {melage → assets}/resource/arrowFaded.png +0 -0
- {melage → assets}/resource/arrow_org.png +0 -0
- {melage → assets}/resource/arrow_org.png.png +0 -0
- {melage → assets}/resource/arrows.png +0 -0
- {melage → assets}/resource/authors.mp4 +0 -0
- {melage → assets}/resource/box.png +0 -0
- {melage → assets}/resource/check-image-icon-0.jpg +0 -0
- {melage → assets}/resource/circle.png +0 -0
- {melage → assets}/resource/circle_faded.png +0 -0
- {melage → assets}/resource/circle_or.png +0 -0
- {melage → assets}/resource/close.png +0 -0
- {melage → assets}/resource/close_bg.png +0 -0
- {melage → assets}/resource/color/Simple.txt +0 -0
- {melage → assets}/resource/color/Tissue.txt +0 -0
- {melage → assets}/resource/color/Tissue12.txt +0 -0
- {melage → assets}/resource/color/albert_LUT.txt +0 -0
- {melage → assets}/resource/color/mcrib_LUT.txt +0 -0
- {melage → assets}/resource/color/pediatric1.txt +0 -0
- {melage → assets}/resource/color/pediatric1_old.txt +0 -0
- {melage → assets}/resource/color/pediatric2.txt +0 -0
- {melage → assets}/resource/color/pediatric3.txt +0 -0
- {melage → assets}/resource/color/pediatrics (copy).csv +0 -0
- {melage → assets}/resource/color/tissue_seg.txt +0 -0
- {melage → assets}/resource/contour.png +0 -0
- {melage → assets}/resource/contour.svg +0 -0
- {melage → assets}/resource/contourFaded.png +0 -0
- {melage → assets}/resource/contourX.png +0 -0
- {melage → assets}/resource/contourXFaded.png +0 -0
- {melage → assets}/resource/dti.png +0 -0
- {melage → assets}/resource/dti0.png +0 -0
- {melage → assets}/resource/dti222.png +0 -0
- {melage → assets}/resource/dti_or.png +0 -0
- {melage → assets}/resource/eco.png +0 -0
- {melage → assets}/resource/eco22.png +0 -0
- {melage → assets}/resource/eco_old.png +0 -0
- {melage → assets}/resource/eco_or.png +0 -0
- {melage → assets}/resource/eco_or2.png +0 -0
- {melage → assets}/resource/eco_seg.png +0 -0
- {melage → assets}/resource/eco_seg_old.png +0 -0
- {melage → assets}/resource/export.png +0 -0
- {melage → assets}/resource/hand-grab-icon-10.jpg +0 -0
- {melage → assets}/resource/hand-grab-icon-25.jpg +0 -0
- {melage → assets}/resource/info.png +0 -0
- {melage → assets}/resource/line.png +0 -0
- {melage → assets}/resource/linefaded.png +0 -0
- {melage → assets}/resource/load.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_goto.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_seg.png +0 -0
- {melage → assets}/resource/manual_images/exit_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file_openp.png +0 -0
- {melage → assets}/resource/manual_images/main_page.png +0 -0
- {melage → assets}/resource/manual_images/menu_file.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_export.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_import.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_settings.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_ss.png +0 -0
- {melage → assets}/resource/manual_images/open_save_load.png +0 -0
- {melage → assets}/resource/manual_images/panning_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/segmentation_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/tab_mri.png +0 -0
- {melage → assets}/resource/manual_images/tab_us.png +0 -0
- {melage → assets}/resource/manual_images/tabs.png +0 -0
- {melage → assets}/resource/manual_images/toolbar_tools.png +0 -0
- {melage → assets}/resource/manual_images/tools_basic.png +0 -0
- {melage → assets}/resource/manual_images/tools_bet.png +0 -0
- {melage → assets}/resource/manual_images/tools_cs.png +0 -0
- {melage → assets}/resource/manual_images/tools_deepbet.png +0 -0
- {melage → assets}/resource/manual_images/tools_imageinfo.png +0 -0
- {melage → assets}/resource/manual_images/tools_maskO.png +0 -0
- {melage → assets}/resource/manual_images/tools_masking.png +0 -0
- {melage → assets}/resource/manual_images/tools_n4b.png +0 -0
- {melage → assets}/resource/manual_images/tools_resize.png +0 -0
- {melage → assets}/resource/manual_images/tools_ruler.png +0 -0
- {melage → assets}/resource/manual_images/tools_seg.png +0 -0
- {melage → assets}/resource/manual_images/tools_threshold.png +0 -0
- {melage → assets}/resource/manual_images/tools_tools.png +0 -0
- {melage → assets}/resource/manual_images/widget_color.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add2.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_additional.png +0 -0
- {melage → assets}/resource/manual_images/widget_images.png +0 -0
- {melage → assets}/resource/manual_images/widget_images2.png +0 -0
- {melage → assets}/resource/manual_images/widget_images3.png +0 -0
- {melage → assets}/resource/manual_images/widget_marker.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri2.png +0 -0
- {melage → assets}/resource/manual_images/widget_segintensity.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview2.png +0 -0
- {melage → assets}/resource/manual_images/widget_table.png +0 -0
- {melage → assets}/resource/manual_images/widget_table2.png +0 -0
- {melage → assets}/resource/manual_images/widget_us.png +0 -0
- {melage → assets}/resource/melage_top.ico +0 -0
- {melage → assets}/resource/melage_top.png +0 -0
- {melage → assets}/resource/melage_top0.png +0 -0
- {melage → assets}/resource/melage_top1.png +0 -0
- {melage → assets}/resource/melage_top4.png +0 -0
- {melage → assets}/resource/mri (copy).png +0 -0
- {melage → assets}/resource/mri.png +0 -0
- {melage → assets}/resource/mri0.png +0 -0
- {melage → assets}/resource/mri000.png +0 -0
- {melage → assets}/resource/mri22.png +0 -0
- {melage → assets}/resource/mri_big.png +0 -0
- {melage → assets}/resource/mri_old.png +0 -0
- {melage → assets}/resource/mri_seg.png +0 -0
- {melage → assets}/resource/mri_seg_old.png +0 -0
- {melage → assets}/resource/new.png +0 -0
- {melage → assets}/resource/open.png +0 -0
- {melage → assets}/resource/open2.png +0 -0
- {melage → assets}/resource/pan.png +0 -0
- {melage → assets}/resource/pencil.png +0 -0
- {melage → assets}/resource/pencilFaded.png +0 -0
- {melage → assets}/resource/points.png +0 -0
- {melage → assets}/resource/pointsFaded.png +0 -0
- {melage → assets}/resource/rotate.png +0 -0
- {melage → assets}/resource/ruler.png +0 -0
- {melage → assets}/resource/rulerFaded.png +0 -0
- {melage → assets}/resource/s.png +0 -0
- {melage → assets}/resource/s.psd +0 -0
- {melage → assets}/resource/save.png +0 -0
- {melage → assets}/resource/saveas.png +0 -0
- {melage → assets}/resource/seg_mri.png +0 -0
- {melage → assets}/resource/seg_mri2.png +0 -0
- {melage → assets}/resource/settings.png +0 -0
- {melage → assets}/resource/synch.png +0 -0
- {melage → assets}/resource/synchFaded.png +0 -0
- {melage → assets}/resource/theme/rc/.keep +0 -0
- {melage → assets}/resource/theme/rc/arrow_down.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/checkbox_checked0.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent.png +0 -0
- {melage → assets}/resource/theme/rc/transparent@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close.png +0 -0
- {melage → assets}/resource/theme/rc/window_close@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/style.qss +0 -0
- {melage → assets}/resource/tract.png +0 -0
- {melage → assets}/resource/view1.png +0 -0
- {melage → assets}/resource/view1_eco.png +0 -0
- {melage → assets}/resource/view1_mri.png +0 -0
- {melage → assets}/resource/view1_seg.png +0 -0
- {melage → assets}/resource/view2.png +0 -0
- {melage → assets}/resource/view2_seg.png +0 -0
- {melage → assets}/resource/w.png +0 -0
- {melage → assets}/resource/zoom_inFaded.png +0 -0
- /melage/resource/zoom_in.png → /assets/resource/zoom_in_old.png +0 -0
- {melage → assets}/resource/zoom_outFaded.png +0 -0
- /melage/resource/zoom_out.png → /assets/resource/zoom_out_old.png +0 -0
- /melage/{widgets/activation.py → dialogs/ActivationDialog.py} +0 -0
- /melage/{widgets/HistImage.py → dialogs/HistogramDialog.py} +0 -0
- /melage/{widgets/iminfo.py → dialogs/ImInfoDialog.py} +0 -0
- /melage/{widgets/colorwidget.py → dialogs/helpers/ColorDialog.py} +0 -0
- /melage/{utils/custom_QScrollBar.py → dialogs/helpers/CustomScrollbar.py} +0 -0
- /melage/{widgets/repeat_widget.py → dialogs/helpers/RepeatDialog.py} +0 -0
- /melage/{widgets/screenshot_widget.py → dialogs/helpers/ScreenshotDialog.py} +0 -0
- /melage/{cli.py → melage.py} +0 -0
- /melage/{utils/brain_extraction_helper.py → plugins/bet/main/utils.py} +0 -0
- /melage/{graphics → rendering}/GLGraphicsItem.py +0 -0
- /melage/{graphics → rendering}/GLViewWidget.py +0 -0
- /melage/{graphics → rendering}/Transform3D.py +0 -0
- /melage/{graphics → rendering}/__init__.py +0 -0
- /melage/{graphics → rendering}/functions.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_120.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_330.py +0 -0
- /melage/{graphics → rendering}/items/GLAxisItem.py +0 -0
- /melage/{graphics → rendering}/items/GLGridItem.py +0 -0
- /melage/{graphics → rendering}/items/GLPolygonItem.py +0 -0
- /melage/{graphics → rendering}/items/GLScatterPlotItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem_b.py +0 -0
- /melage/{graphics → rendering}/items/__init__.py +0 -0
- /melage/{graphics → rendering}/shaders.py +0 -0
- /melage/widgets/{enhanceImWidget.py → EnhanceImageWidget.py} +0 -0
- {melage-0.0.65.dist-info → melage-1.0.0.dist-info}/WHEEL +0 -0
|
@@ -1,272 +0,0 @@
|
|
|
1
|
-
import nibabel
|
|
2
|
-
import torch
|
|
3
|
-
from torch import nn
|
|
4
|
-
import torch.nn.functional as F
|
|
5
|
-
from pytorch_lightning import LightningModule, Trainer
|
|
6
|
-
from melage.widgets.DeepLModels.NPP.models.losses import SSIM3D
|
|
7
|
-
from einops import rearrange
|
|
8
|
-
import numpy as np
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
class FeedForward(nn.Module):
|
|
12
|
-
def __init__(self, dim, hidden_dim, dropout = 0.):
|
|
13
|
-
super().__init__()
|
|
14
|
-
self.net = nn.Sequential(
|
|
15
|
-
nn.Linear(dim, hidden_dim),
|
|
16
|
-
nn.GELU(),
|
|
17
|
-
nn.Dropout(dropout),
|
|
18
|
-
nn.Linear(hidden_dim, dim),
|
|
19
|
-
nn.Dropout(dropout)
|
|
20
|
-
)
|
|
21
|
-
def forward(self, x):
|
|
22
|
-
return self.net(x)
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
class Attention(nn.Module):
|
|
26
|
-
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
|
27
|
-
super().__init__()
|
|
28
|
-
inner_dim = dim_head * heads
|
|
29
|
-
project_out = not (heads == 1 and dim_head == dim)
|
|
30
|
-
|
|
31
|
-
self.heads = heads
|
|
32
|
-
self.scale = dim_head ** -0.5
|
|
33
|
-
|
|
34
|
-
self.attend = nn.Softmax(dim = -1)
|
|
35
|
-
self.dropout = nn.Dropout(dropout)
|
|
36
|
-
|
|
37
|
-
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
38
|
-
|
|
39
|
-
self.to_out = nn.Sequential(
|
|
40
|
-
nn.Linear(inner_dim, dim),
|
|
41
|
-
nn.Dropout(dropout)
|
|
42
|
-
) if project_out else nn.Identity()
|
|
43
|
-
|
|
44
|
-
def forward(self, x):
|
|
45
|
-
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
46
|
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
|
47
|
-
|
|
48
|
-
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
|
49
|
-
|
|
50
|
-
attn = self.attend(dots)
|
|
51
|
-
attn = self.dropout(attn)
|
|
52
|
-
|
|
53
|
-
out = torch.matmul(attn, v)
|
|
54
|
-
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
55
|
-
return self.to_out(out)
|
|
56
|
-
|
|
57
|
-
class Grad:
|
|
58
|
-
"""
|
|
59
|
-
N-D gradient loss.
|
|
60
|
-
"""
|
|
61
|
-
|
|
62
|
-
def __init__(self, penalty='l1', loss_mult=None):
|
|
63
|
-
self.penalty = penalty
|
|
64
|
-
self.loss_mult = loss_mult
|
|
65
|
-
|
|
66
|
-
def __call__(self, y_pred):
|
|
67
|
-
dy = torch.abs(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :])
|
|
68
|
-
dx = torch.abs(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :])
|
|
69
|
-
dz = torch.abs(y_pred[:, :, :, :, 1:] - y_pred[:, :, :, :, :-1])
|
|
70
|
-
|
|
71
|
-
if self.penalty == 'l2':
|
|
72
|
-
dy = dy * dy
|
|
73
|
-
dx = dx * dx
|
|
74
|
-
dz = dz * dz
|
|
75
|
-
|
|
76
|
-
grad = torch.mean(dx) + torch.mean(dy) + torch.mean(dz)
|
|
77
|
-
|
|
78
|
-
return grad
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
class VGGBlock(nn.Module):
|
|
82
|
-
def __init__(self, in_channels, middle_channels, out_channels,stride = 1,relu='lrelu'):
|
|
83
|
-
super().__init__()
|
|
84
|
-
if relu=='lrelu':
|
|
85
|
-
self.relu = nn.LeakyReLU(inplace=True,negative_slope=0.01)
|
|
86
|
-
else:
|
|
87
|
-
self.relu = nn.ReLU(inplace=True)
|
|
88
|
-
|
|
89
|
-
self.conv1 = nn.Conv3d(in_channels, middle_channels, 3, padding=1,stride=stride)
|
|
90
|
-
self.bn1 = nn.InstanceNorm3d(middle_channels,affine=True)
|
|
91
|
-
self.conv2 = nn.Conv3d(middle_channels, out_channels, 3, padding=1)
|
|
92
|
-
self.bn2 = nn.InstanceNorm3d(out_channels,affine=True)
|
|
93
|
-
|
|
94
|
-
def forward(self, x):
|
|
95
|
-
out = self.conv1(x)
|
|
96
|
-
out = self.bn1(out)
|
|
97
|
-
out = self.relu(out)
|
|
98
|
-
|
|
99
|
-
out = self.conv2(out)
|
|
100
|
-
out = self.bn2(out)
|
|
101
|
-
out = self.relu(out)
|
|
102
|
-
|
|
103
|
-
return out
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
class UNet(nn.Module):
|
|
107
|
-
def __init__(self, input_channels=1, output_channels=1,):
|
|
108
|
-
super().__init__()
|
|
109
|
-
self._leaky_relu_alpha = 0.01
|
|
110
|
-
nb_filter = [16, 32, 64, 128, 256,512]
|
|
111
|
-
self.nb_filter = nb_filter
|
|
112
|
-
self.pool = nn.MaxPool3d(2)
|
|
113
|
-
self.up = nn.Upsample(scale_factor=(2,2,2), mode='trilinear', align_corners=True)
|
|
114
|
-
|
|
115
|
-
self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
|
|
116
|
-
self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1],stride=2)
|
|
117
|
-
self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2],stride=2)
|
|
118
|
-
self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3],stride=2)
|
|
119
|
-
self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4],stride=2)
|
|
120
|
-
self.conv5_0 = VGGBlock(nb_filter[4], nb_filter[5], nb_filter[5],stride=2)
|
|
121
|
-
|
|
122
|
-
self.conv4_1 = VGGBlock(nb_filter[4]+nb_filter[5], nb_filter[4], nb_filter[4])
|
|
123
|
-
self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
|
|
124
|
-
self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
|
|
125
|
-
self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
|
|
126
|
-
self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
|
|
127
|
-
|
|
128
|
-
self.final = nn.Conv3d(nb_filter[0], output_channels, kernel_size=1)
|
|
129
|
-
self.LN1 = nn.LayerNorm(nb_filter[5])
|
|
130
|
-
self.LN2 = nn.LayerNorm(nb_filter[5])
|
|
131
|
-
self.attention1 = Attention(nb_filter[5],heads = 8,dim_head=64)
|
|
132
|
-
self.mlp1 = FeedForward(nb_filter[5],nb_filter[5])
|
|
133
|
-
self.LN3 = nn.LayerNorm(nb_filter[5])
|
|
134
|
-
self.LN4 = nn.LayerNorm(nb_filter[5])
|
|
135
|
-
self.attention2 = Attention(nb_filter[5],heads = 8,dim_head=64)
|
|
136
|
-
self.mlp2 = FeedForward(nb_filter[5],nb_filter[5])
|
|
137
|
-
|
|
138
|
-
self.head = nn.Sequential(
|
|
139
|
-
nn.Linear(nb_filter[5], nb_filter[5] // 2, bias=False),
|
|
140
|
-
nn.ReLU(inplace=True),
|
|
141
|
-
nn.Linear(nb_filter[5] // 2, 12, bias=False),
|
|
142
|
-
nn.Tanh()
|
|
143
|
-
)
|
|
144
|
-
self.head2 = nn.Sequential(
|
|
145
|
-
nn.Linear(1, nb_filter[5]),
|
|
146
|
-
nn.ReLU(inplace=True),
|
|
147
|
-
nn.Linear(nb_filter[5], nb_filter[5]*4),
|
|
148
|
-
nn.ReLU(inplace=True),
|
|
149
|
-
nn.Linear(nb_filter[5]*4, sum(np.array(nb_filter[:-1]))*2),
|
|
150
|
-
)
|
|
151
|
-
def forward(self, input,weight=None):
|
|
152
|
-
|
|
153
|
-
input_downsampled = torch.nn.functional.interpolate(input, size=[128, 128, 128],
|
|
154
|
-
mode='trilinear', align_corners=False)
|
|
155
|
-
|
|
156
|
-
x0_0 = self.conv0_0(input_downsampled)
|
|
157
|
-
x1_0 = self.conv1_0(x0_0)
|
|
158
|
-
x2_0 = self.conv2_0(x1_0)
|
|
159
|
-
x3_0 = self.conv3_0(x2_0)
|
|
160
|
-
x4_0 = self.conv4_0(x3_0)
|
|
161
|
-
x5_0 = self.conv5_0(x4_0)
|
|
162
|
-
|
|
163
|
-
identity = torch.eye(3,4).repeat(x5_0.shape[0],1,1).type_as(x5_0)
|
|
164
|
-
b,c,h,w,d = x5_0.shape
|
|
165
|
-
x5_0_faltten = rearrange(x5_0,'b c h w d-> b (h w d) c')
|
|
166
|
-
x5_0_faltten = self.attention1(self.LN1(x5_0_faltten)) + x5_0_faltten
|
|
167
|
-
x5_0_faltten = self.mlp1(self.LN2(x5_0_faltten)) + x5_0_faltten
|
|
168
|
-
x5_0_faltten = self.attention2(self.LN3(x5_0_faltten)) + x5_0_faltten
|
|
169
|
-
x5_0_faltten = self.mlp2(self.LN4(x5_0_faltten)) + x5_0_faltten
|
|
170
|
-
|
|
171
|
-
affine = self.head(x5_0_faltten.mean(dim=1)).reshape(-1, 3, 4) + identity
|
|
172
|
-
x5_0 = rearrange(x5_0_faltten,'b (h w d) c -> b c h w d',h=h,w=w,d=d)
|
|
173
|
-
|
|
174
|
-
x0_0_warp = torch.nn.functional.affine_grid(affine, input.size(), align_corners=False)
|
|
175
|
-
mod = self.head2(torch.Tensor([weight]).type_as(x0_0_warp))
|
|
176
|
-
mod = torch.split(mod,np.repeat(self.nb_filter[:-1],2).tolist(),0)
|
|
177
|
-
|
|
178
|
-
x4_1 = self.conv4_1(torch.cat([x4_0, self.up(x5_0)], 1))*mod[-1].reshape(1,-1,1,1,1)+ mod[-2].reshape(1,-1,1,1,1)
|
|
179
|
-
x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_1)], 1))*mod[-3].reshape(1,-1,1,1,1) + mod[-4].reshape(1,-1,1,1,1)
|
|
180
|
-
x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_1)], 1))*mod[-5].reshape(1,-1,1,1,1)+ mod[-6].reshape(1,-1,1,1,1)
|
|
181
|
-
x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_1)], 1))*mod[-7].reshape(1,-1,1,1,1)+ mod[-8].reshape(1,-1,1,1,1)
|
|
182
|
-
x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_1)], 1))*mod[-9].reshape(1,-1,1,1,1)+ mod[-10].reshape(1,-1,1,1,1)
|
|
183
|
-
|
|
184
|
-
output = self.final(x0_1)
|
|
185
|
-
output_upsampled = torch.nn.functional.interpolate(output, size=[256, 256, 256],mode='trilinear', align_corners=False)
|
|
186
|
-
norm = input*255 * output_upsampled
|
|
187
|
-
mni_norm = torch.nn.functional.grid_sample(norm, x0_0_warp, align_corners=False)
|
|
188
|
-
|
|
189
|
-
return mni_norm,norm,output_upsampled
|
|
190
|
-
class NPP(LightningModule):
|
|
191
|
-
def __init__(
|
|
192
|
-
self,
|
|
193
|
-
lr,
|
|
194
|
-
):
|
|
195
|
-
super().__init__()
|
|
196
|
-
self.save_hyperparameters()
|
|
197
|
-
|
|
198
|
-
# networks
|
|
199
|
-
self.generator = UNet()
|
|
200
|
-
|
|
201
|
-
self.ssim7 = SSIM3D(window_size=5)
|
|
202
|
-
self.mse = nn.L1Loss()
|
|
203
|
-
self.grad = Grad('l1')
|
|
204
|
-
self.automatic_optimization = False
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
def forward(self, x,ind = None):
|
|
208
|
-
return self.generator(x,ind)
|
|
209
|
-
|
|
210
|
-
def training_step(self, batch, batch_idx):
|
|
211
|
-
imgs, gts,brain_mask, ind = batch
|
|
212
|
-
opt = self.optimizers()
|
|
213
|
-
sch = self.lr_schedulers()
|
|
214
|
-
# train generator
|
|
215
|
-
# generate images
|
|
216
|
-
weight = np.random.uniform(2,-4)
|
|
217
|
-
self.generated_imgs = self(imgs,weight)
|
|
218
|
-
|
|
219
|
-
# log sampled images
|
|
220
|
-
loss_ssim_7 = -self.ssim7(self.generated_imgs[1], gts)
|
|
221
|
-
|
|
222
|
-
grad_loss = self.grad(self.generated_imgs[0])
|
|
223
|
-
|
|
224
|
-
loss = loss_ssim_7 + grad_loss*10**weight
|
|
225
|
-
opt.zero_grad()
|
|
226
|
-
|
|
227
|
-
self.manual_backward(loss)
|
|
228
|
-
opt.step()
|
|
229
|
-
|
|
230
|
-
if self.trainer.is_last_batch:
|
|
231
|
-
sch.step()
|
|
232
|
-
|
|
233
|
-
self.log("tv_train" , grad_loss,prog_bar=True, sync_dist=True)
|
|
234
|
-
self.log("ssim_7_train" , loss_ssim_7,prog_bar=True, sync_dist=True)
|
|
235
|
-
return loss
|
|
236
|
-
|
|
237
|
-
def configure_optimizers(self):
|
|
238
|
-
lr = self.hparams.lr
|
|
239
|
-
my_list = []
|
|
240
|
-
sparse_params = list(filter(lambda kv: kv[0] in my_list, self.generator.named_parameters()))
|
|
241
|
-
sparse_params = [i[1] for i in sparse_params]
|
|
242
|
-
base_params = list(filter(lambda kv: kv[0] not in my_list, self.generator.named_parameters()))
|
|
243
|
-
base_params = [i[1] for i in base_params]
|
|
244
|
-
|
|
245
|
-
base_params = [{"params": base_params},]
|
|
246
|
-
sparse_params = [{"params": sparse_params},]
|
|
247
|
-
|
|
248
|
-
optimizer = torch.optim.Adam(base_params, lr=lr)
|
|
249
|
-
|
|
250
|
-
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30], gamma=0.5)
|
|
251
|
-
return [optimizer], [lr_scheduler,]
|
|
252
|
-
|
|
253
|
-
def validation_step(self, batch, batch_idx):
|
|
254
|
-
imgs, gts,brain_mask,ind = batch
|
|
255
|
-
|
|
256
|
-
# train generator
|
|
257
|
-
self.generated_imgs = self(imgs,0.1)
|
|
258
|
-
|
|
259
|
-
grad_loss = self.grad(self.generated_imgs[0])
|
|
260
|
-
loss_ssim_7 = -self.ssim7(self.generated_imgs[1],gts)
|
|
261
|
-
loss = grad_loss + loss_ssim_7
|
|
262
|
-
self.log("tv_val", grad_loss,prog_bar=True, sync_dist=True )
|
|
263
|
-
self.log("ssim_7_val", loss_ssim_7,prog_bar=True, sync_dist=True )
|
|
264
|
-
|
|
265
|
-
return loss
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
@@ -1,303 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2021-2022, InterDigital Communications, Inc
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
|
|
4
|
-
# Redistribution and use in source and binary forms, with or without
|
|
5
|
-
# modification, are permitted (subject to the limitations in the disclaimer
|
|
6
|
-
# below) provided that the following conditions are met:
|
|
7
|
-
|
|
8
|
-
# * Redistributions of source code must retain the above copyright notice,
|
|
9
|
-
# this list of conditions and the following disclaimer.
|
|
10
|
-
# * Redistributions in binary form must reproduce the above copyright notice,
|
|
11
|
-
# this list of conditions and the following disclaimer in the documentation
|
|
12
|
-
# and/or other materials provided with the distribution.
|
|
13
|
-
# * Neither the name of InterDigital Communications, Inc nor the names of its
|
|
14
|
-
# contributors may be used to endorse or promote products derived from this
|
|
15
|
-
# software without specific prior written permission.
|
|
16
|
-
|
|
17
|
-
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
|
|
18
|
-
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
19
|
-
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
|
|
20
|
-
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
21
|
-
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
22
|
-
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
23
|
-
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
24
|
-
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
25
|
-
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
26
|
-
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
27
|
-
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
28
|
-
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
29
|
-
|
|
30
|
-
import torch
|
|
31
|
-
import torch.nn as nn
|
|
32
|
-
import torch.nn.functional as F
|
|
33
|
-
import numpy as np
|
|
34
|
-
|
|
35
|
-
def find_named_module(module, query):
|
|
36
|
-
"""Helper function to find a named module. Returns a `nn.Module` or `None`
|
|
37
|
-
|
|
38
|
-
Args:
|
|
39
|
-
module (nn.Module): the root module
|
|
40
|
-
query (str): the module name to find
|
|
41
|
-
|
|
42
|
-
Returns:
|
|
43
|
-
nn.Module or None
|
|
44
|
-
"""
|
|
45
|
-
|
|
46
|
-
return next((m for n, m in module.named_modules() if n == query), None)
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def find_named_buffer(module, query):
|
|
50
|
-
"""Helper function to find a named buffer. Returns a `torch.Tensor` or `None`
|
|
51
|
-
|
|
52
|
-
Args:
|
|
53
|
-
module (nn.Module): the root module
|
|
54
|
-
query (str): the buffer name to find
|
|
55
|
-
|
|
56
|
-
Returns:
|
|
57
|
-
torch.Tensor or None
|
|
58
|
-
"""
|
|
59
|
-
return next((b for n, b in module.named_buffers() if n == query), None)
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def _update_registered_buffer(
|
|
63
|
-
module,
|
|
64
|
-
buffer_name,
|
|
65
|
-
state_dict_key,
|
|
66
|
-
state_dict,
|
|
67
|
-
policy="resize_if_empty",
|
|
68
|
-
dtype=torch.int,
|
|
69
|
-
):
|
|
70
|
-
new_size = state_dict[state_dict_key].size()
|
|
71
|
-
registered_buf = find_named_buffer(module, buffer_name)
|
|
72
|
-
|
|
73
|
-
if policy in ("resize_if_empty", "resize"):
|
|
74
|
-
if registered_buf is None:
|
|
75
|
-
raise RuntimeError(f'buffer "{buffer_name}" was not registered')
|
|
76
|
-
|
|
77
|
-
if policy == "resize" or registered_buf.numel() == 0:
|
|
78
|
-
registered_buf.resize_(new_size)
|
|
79
|
-
|
|
80
|
-
elif policy == "register":
|
|
81
|
-
if registered_buf is not None:
|
|
82
|
-
raise RuntimeError(f'buffer "{buffer_name}" was already registered')
|
|
83
|
-
|
|
84
|
-
module.register_buffer(buffer_name, torch.empty(new_size, dtype=dtype).fill_(0))
|
|
85
|
-
|
|
86
|
-
else:
|
|
87
|
-
raise ValueError(f'Invalid policy "{policy}"')
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
def update_registered_buffers(
|
|
91
|
-
module,
|
|
92
|
-
module_name,
|
|
93
|
-
buffer_names,
|
|
94
|
-
state_dict,
|
|
95
|
-
policy="resize_if_empty",
|
|
96
|
-
dtype=torch.int,
|
|
97
|
-
):
|
|
98
|
-
"""Update the registered buffers in a module according to the tensors sized
|
|
99
|
-
in a state_dict.
|
|
100
|
-
|
|
101
|
-
(There's no way in torch to directly load a buffer with a dynamic size)
|
|
102
|
-
|
|
103
|
-
Args:
|
|
104
|
-
module (nn.Module): the module
|
|
105
|
-
module_name (str): module name in the state dict
|
|
106
|
-
buffer_names (list(str)): list of the buffer names to resize in the module
|
|
107
|
-
state_dict (dict): the state dict
|
|
108
|
-
policy (str): Update policy, choose from
|
|
109
|
-
('resize_if_empty', 'resize', 'register')
|
|
110
|
-
dtype (dtype): Type of buffer to be registered (when policy is 'register')
|
|
111
|
-
"""
|
|
112
|
-
valid_buffer_names = [n for n, _ in module.named_buffers()]
|
|
113
|
-
for buffer_name in buffer_names:
|
|
114
|
-
if buffer_name not in valid_buffer_names:
|
|
115
|
-
raise ValueError(f'Invalid buffer name "{buffer_name}"')
|
|
116
|
-
|
|
117
|
-
for buffer_name in buffer_names:
|
|
118
|
-
_update_registered_buffer(
|
|
119
|
-
module,
|
|
120
|
-
buffer_name,
|
|
121
|
-
f"{module_name}.{buffer_name}",
|
|
122
|
-
state_dict,
|
|
123
|
-
policy,
|
|
124
|
-
dtype,
|
|
125
|
-
)
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
def conv(in_channels, out_channels, kernel_size=5, stride=2):
|
|
129
|
-
return nn.Conv2d(
|
|
130
|
-
in_channels,
|
|
131
|
-
out_channels,
|
|
132
|
-
kernel_size=kernel_size,
|
|
133
|
-
stride=stride,
|
|
134
|
-
padding=kernel_size // 2,
|
|
135
|
-
)
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
def deconv(in_channels, out_channels, kernel_size=5, stride=2):
|
|
139
|
-
return nn.ConvTranspose2d(
|
|
140
|
-
in_channels,
|
|
141
|
-
out_channels,
|
|
142
|
-
kernel_size=kernel_size,
|
|
143
|
-
stride=stride,
|
|
144
|
-
output_padding=stride - 1,
|
|
145
|
-
padding=kernel_size // 2,
|
|
146
|
-
)
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
def quantize_ste(x):
|
|
150
|
-
"""Differentiable quantization via the Straight-Through-Estimator."""
|
|
151
|
-
# STE (straight-through estimator) trick: x_hard - x_soft.detach() + x_soft
|
|
152
|
-
return (torch.round(x) - x).detach() + x
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
def gaussian_kernel1d(
|
|
156
|
-
kernel_size: int, sigma: float, device: torch.device, dtype: torch.dtype
|
|
157
|
-
):
|
|
158
|
-
"""1D Gaussian kernel."""
|
|
159
|
-
khalf = (kernel_size - 1) / 2.0
|
|
160
|
-
x = torch.linspace(-khalf, khalf, steps=kernel_size, dtype=dtype, device=device)
|
|
161
|
-
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
|
162
|
-
return pdf / pdf.sum()
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
def gaussian_kernel2d(
|
|
166
|
-
kernel_size: int, sigma: float, device: torch.device, dtype: torch.dtype
|
|
167
|
-
):
|
|
168
|
-
"""2D Gaussian kernel."""
|
|
169
|
-
kernel = gaussian_kernel1d(kernel_size, sigma, device, dtype)
|
|
170
|
-
return torch.mm(kernel[:, None], kernel[None, :])
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
def gaussian_blur(x, kernel=None, kernel_size=None, sigma=None):
|
|
174
|
-
"""Apply a 2D gaussian blur on a given image tensor."""
|
|
175
|
-
if kernel is None:
|
|
176
|
-
if kernel_size is None or sigma is None:
|
|
177
|
-
raise RuntimeError("Missing kernel_size or sigma parameters")
|
|
178
|
-
dtype = x.dtype if torch.is_floating_point(x) else torch.float32
|
|
179
|
-
device = x.device
|
|
180
|
-
kernel = gaussian_kernel2d(kernel_size, sigma, device, dtype)
|
|
181
|
-
|
|
182
|
-
padding = kernel.size(0) // 2
|
|
183
|
-
x = F.pad(x, (padding, padding, padding, padding), mode="replicate")
|
|
184
|
-
x = torch.nn.functional.conv2d(
|
|
185
|
-
x,
|
|
186
|
-
kernel.expand(x.size(1), 1, kernel.size(0), kernel.size(1)),
|
|
187
|
-
groups=x.size(1),
|
|
188
|
-
)
|
|
189
|
-
return x
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
def meshgrid2d(N: int, C: int, H: int, W: int, device: torch.device):
|
|
193
|
-
"""Create a 2D meshgrid for interpolation."""
|
|
194
|
-
theta = torch.eye(2, 3, device=device).unsqueeze(0).expand(N, 2, 3)
|
|
195
|
-
return F.affine_grid(theta, (N, C, H, W), align_corners=False)
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
def getscale(data, dst_min, dst_max, f_low=0.0, f_high=0.999):
|
|
201
|
-
"""
|
|
202
|
-
Function to get offset and scale of image intensities to robustly rescale to range dst_min..dst_max.
|
|
203
|
-
Equivalent to how mri_convert conforms images.
|
|
204
|
-
:param np.ndarray data: image data (intensity values)
|
|
205
|
-
:param float dst_min: future minimal intensity value
|
|
206
|
-
:param float dst_max: future maximal intensity value
|
|
207
|
-
:param f_low: robust cropping at low end (0.0 no cropping)
|
|
208
|
-
:param f_high: robust cropping at higher end (0.999 crop one thousandths of high intensity voxels)
|
|
209
|
-
:return: float src_min: (adjusted) offset
|
|
210
|
-
:return: float scale: scale factor
|
|
211
|
-
"""
|
|
212
|
-
# get min and max from source
|
|
213
|
-
src_min = np.min(data)
|
|
214
|
-
src_max = np.max(data)
|
|
215
|
-
|
|
216
|
-
print("Input: min: " + format(src_min) + " max: " + format(src_max))
|
|
217
|
-
|
|
218
|
-
if f_low == 0.0 and f_high == 1.0:
|
|
219
|
-
return src_min, 1.0
|
|
220
|
-
|
|
221
|
-
# compute non-zeros and total vox num
|
|
222
|
-
nz = (np.abs(data) >= 1e-15).sum()
|
|
223
|
-
voxnum = data.shape[0] * data.shape[1] * data.shape[2]
|
|
224
|
-
|
|
225
|
-
# compute histogram
|
|
226
|
-
histosize = 1000
|
|
227
|
-
bin_size = (src_max - src_min) / histosize
|
|
228
|
-
hist, bin_edges = np.histogram(data, histosize)
|
|
229
|
-
|
|
230
|
-
# compute cummulative sum
|
|
231
|
-
cs = np.concatenate(([0], np.cumsum(hist)))
|
|
232
|
-
|
|
233
|
-
# get lower limit
|
|
234
|
-
nth = int(f_low * voxnum)
|
|
235
|
-
idx = np.where(cs < nth)
|
|
236
|
-
|
|
237
|
-
if len(idx[0]) > 0:
|
|
238
|
-
idx = idx[0][-1] + 1
|
|
239
|
-
|
|
240
|
-
else:
|
|
241
|
-
idx = 0
|
|
242
|
-
|
|
243
|
-
src_min = idx * bin_size + src_min
|
|
244
|
-
|
|
245
|
-
# print("bin min: "+format(idx)+" nth: "+format(nth)+" passed: "+format(cs[idx])+"\n")
|
|
246
|
-
# get upper limit
|
|
247
|
-
nth = voxnum - int((1.0 - f_high) * nz)
|
|
248
|
-
idx = np.where(cs >= nth)
|
|
249
|
-
|
|
250
|
-
if len(idx[0]) > 0:
|
|
251
|
-
idx = idx[0][0] - 2
|
|
252
|
-
|
|
253
|
-
else:
|
|
254
|
-
print('ERROR: rescale upper bound not found')
|
|
255
|
-
|
|
256
|
-
src_max = idx * bin_size + src_min
|
|
257
|
-
# print("bin max: "+format(idx)+" nth: "+format(nth)+" passed: "+format(voxnum-cs[idx])+"\n")
|
|
258
|
-
|
|
259
|
-
# scale
|
|
260
|
-
if src_min == src_max:
|
|
261
|
-
scale = 1.0
|
|
262
|
-
|
|
263
|
-
else:
|
|
264
|
-
scale = (dst_max - dst_min) / (src_max - src_min)
|
|
265
|
-
|
|
266
|
-
print("rescale: min: " + format(src_min) + " max: " + format(src_max) + " scale: " + format(scale))
|
|
267
|
-
|
|
268
|
-
return src_min, scale
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
def scalecrop(data, dst_min, dst_max, src_min, scale):
|
|
273
|
-
"""
|
|
274
|
-
Function to crop the intensity ranges to specific min and max values
|
|
275
|
-
:param np.ndarray data: Image data (intensity values)
|
|
276
|
-
:param float dst_min: future minimal intensity value
|
|
277
|
-
:param float dst_max: future maximal intensity value
|
|
278
|
-
:param float src_min: minimal value to consider from source (crops below)
|
|
279
|
-
:param float scale: scale value by which source will be shifted
|
|
280
|
-
:return: np.ndarray data_new: scaled image data
|
|
281
|
-
"""
|
|
282
|
-
data_new = dst_min + scale * (data - src_min)
|
|
283
|
-
|
|
284
|
-
# clip
|
|
285
|
-
data_new = np.clip(data_new, dst_min, dst_max)
|
|
286
|
-
print("Output: min: " + format(data_new.min()) + " max: " + format(data_new.max()))
|
|
287
|
-
|
|
288
|
-
return data_new
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
def normalize(img):
|
|
292
|
-
src_min, scale = getscale(img.data, 0, 255)
|
|
293
|
-
|
|
294
|
-
if not img.data.dtype == np.dtype(np.uint8):
|
|
295
|
-
new_data = scalecrop(img.data, 0, 255, src_min, scale)
|
|
296
|
-
else:
|
|
297
|
-
new_data = img.data
|
|
298
|
-
|
|
299
|
-
new_img = img
|
|
300
|
-
new_img.data = new_data/255
|
|
301
|
-
|
|
302
|
-
return new_img
|
|
303
|
-
|
|
@@ -1,116 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import sys
|
|
3
|
-
import torch
|
|
4
|
-
import torch
|
|
5
|
-
import torch.nn as nn
|
|
6
|
-
import numpy as np
|
|
7
|
-
import argparse
|
|
8
|
-
import surfa as sf
|
|
9
|
-
import scipy.ndimage
|
|
10
|
-
from models.model import UNet
|
|
11
|
-
from models.utils import normalize
|
|
12
|
-
|
|
13
|
-
description = '''
|
|
14
|
-
Neural Pre-processing (NPP) converts Head MRI images
|
|
15
|
-
to an intensity-normalized, skull-stripped brain in a standard coordi-
|
|
16
|
-
nate space. If you use NPP in your analysis, please cite:
|
|
17
|
-
'''
|
|
18
|
-
|
|
19
|
-
# os.system(f'python npp.py -i {inputfname} -o {outputdir}')
|
|
20
|
-
|
|
21
|
-
# parse command line
|
|
22
|
-
parser = argparse.ArgumentParser(description=description)
|
|
23
|
-
parser.add_argument('-i', '--image', metavar='file', required=True, help='Input image to pre-processing.')
|
|
24
|
-
parser.add_argument('-o', '--out', metavar='file', help='Save stripped image to path.')
|
|
25
|
-
parser.add_argument('-w', '--weight', metavar='float', help='Smoothness of intensity normalization mapping. The range of smoothness is [-3,2],'
|
|
26
|
-
' where a larger value implies a higher degree of smoothing',default =-1)
|
|
27
|
-
parser.add_argument('-g', '--gpu', action='store_true', help='Use the GPU.')
|
|
28
|
-
|
|
29
|
-
if len(sys.argv) == 1:
|
|
30
|
-
parser.print_help()
|
|
31
|
-
exit(1)
|
|
32
|
-
|
|
33
|
-
args = parser.parse_args()
|
|
34
|
-
|
|
35
|
-
# sanity check on the inputs
|
|
36
|
-
if not args.out:
|
|
37
|
-
sf.system.fatal('Must provide at least --out output flags.')
|
|
38
|
-
elif not os.path.exists(os.path.dirname(args.out)):
|
|
39
|
-
sf.system.fatal('Output directory does not exist.')
|
|
40
|
-
|
|
41
|
-
# check args.weight is in the range and float
|
|
42
|
-
if args.weight:
|
|
43
|
-
args.weight = float(args.weight)
|
|
44
|
-
if args.weight < -3 or args.weight > 2:
|
|
45
|
-
sf.system.fatal('The range of smoothness should within [-3,2], where a larger value implies a higher degree of smoothing')
|
|
46
|
-
|
|
47
|
-
# necessary for speed gains (I think)
|
|
48
|
-
torch.backends.cudnn.benchmark = True
|
|
49
|
-
torch.backends.cudnn.deterministic = True
|
|
50
|
-
|
|
51
|
-
# configure GPU device
|
|
52
|
-
if args.gpu:
|
|
53
|
-
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
54
|
-
device = torch.device('cuda')
|
|
55
|
-
device_name = 'GPU'
|
|
56
|
-
else:
|
|
57
|
-
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
|
58
|
-
device = torch.device('cpu')
|
|
59
|
-
device_name = 'CPU'
|
|
60
|
-
|
|
61
|
-
# configure model
|
|
62
|
-
print(f'Configuring model on the {device_name}')
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
with torch.no_grad():
|
|
66
|
-
model = UNet()
|
|
67
|
-
model.to(device)
|
|
68
|
-
model.eval()
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
version = '1'
|
|
72
|
-
print(f'Running Neural Pre-processing model version {version}')
|
|
73
|
-
cwd = os.getcwd()
|
|
74
|
-
modelfile = os.path.join(cwd,'models/checkpoints', f'npp_v{version}.pth')
|
|
75
|
-
checkpoint = torch.load(modelfile, map_location=device)
|
|
76
|
-
|
|
77
|
-
model.load_state_dict(checkpoint)
|
|
78
|
-
|
|
79
|
-
# load input volume
|
|
80
|
-
image = sf.load_volume(args.image)
|
|
81
|
-
print(f'Input image read from: {args.image}')
|
|
82
|
-
|
|
83
|
-
# frame check
|
|
84
|
-
if image.nframes > 1:
|
|
85
|
-
sf.system.fatal('Input image cannot have more than 1 frame')
|
|
86
|
-
|
|
87
|
-
#i normalize image to [0, 255] and to [0, 1]
|
|
88
|
-
image = normalize(image)
|
|
89
|
-
|
|
90
|
-
# conform image and fit to shape with factors of 64
|
|
91
|
-
conformed = image.conform(voxsize=1.0, dtype='float32',shape=(256,256,256), method='nearest', orientation='LIA')
|
|
92
|
-
|
|
93
|
-
# predict the surface distance transform
|
|
94
|
-
with torch.no_grad():
|
|
95
|
-
input_tensor = torch.from_numpy(conformed.data[np.newaxis, np.newaxis]).to(device)
|
|
96
|
-
output = model(input_tensor,args.weight)
|
|
97
|
-
mni_norm = output[0].cpu().numpy().squeeze().astype(np.int16)
|
|
98
|
-
norm = output[1].cpu().numpy().squeeze().astype(np.int16)
|
|
99
|
-
scalar_field = output[2].cpu().numpy().squeeze().astype(np.int16)
|
|
100
|
-
|
|
101
|
-
# unconform the sdt and extract mask
|
|
102
|
-
mni_norm = conformed.new(mni_norm)#.resample_like(image,method='nearest', fill=0)
|
|
103
|
-
norm = conformed.new(norm)#.resample_like(image, method='nearest',fill=0)
|
|
104
|
-
scalar_field = conformed.new(scalar_field)#.resample_like(image, method='nearest',fill=0)
|
|
105
|
-
|
|
106
|
-
# write the masked output
|
|
107
|
-
if args.out:
|
|
108
|
-
filename = os.path.basename(args.image)
|
|
109
|
-
filename = filename.split('.')[0]
|
|
110
|
-
mni_norm.save(os.path.join(args.out,filename+'_mni_norm.nii.gz'))
|
|
111
|
-
norm.save(os.path.join(args.out,filename+'_norm.nii.gz'))
|
|
112
|
-
scalar_field.save(os.path.join(args.out,filename+'_scalar_field.nii.gz'))
|
|
113
|
-
|
|
114
|
-
print(f'Results saved to: {args.out}')
|
|
115
|
-
|
|
116
|
-
print('If you use Neural Pre-processing in your analysis, please cite:')
|