melage 0.0.65__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- assets/copyright.png +0 -0
- assets/resource/color/FreeSurferColorLUT.txt +2006 -0
- assets/resource/color/LUT_30.txt +31 -0
- assets/resource/color/SynthSeg.txt +34 -0
- assets/resource/color/lut_prostate.txt +20 -0
- assets/resource/horizontalview.png +0 -0
- assets/resource/main.ico +0 -0
- assets/resource/theme/create_ticks.py +85 -0
- assets/resource/theme/rc/checkbox_checked.png +0 -0
- assets/resource/theme/rc/checkbox_checked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- assets/resource/verticalview.png +0 -0
- assets/resource/zoom_in.png +0 -0
- assets/resource/zoom_neutral (copy).png +0 -0
- assets/resource/zoom_neutral.png +0 -0
- assets/resource/zoom_out.png +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a.nii +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_masked.nii.gz +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_seg.nii.gz +0 -0
- docs/manual_images/3D_rightc.png +0 -0
- docs/manual_images/3D_rightc_goto.png +0 -0
- docs/manual_images/3D_rightc_paint.png +0 -0
- docs/manual_images/3D_rightc_paint_draw1.png +0 -0
- docs/manual_images/3D_rightc_paint_draw2.png +0 -0
- docs/manual_images/3D_rightc_paint_render.png +0 -0
- docs/manual_images/3D_rightc_paint_render2.png +0 -0
- docs/manual_images/3D_rightc_paint_render3.png +0 -0
- docs/manual_images/3D_rightc_paint_render4.png +0 -0
- docs/manual_images/3D_rightc_paint_render5.png +0 -0
- docs/manual_images/3D_rightc_paint_render6.png +0 -0
- docs/manual_images/3D_rightc_seg.png +0 -0
- docs/manual_images/exit_toolbar.png +0 -0
- docs/manual_images/load_image_file.png +0 -0
- docs/manual_images/load_image_file_openp.png +0 -0
- docs/manual_images/main_page.png +0 -0
- docs/manual_images/menu_file.png +0 -0
- docs/manual_images/menu_file_export.png +0 -0
- docs/manual_images/menu_file_import.png +0 -0
- docs/manual_images/menu_file_settings.png +0 -0
- docs/manual_images/menu_file_ss.png +0 -0
- docs/manual_images/open_save_load.png +0 -0
- docs/manual_images/panning_toolbar.png +0 -0
- docs/manual_images/segmentation_toolbar.png +0 -0
- docs/manual_images/tab_mri.png +0 -0
- docs/manual_images/tab_us.png +0 -0
- docs/manual_images/tabs.png +0 -0
- docs/manual_images/toolbar_tools.png +0 -0
- docs/manual_images/tools_basic.png +0 -0
- docs/manual_images/tools_bet.png +0 -0
- docs/manual_images/tools_cs.png +0 -0
- docs/manual_images/tools_deepbet.png +0 -0
- docs/manual_images/tools_imageinfo.png +0 -0
- docs/manual_images/tools_maskO.png +0 -0
- docs/manual_images/tools_masking.png +0 -0
- docs/manual_images/tools_n4b.png +0 -0
- docs/manual_images/tools_resize.png +0 -0
- docs/manual_images/tools_ruler.png +0 -0
- docs/manual_images/tools_seg.png +0 -0
- docs/manual_images/tools_threshold.png +0 -0
- docs/manual_images/tools_tools.png +0 -0
- docs/manual_images/widget_color.png +0 -0
- docs/manual_images/widget_color_add.png +0 -0
- docs/manual_images/widget_color_add2.png +0 -0
- docs/manual_images/widget_color_additional.png +0 -0
- docs/manual_images/widget_images.png +0 -0
- docs/manual_images/widget_images2.png +0 -0
- docs/manual_images/widget_images3.png +0 -0
- docs/manual_images/widget_marker.png +0 -0
- docs/manual_images/widget_mri.png +0 -0
- docs/manual_images/widget_mri2.png +0 -0
- docs/manual_images/widget_segintensity.png +0 -0
- docs/manual_images/widget_tab_mutualview.png +0 -0
- docs/manual_images/widget_tab_mutualview2.png +0 -0
- docs/manual_images/widget_table.png +0 -0
- docs/manual_images/widget_table2.png +0 -0
- docs/manual_images/widget_us.png +0 -0
- melage/__init__.py +1 -1
- melage/config/__init__.py +100 -0
- melage/core/Registration/registration.py +54 -0
- melage/{utils/readData.py → core/io.py} +12 -4
- melage/{widgets/melageAbout.py → dialogs/AboutDialog.py} +1 -1
- melage/dialogs/MaskOperationsDialog.py +146 -0
- melage/dialogs/MaskingDialog.py +139 -0
- melage/dialogs/RegistrationDialog.py +311 -0
- melage/{widgets/ImageThresholding.py → dialogs/ThresholdingDialog.py} +2 -2
- melage/dialogs/TransformationDialog.py +275 -0
- melage/dialogs/__init__.py +9 -0
- melage/dialogs/dynamic_gui.py +327 -0
- melage/{widgets/fileDialog_widget.py → dialogs/helpers/FileDialog.py} +226 -1
- melage/dialogs/helpers/__init__.py +5 -0
- melage/main.py +13 -13
- melage/{widgets/mainwindow_widget.py → mainwindow_widget.py} +1434 -1408
- melage/plugins/N4_bias/N4.py +115 -0
- melage/plugins/N4_bias/N4_schema.py +40 -0
- melage/plugins/N4_bias/main/utils.py +46 -0
- melage/plugins/__init__.py +2 -0
- melage/plugins/bet/bet.py +176 -0
- melage/plugins/bet/bet_schema.py +73 -0
- melage/{widgets/brain_extraction.py → plugins/bet/main/BET.py} +51 -316
- melage/plugins/change_coord/change_coord.py +197 -0
- melage/plugins/change_coord/change_coord_schema.py +31 -0
- melage/plugins/change_coord/main/utils.py +15 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/FCM.py +3 -5
- melage/plugins/esfcm/main/test.py +57 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/utils.py +20 -0
- melage/plugins/esfcm/tissue_segmentation.py +124 -0
- melage/plugins/esfcm/tissue_segmentation_schema.py +33 -0
- melage/plugins/masking_operation/mo.py +115 -0
- melage/plugins/masking_operation/mo_schema.py +33 -0
- melage/plugins/mga_net/MGA_Net.py +145 -0
- melage/plugins/mga_net/MGA_Net_schema.py +29 -0
- melage/plugins/mga_net/main/figures/Network.txt +1 -0
- melage/{widgets/DeepLModels/new_unet.py → plugins/mga_net/main/model/mga_net.py} +3 -3
- melage/plugins/mga_net/main/model/utils.py +258 -0
- melage/plugins/mga_net/main/test_mgaNet.py +134 -0
- melage/plugins/resize/resize.py +136 -0
- melage/plugins/resize/resize_schema.py +41 -0
- melage/plugins/ui_helpers.py +144 -0
- melage/plugins/warpseg/WarpSeg.py +195 -0
- melage/plugins/warpseg/WarpSeg_schema.py +41 -0
- melage/plugins/warpseg/__init__.py +2 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSet.py +303 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSetSeg.py +279 -0
- melage/plugins/warpseg/warpseg_main/data_reader/__init__.py +60 -0
- melage/plugins/warpseg/warpseg_main/data_reader/baseData.py +18 -0
- melage/plugins/warpseg/warpseg_main/data_reader/utils.py +267 -0
- melage/plugins/warpseg/warpseg_main/dist_utils.py +18 -0
- melage/plugins/warpseg/warpseg_main/requirements.txt +10 -0
- melage/plugins/warpseg/warpseg_main/test.py +272 -0
- melage/plugins/warpseg/warpseg_main/train.py +432 -0
- melage/plugins/warpseg/warpseg_main/train_reg.py +373 -0
- melage/plugins/warpseg/warpseg_main/verify_post_process.py +73 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/__init__.py +45 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/__init__.py +1 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/utils.py +99 -0
- melage/{widgets/Synthstrip.py → plugins/warpseg/warpseg_main/voxelmorph/torch/Unet.py} +71 -51
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/__init__.py +4 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/layers.py +97 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/losses.py +462 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/modelio.py +77 -0
- melage/{widgets/DeepLModels/InfantSegment/Unet.py → plugins/warpseg/warpseg_main/voxelmorph/torch/multi_stage_net.py} +76 -52
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/networks.py +308 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/utils.py +470 -0
- melage/{utils/DispalyIm.py → rendering/DisplayIm.py} +67 -79
- melage/{utils → rendering}/glScientific.py +1 -1
- melage/utils/__init__.py +1 -0
- melage/utils/utils.py +343 -196
- melage/widgets/{dockWidgets.py → DockWidgets.py} +123 -55
- melage/widgets/SettingsWidget.py +98 -0
- melage/widgets/__init__.py +49 -0
- melage/widgets/openglWidgets.py +344 -156
- melage/widgets/openglWidgets_bu.py +645 -0
- melage/widgets/plugin_manager.py +62 -0
- melage-1.0.0.dist-info/METADATA +953 -0
- melage-1.0.0.dist-info/RECORD +571 -0
- melage-1.0.0.dist-info/entry_points.txt +2 -0
- melage-1.0.0.dist-info/top_level.txt +4 -0
- melage/requirements22.txt +0 -25
- melage/requirements_old.txt +0 -28
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/some_notes.txt +0 -3
- melage/utils/GMM.py +0 -720
- melage/utils/Shaders_bu.py +0 -314
- melage/utils/__init__0.py +0 -7
- melage/utils/glScientific_bc.py +0 -1585
- melage/utils/registration.py +0 -512
- melage/utils/source_folder.py +0 -18
- melage/version.txt +0 -1
- melage/widgets/ApplyMask.py +0 -212
- melage/widgets/ChangeSystem.py +0 -152
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +0 -149
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +0 -146
- melage/widgets/DeepLModels/NPP/models/model.py +0 -272
- melage/widgets/DeepLModels/NPP/models/utils.py +0 -303
- melage/widgets/DeepLModels/NPP/npp.py +0 -116
- melage/widgets/DeepLModels/NPP/requirements.txt +0 -8
- melage/widgets/DeepLModels/NPP/train/train.py +0 -116
- melage/widgets/DeepLModels/Unet3DAtt.py +0 -657
- melage/widgets/DeepLModels/Unet3D_basic.py +0 -648
- melage/widgets/DeepLModels/new_unet_old.py +0 -639
- melage/widgets/DeepLModels/new_unet_old2.py +0 -658
- melage/widgets/MaskOperations.py +0 -147
- melage/widgets/N4Dialog.py +0 -241
- melage/widgets/Segmentation/__init__.py +0 -588
- melage/widgets/SemiAutoSeg.py +0 -666
- melage/widgets/__init__0.py +0 -5
- melage/widgets/about.py +0 -246
- melage/widgets/activator.py +0 -147
- melage/widgets/be_dl.py +0 -409
- melage/widgets/be_dl_unet3d.py +0 -441
- melage/widgets/brain_extraction_dl.py +0 -887
- melage/widgets/brain_extraction_dl_bu.py +0 -869
- melage/widgets/registrationWidget.py +0 -342
- melage/widgets/settings_widget.py +0 -77
- melage/widgets/tranformationWidget.py +0 -275
- melage-0.0.65.dist-info/METADATA +0 -742
- melage-0.0.65.dist-info/RECORD +0 -501
- melage-0.0.65.dist-info/entry_points.txt +0 -2
- melage-0.0.65.dist-info/top_level.txt +0 -1
- {melage/resource → assets}/main.ico +0 -0
- {melage → assets}/resource/0circle.png +0 -0
- {melage → assets}/resource/0circle_faded.png +0 -0
- {melage → assets}/resource/3d.png +0 -0
- {melage → assets}/resource/3d.psd +0 -0
- {melage → assets}/resource/3dFaded.png +0 -0
- {melage → assets}/resource/Eraser.png +0 -0
- {melage → assets}/resource/EraserFaded.png +0 -0
- {melage → assets}/resource/EraserX.png +0 -0
- {melage → assets}/resource/EraserXFaded.png +0 -0
- {melage → assets}/resource/Eraser_icon.svg +0 -0
- {melage → assets}/resource/Hand.png +0 -0
- {melage → assets}/resource/HandIcons_0.png +0 -0
- {melage → assets}/resource/Hand_IX.png +0 -0
- {melage → assets}/resource/Hand_IXFaded.png +0 -0
- {melage → assets}/resource/Handsqueezed.png +0 -0
- {melage → assets}/resource/Handwriting (copy).png +0 -0
- {melage → assets}/resource/Handwriting.png +0 -0
- {melage → assets}/resource/HandwritingMinus.png +0 -0
- {melage → assets}/resource/HandwritingMinusX.png +0 -0
- {melage → assets}/resource/HandwritingPlus.png +0 -0
- {melage → assets}/resource/HandwritingPlusX.png +0 -0
- {melage → assets}/resource/Move_icon.svg +0 -0
- {melage → assets}/resource/PngItem_2422924.png +0 -0
- {melage → assets}/resource/about.png +0 -0
- {melage → assets}/resource/about_logo.png +0 -0
- {melage → assets}/resource/about_logo0.png +0 -0
- {melage → assets}/resource/action_check.png +0 -0
- {melage → assets}/resource/action_check_OFF.png +0 -0
- {melage → assets}/resource/arrow).png +0 -0
- {melage → assets}/resource/arrow.png +0 -0
- {melage → assets}/resource/arrowFaded.png +0 -0
- {melage → assets}/resource/arrow_org.png +0 -0
- {melage → assets}/resource/arrow_org.png.png +0 -0
- {melage → assets}/resource/arrows.png +0 -0
- {melage → assets}/resource/authors.mp4 +0 -0
- {melage → assets}/resource/box.png +0 -0
- {melage → assets}/resource/check-image-icon-0.jpg +0 -0
- {melage → assets}/resource/circle.png +0 -0
- {melage → assets}/resource/circle_faded.png +0 -0
- {melage → assets}/resource/circle_or.png +0 -0
- {melage → assets}/resource/close.png +0 -0
- {melage → assets}/resource/close_bg.png +0 -0
- {melage → assets}/resource/color/Simple.txt +0 -0
- {melage → assets}/resource/color/Tissue.txt +0 -0
- {melage → assets}/resource/color/Tissue12.txt +0 -0
- {melage → assets}/resource/color/albert_LUT.txt +0 -0
- {melage → assets}/resource/color/mcrib_LUT.txt +0 -0
- {melage → assets}/resource/color/pediatric1.txt +0 -0
- {melage → assets}/resource/color/pediatric1_old.txt +0 -0
- {melage → assets}/resource/color/pediatric2.txt +0 -0
- {melage → assets}/resource/color/pediatric3.txt +0 -0
- {melage → assets}/resource/color/pediatrics (copy).csv +0 -0
- {melage → assets}/resource/color/tissue_seg.txt +0 -0
- {melage → assets}/resource/contour.png +0 -0
- {melage → assets}/resource/contour.svg +0 -0
- {melage → assets}/resource/contourFaded.png +0 -0
- {melage → assets}/resource/contourX.png +0 -0
- {melage → assets}/resource/contourXFaded.png +0 -0
- {melage → assets}/resource/dti.png +0 -0
- {melage → assets}/resource/dti0.png +0 -0
- {melage → assets}/resource/dti222.png +0 -0
- {melage → assets}/resource/dti_or.png +0 -0
- {melage → assets}/resource/eco.png +0 -0
- {melage → assets}/resource/eco22.png +0 -0
- {melage → assets}/resource/eco_old.png +0 -0
- {melage → assets}/resource/eco_or.png +0 -0
- {melage → assets}/resource/eco_or2.png +0 -0
- {melage → assets}/resource/eco_seg.png +0 -0
- {melage → assets}/resource/eco_seg_old.png +0 -0
- {melage → assets}/resource/export.png +0 -0
- {melage → assets}/resource/hand-grab-icon-10.jpg +0 -0
- {melage → assets}/resource/hand-grab-icon-25.jpg +0 -0
- {melage → assets}/resource/info.png +0 -0
- {melage → assets}/resource/line.png +0 -0
- {melage → assets}/resource/linefaded.png +0 -0
- {melage → assets}/resource/load.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_goto.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_seg.png +0 -0
- {melage → assets}/resource/manual_images/exit_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file_openp.png +0 -0
- {melage → assets}/resource/manual_images/main_page.png +0 -0
- {melage → assets}/resource/manual_images/menu_file.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_export.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_import.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_settings.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_ss.png +0 -0
- {melage → assets}/resource/manual_images/open_save_load.png +0 -0
- {melage → assets}/resource/manual_images/panning_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/segmentation_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/tab_mri.png +0 -0
- {melage → assets}/resource/manual_images/tab_us.png +0 -0
- {melage → assets}/resource/manual_images/tabs.png +0 -0
- {melage → assets}/resource/manual_images/toolbar_tools.png +0 -0
- {melage → assets}/resource/manual_images/tools_basic.png +0 -0
- {melage → assets}/resource/manual_images/tools_bet.png +0 -0
- {melage → assets}/resource/manual_images/tools_cs.png +0 -0
- {melage → assets}/resource/manual_images/tools_deepbet.png +0 -0
- {melage → assets}/resource/manual_images/tools_imageinfo.png +0 -0
- {melage → assets}/resource/manual_images/tools_maskO.png +0 -0
- {melage → assets}/resource/manual_images/tools_masking.png +0 -0
- {melage → assets}/resource/manual_images/tools_n4b.png +0 -0
- {melage → assets}/resource/manual_images/tools_resize.png +0 -0
- {melage → assets}/resource/manual_images/tools_ruler.png +0 -0
- {melage → assets}/resource/manual_images/tools_seg.png +0 -0
- {melage → assets}/resource/manual_images/tools_threshold.png +0 -0
- {melage → assets}/resource/manual_images/tools_tools.png +0 -0
- {melage → assets}/resource/manual_images/widget_color.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add2.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_additional.png +0 -0
- {melage → assets}/resource/manual_images/widget_images.png +0 -0
- {melage → assets}/resource/manual_images/widget_images2.png +0 -0
- {melage → assets}/resource/manual_images/widget_images3.png +0 -0
- {melage → assets}/resource/manual_images/widget_marker.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri2.png +0 -0
- {melage → assets}/resource/manual_images/widget_segintensity.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview2.png +0 -0
- {melage → assets}/resource/manual_images/widget_table.png +0 -0
- {melage → assets}/resource/manual_images/widget_table2.png +0 -0
- {melage → assets}/resource/manual_images/widget_us.png +0 -0
- {melage → assets}/resource/melage_top.ico +0 -0
- {melage → assets}/resource/melage_top.png +0 -0
- {melage → assets}/resource/melage_top0.png +0 -0
- {melage → assets}/resource/melage_top1.png +0 -0
- {melage → assets}/resource/melage_top4.png +0 -0
- {melage → assets}/resource/mri (copy).png +0 -0
- {melage → assets}/resource/mri.png +0 -0
- {melage → assets}/resource/mri0.png +0 -0
- {melage → assets}/resource/mri000.png +0 -0
- {melage → assets}/resource/mri22.png +0 -0
- {melage → assets}/resource/mri_big.png +0 -0
- {melage → assets}/resource/mri_old.png +0 -0
- {melage → assets}/resource/mri_seg.png +0 -0
- {melage → assets}/resource/mri_seg_old.png +0 -0
- {melage → assets}/resource/new.png +0 -0
- {melage → assets}/resource/open.png +0 -0
- {melage → assets}/resource/open2.png +0 -0
- {melage → assets}/resource/pan.png +0 -0
- {melage → assets}/resource/pencil.png +0 -0
- {melage → assets}/resource/pencilFaded.png +0 -0
- {melage → assets}/resource/points.png +0 -0
- {melage → assets}/resource/pointsFaded.png +0 -0
- {melage → assets}/resource/rotate.png +0 -0
- {melage → assets}/resource/ruler.png +0 -0
- {melage → assets}/resource/rulerFaded.png +0 -0
- {melage → assets}/resource/s.png +0 -0
- {melage → assets}/resource/s.psd +0 -0
- {melage → assets}/resource/save.png +0 -0
- {melage → assets}/resource/saveas.png +0 -0
- {melage → assets}/resource/seg_mri.png +0 -0
- {melage → assets}/resource/seg_mri2.png +0 -0
- {melage → assets}/resource/settings.png +0 -0
- {melage → assets}/resource/synch.png +0 -0
- {melage → assets}/resource/synchFaded.png +0 -0
- {melage → assets}/resource/theme/rc/.keep +0 -0
- {melage → assets}/resource/theme/rc/arrow_down.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/checkbox_checked0.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent.png +0 -0
- {melage → assets}/resource/theme/rc/transparent@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close.png +0 -0
- {melage → assets}/resource/theme/rc/window_close@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/style.qss +0 -0
- {melage → assets}/resource/tract.png +0 -0
- {melage → assets}/resource/view1.png +0 -0
- {melage → assets}/resource/view1_eco.png +0 -0
- {melage → assets}/resource/view1_mri.png +0 -0
- {melage → assets}/resource/view1_seg.png +0 -0
- {melage → assets}/resource/view2.png +0 -0
- {melage → assets}/resource/view2_seg.png +0 -0
- {melage → assets}/resource/w.png +0 -0
- {melage → assets}/resource/zoom_inFaded.png +0 -0
- /melage/resource/zoom_in.png → /assets/resource/zoom_in_old.png +0 -0
- {melage → assets}/resource/zoom_outFaded.png +0 -0
- /melage/resource/zoom_out.png → /assets/resource/zoom_out_old.png +0 -0
- /melage/{widgets/activation.py → dialogs/ActivationDialog.py} +0 -0
- /melage/{widgets/HistImage.py → dialogs/HistogramDialog.py} +0 -0
- /melage/{widgets/iminfo.py → dialogs/ImInfoDialog.py} +0 -0
- /melage/{widgets/colorwidget.py → dialogs/helpers/ColorDialog.py} +0 -0
- /melage/{utils/custom_QScrollBar.py → dialogs/helpers/CustomScrollbar.py} +0 -0
- /melage/{widgets/repeat_widget.py → dialogs/helpers/RepeatDialog.py} +0 -0
- /melage/{widgets/screenshot_widget.py → dialogs/helpers/ScreenshotDialog.py} +0 -0
- /melage/{cli.py → melage.py} +0 -0
- /melage/{utils/brain_extraction_helper.py → plugins/bet/main/utils.py} +0 -0
- /melage/{graphics → rendering}/GLGraphicsItem.py +0 -0
- /melage/{graphics → rendering}/GLViewWidget.py +0 -0
- /melage/{graphics → rendering}/Transform3D.py +0 -0
- /melage/{graphics → rendering}/__init__.py +0 -0
- /melage/{graphics → rendering}/functions.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_120.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_330.py +0 -0
- /melage/{graphics → rendering}/items/GLAxisItem.py +0 -0
- /melage/{graphics → rendering}/items/GLGridItem.py +0 -0
- /melage/{graphics → rendering}/items/GLPolygonItem.py +0 -0
- /melage/{graphics → rendering}/items/GLScatterPlotItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem_b.py +0 -0
- /melage/{graphics → rendering}/items/__init__.py +0 -0
- /melage/{graphics → rendering}/shaders.py +0 -0
- /melage/widgets/{enhanceImWidget.py → EnhanceImageWidget.py} +0 -0
- {melage-0.0.65.dist-info → melage-1.0.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
from PyQt5.QtWidgets import QMessageBox
|
|
2
|
+
from melage.widgets import MelagePlugin
|
|
3
|
+
from melage.dialogs.dynamic_gui import DynamicDialog
|
|
4
|
+
from .MGA_Net_schema import get_schema
|
|
5
|
+
from PyQt5 import QtWidgets
|
|
6
|
+
from .main.test_mgaNet import build_model, get_inference
|
|
7
|
+
import torch
|
|
8
|
+
from PyQt5.QtCore import Qt
|
|
9
|
+
from melage.config import settings
|
|
10
|
+
import os
|
|
11
|
+
from PyQt5.QtCore import pyqtSignal
|
|
12
|
+
# --- THE LOGIC CLASS ---
|
|
13
|
+
class MGA_NetLogic(DynamicDialog):
|
|
14
|
+
"""
|
|
15
|
+
This class handles the BRAIN of the WarpSeg tool.
|
|
16
|
+
The LOOKS are handled automatically by DynamicDialog + Schema.
|
|
17
|
+
"""
|
|
18
|
+
completed = pyqtSignal(object)
|
|
19
|
+
def __init__(self, data_context,parent=None):
|
|
20
|
+
# 1. Initialize DynamicDialog with the Schema
|
|
21
|
+
# This single line builds the entire window!
|
|
22
|
+
|
|
23
|
+
super().__init__(parent)
|
|
24
|
+
self.create_main_ui(schema=get_schema())
|
|
25
|
+
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
26
|
+
self.data_context = data_context
|
|
27
|
+
|
|
28
|
+
# 2. AUTOMATICALLY WIDGET BINDING
|
|
29
|
+
# Iterate over all widgets created by the schema and bind them to 'self'.
|
|
30
|
+
for widget_id, widget_obj in self.widgets.items():
|
|
31
|
+
setattr(self, widget_id, widget_obj)
|
|
32
|
+
|
|
33
|
+
# 3. GENERAL PURPOSE SIGNAL CONNECTION (Auto-Connect)
|
|
34
|
+
# Instead of a hardcoded dictionary, we iterate through every widget from the schema
|
|
35
|
+
# and look for a matching method in this class named: on_<ID>_<Signal>
|
|
36
|
+
# This works for ANY schema changes automatically.
|
|
37
|
+
supported_signals = [
|
|
38
|
+
"clicked", "toggled", "currentIndexChanged",
|
|
39
|
+
"textChanged", "valueChanged"
|
|
40
|
+
]
|
|
41
|
+
|
|
42
|
+
for widget_id, widget_obj in self.widgets.items():
|
|
43
|
+
for signal_name in supported_signals:
|
|
44
|
+
# 1. Check if the widget has this signal (e.g., Button has 'clicked')
|
|
45
|
+
if hasattr(widget_obj, signal_name):
|
|
46
|
+
# 2. Check if WE have a handler method (e.g., 'on_btn_apply_clicked')
|
|
47
|
+
handler_name = f"on_{widget_id}_{signal_name}"
|
|
48
|
+
if hasattr(self, handler_name):
|
|
49
|
+
# 3. Connect them!
|
|
50
|
+
signal = getattr(widget_obj, signal_name)
|
|
51
|
+
handler = getattr(self, handler_name)
|
|
52
|
+
# Disconnect first to be safe (idempotent), then connect
|
|
53
|
+
try:
|
|
54
|
+
signal.disconnect(handler)
|
|
55
|
+
except TypeError:
|
|
56
|
+
pass
|
|
57
|
+
signal.connect(handler)
|
|
58
|
+
# print(f"Auto-connected: {widget_id}.{signal_name} -> {handler_name}")
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
@property
|
|
62
|
+
def ui_schema(self):
|
|
63
|
+
# We call the function to get the dictionary
|
|
64
|
+
return get_schema()
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
# Renamed from 'run_process' to match the schema ID 'btn_apply'
|
|
70
|
+
def on_btn_apply_clicked(self):
|
|
71
|
+
view = self.combo_view.currentText()
|
|
72
|
+
data_view = self.data_context[view]
|
|
73
|
+
if data_view is None:
|
|
74
|
+
QMessageBox.information(self, "Error", "No image data available for the selected view.")
|
|
75
|
+
return
|
|
76
|
+
|
|
77
|
+
try:
|
|
78
|
+
"""The main execution function."""
|
|
79
|
+
# Get values using auto-bound attributes
|
|
80
|
+
use_cuda = self.check_cuda.isChecked()
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
self.progress_bar.setValue(10)
|
|
84
|
+
print(f"Running WarpSeg: View={view}, CUDA={use_cuda}")
|
|
85
|
+
|
|
86
|
+
if use_cuda and torch.cuda.is_available():
|
|
87
|
+
device = torch.device("cuda")
|
|
88
|
+
print("Using CUDA for computation.")
|
|
89
|
+
else:
|
|
90
|
+
device = torch.device("cpu")
|
|
91
|
+
print("Using CPU for computation.")
|
|
92
|
+
#if self.check_adult.isChecked():
|
|
93
|
+
model_path = getattr(self, 'weights_path_custom', None)
|
|
94
|
+
#else:
|
|
95
|
+
# model_path = getattr(self, 'weights_path_custom', None) or os.path.join(settings.DEFAULT_MODELS_DIR, "WarpSeg_Infant.pth")
|
|
96
|
+
self.progress_bar.setValue(30)
|
|
97
|
+
# Build model
|
|
98
|
+
model = build_model(model_path=model_path, device=device)
|
|
99
|
+
self.progress_bar.setValue(50)
|
|
100
|
+
# Here you would load pre-trained weights if available
|
|
101
|
+
# For simplicity, we skip that step
|
|
102
|
+
# Run inference
|
|
103
|
+
|
|
104
|
+
data = data_view.get_fdata().copy()
|
|
105
|
+
if len(data.shape)<=1:
|
|
106
|
+
raise ValueError("Input image must be at least 2D NIfTI.")
|
|
107
|
+
threshold = self.spin_threshold.value()
|
|
108
|
+
eco_mri = -1
|
|
109
|
+
if self.radio_mri.isChecked():
|
|
110
|
+
eco_mri = 1
|
|
111
|
+
image, seg = get_inference(model, data, device, eco_mri=eco_mri, threshold=threshold, high_quality_rec=True)
|
|
112
|
+
result_package = {
|
|
113
|
+
"image": image,
|
|
114
|
+
"label": seg,
|
|
115
|
+
"view": view
|
|
116
|
+
}
|
|
117
|
+
self.completed.emit(result_package)
|
|
118
|
+
self.progress_bar.setValue(100)
|
|
119
|
+
#QMessageBox.information(self, "Done", "Segmentation Complete")
|
|
120
|
+
|
|
121
|
+
except Exception as e:
|
|
122
|
+
QMessageBox.information(self, "Error", f"{e}")
|
|
123
|
+
self.progress_bar.setValue(0)
|
|
124
|
+
|
|
125
|
+
def on_context_action(self, text, widget):
|
|
126
|
+
"""Handle the Right-Click Context Menu defined in schema"""
|
|
127
|
+
if text == "Reset Adult Options":
|
|
128
|
+
# Access radio button directly by ID
|
|
129
|
+
self.radio_adult_whole.setChecked(True)
|
|
130
|
+
print("Options reset.")
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
# --- THE PLUGIN WRAPPER ---
|
|
134
|
+
class WarpSegPlugin(MelagePlugin):
|
|
135
|
+
@property
|
|
136
|
+
def name(self) -> str: return "MGA-Net"
|
|
137
|
+
|
|
138
|
+
@property
|
|
139
|
+
def category(self) -> str: return "Segmentation"
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def get_widget(self, data_context =None,parent=None):
|
|
143
|
+
logic = MGA_NetLogic(data_context, parent)
|
|
144
|
+
|
|
145
|
+
return logic
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
|
|
2
|
+
from ..ui_helpers import Label, Combo, Check, Radio, Group, Button, Progress, HBox, FilePicker, SpinBox, Reference
|
|
3
|
+
|
|
4
|
+
# The simplified schema using helper functions.
|
|
5
|
+
# The main layout defaults to 'vbox', so items stack automatically.
|
|
6
|
+
def get_schema():
|
|
7
|
+
UI_SCHEMA = {
|
|
8
|
+
"title": "MGA-Net Infant Deep Learning Segmentation",
|
|
9
|
+
"min_width": 500,
|
|
10
|
+
"layout": "vbox",
|
|
11
|
+
"items": [
|
|
12
|
+
#Label(id="lbl_model_info", text="Model Info: Ready for Ifant brain segmentation"),
|
|
13
|
+
Reference(
|
|
14
|
+
"<b>Jafrasteh et al. (2024)</b>. <i>'A novel mask-guided attention...'</i>. "
|
|
15
|
+
'<a href="https://www.sciencedirect.com/science/article/pii/S1053811924003690">(paper)</a>'
|
|
16
|
+
|
|
17
|
+
),
|
|
18
|
+
SpinBox(id="spin_threshold", label="Segmentation Threshold:", value=0.5, min_val=-4.0, max_val=4.0, step=0.1, decimals=1),
|
|
19
|
+
# Context menu allows for extra actions like resetting options
|
|
20
|
+
|
|
21
|
+
Group(id="group_mode", layout="hbox", children=[
|
|
22
|
+
Radio(id="radio_mri", text="MRI Segmentation", checked=True),
|
|
23
|
+
Radio(id="radio_us", text="US Segmentation")
|
|
24
|
+
]),
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
]
|
|
28
|
+
}
|
|
29
|
+
return UI_SCHEMA
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -637,7 +637,7 @@ class UnetGen(nn.Module):
|
|
|
637
637
|
|
|
638
638
|
return [mask,z]
|
|
639
639
|
|
|
640
|
-
class
|
|
640
|
+
class MGA_NET(UnetGen):
|
|
641
641
|
def __init__(self,time_embed=False, channels=1, *args, encoder_class=UnetEncoder, **kwargs):
|
|
642
642
|
self.time_embed = time_embed
|
|
643
643
|
self.use_tr_conv = False
|
|
@@ -647,6 +647,6 @@ class Unet3D(UnetGen):
|
|
|
647
647
|
block=ResidualBlock, norm_type=norm_type, **kwargs)
|
|
648
648
|
|
|
649
649
|
self.channels = channels
|
|
650
|
-
self.netName = '
|
|
650
|
+
self.netName = 'MGA_NET'
|
|
651
651
|
def name(self):
|
|
652
|
-
return '
|
|
652
|
+
return 'MGA_NET'
|
|
@@ -0,0 +1,258 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import nibabel as nib
|
|
3
|
+
import SimpleITK as sitk
|
|
4
|
+
from skimage.measure import label as label_connector
|
|
5
|
+
__AUTHOR__ = 'Bahram Jafrasteh'
|
|
6
|
+
code_direction = (('L', 'R'), ('P', 'A'), ('I', 'S'))
|
|
7
|
+
def convert_to_ras(affine, target = "RAS"):
|
|
8
|
+
"""
|
|
9
|
+
Args:
|
|
10
|
+
affine: affine matrix
|
|
11
|
+
target: target system
|
|
12
|
+
|
|
13
|
+
Returns:
|
|
14
|
+
|
|
15
|
+
"""
|
|
16
|
+
from nibabel.orientations import aff2axcodes, axcodes2ornt, ornt_transform
|
|
17
|
+
orig_orient = nib.io_orientation(affine)
|
|
18
|
+
source_system = ''.join(list(aff2axcodes(affine, code_direction)))# get direction
|
|
19
|
+
target_orient = axcodes2ornt(target, code_direction)
|
|
20
|
+
transform = ornt_transform(orig_orient, target_orient)
|
|
21
|
+
|
|
22
|
+
return transform, source_system
|
|
23
|
+
def LargestCC(segmentation, connectivity=3):
|
|
24
|
+
"""
|
|
25
|
+
Get largets connected components
|
|
26
|
+
"""
|
|
27
|
+
if segmentation.ndim == 4:
|
|
28
|
+
segmentation = segmentation.squeeze(-1)
|
|
29
|
+
labels = label_connector(segmentation, connectivity=connectivity)
|
|
30
|
+
frequency = np.bincount(labels.flat)
|
|
31
|
+
return labels, frequency
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def make_affine(simpleITKImage):
|
|
35
|
+
# https://niftynet.readthedocs.io/en/v0.2.1/_modules/niftynet/io/simple_itk_as_nibabel.html
|
|
36
|
+
# get affine transform in LPS
|
|
37
|
+
if simpleITKImage.GetDimension() == 4:
|
|
38
|
+
c = [simpleITKImage.TransformContinuousIndexToPhysicalPoint(p)
|
|
39
|
+
for p in ((1, 0, 0, 0),
|
|
40
|
+
(0, 1, 0, 0),
|
|
41
|
+
(0, 0, 1, 0),
|
|
42
|
+
(0, 0, 0, 0))]
|
|
43
|
+
c = np.array(c)
|
|
44
|
+
c = c[:, :-1]
|
|
45
|
+
elif simpleITKImage.GetDimension() == 3:
|
|
46
|
+
c = [simpleITKImage.TransformContinuousIndexToPhysicalPoint(p)
|
|
47
|
+
for p in ((1, 0, 0),
|
|
48
|
+
(0, 1, 0),
|
|
49
|
+
(0, 0, 1),
|
|
50
|
+
(0, 0, 0))]
|
|
51
|
+
c = np.array(c)
|
|
52
|
+
affine = np.concatenate([
|
|
53
|
+
np.concatenate([c[0:3] - c[3:], c[3:]], axis=0),
|
|
54
|
+
[[0.], [0.], [0.], [1.]]
|
|
55
|
+
], axis=1)
|
|
56
|
+
affine = np.transpose(affine)
|
|
57
|
+
# convert to RAS to match nibabel
|
|
58
|
+
affine = np.matmul(np.diag([-1., -1., 1., 1.]), affine)
|
|
59
|
+
return affine
|
|
60
|
+
|
|
61
|
+
def read_sitk_as_nib(sitk_im):
|
|
62
|
+
return nib.Nifti1Image(sitk.GetArrayFromImage(sitk_im).transpose(),
|
|
63
|
+
make_affine(sitk_im), None)
|
|
64
|
+
def read_nib_as_sitk(image_nib, dtype=None):
|
|
65
|
+
# From https://github.com/gift-surg/PySiTK/blob/master/pysitk/simple_itk_helper.py
|
|
66
|
+
if dtype is None:
|
|
67
|
+
dtype = np.float32#image_nib.header["bitpix"].dtype
|
|
68
|
+
nda_nib = image_nib.get_fdata().astype(dtype)
|
|
69
|
+
nda_nib_shape = nda_nib.shape
|
|
70
|
+
nda = np.zeros((nda_nib_shape[2],
|
|
71
|
+
nda_nib_shape[1],
|
|
72
|
+
nda_nib_shape[0]),
|
|
73
|
+
dtype=dtype)
|
|
74
|
+
|
|
75
|
+
# Convert to (Simple)ITK data array format, i.e. reorder to
|
|
76
|
+
# z-y-x-components shape
|
|
77
|
+
for i in range(0, nda_nib_shape[2]):
|
|
78
|
+
for k in range(0, nda_nib_shape[0]):
|
|
79
|
+
nda[i, :, k] = nda_nib[k, :, i]
|
|
80
|
+
# Get SimpleITK image
|
|
81
|
+
vector_image_sitk = sitk.GetImageFromArray(nda)
|
|
82
|
+
# Update header from nibabel information
|
|
83
|
+
# (may introduce some header inaccuracies?)
|
|
84
|
+
R = np.array([
|
|
85
|
+
[-1, 0, 0],
|
|
86
|
+
[0, -1, 0],
|
|
87
|
+
[0, 0, 1]])
|
|
88
|
+
affine_nib = image_nib.affine.astype(np.float64)
|
|
89
|
+
R_nib = affine_nib[0:-1, 0:-1]
|
|
90
|
+
|
|
91
|
+
spacing_sitk = np.array(image_nib.header.get_zooms(), dtype=np.float64)
|
|
92
|
+
spacing_sitk = spacing_sitk[0:R_nib.shape[0]]
|
|
93
|
+
S_nib_inv = np.diag(1. / spacing_sitk)
|
|
94
|
+
|
|
95
|
+
direction_sitk = R.dot(R_nib).dot(S_nib_inv).flatten()
|
|
96
|
+
|
|
97
|
+
t_nib = affine_nib[0:-1, 3]
|
|
98
|
+
origin_sitk = R.dot(t_nib)
|
|
99
|
+
|
|
100
|
+
vector_image_sitk.SetSpacing(np.array(spacing_sitk).astype('double'))
|
|
101
|
+
vector_image_sitk.SetDirection(direction_sitk)
|
|
102
|
+
vector_image_sitk.SetOrigin(origin_sitk)
|
|
103
|
+
return vector_image_sitk
|
|
104
|
+
def resample_to_size(im, new_size, scale_factor=None,method='linear'):
|
|
105
|
+
"""
|
|
106
|
+
Resample image to new size
|
|
107
|
+
"""
|
|
108
|
+
original_image = read_nib_as_sitk(im)
|
|
109
|
+
# Get the current size of the image
|
|
110
|
+
size = original_image.GetSize()
|
|
111
|
+
|
|
112
|
+
# Calculate the scale factor for resizing
|
|
113
|
+
if scale_factor is None:
|
|
114
|
+
scale_factor = [(float(sz)/new_sz)*spc for sz, new_sz, spc in zip(size, new_size, original_image.GetSpacing())]
|
|
115
|
+
|
|
116
|
+
# Resample the image using the scale factor
|
|
117
|
+
resampler = sitk.ResampleImageFilter()
|
|
118
|
+
resampler.SetReferenceImage(original_image)
|
|
119
|
+
resampler.SetOutputSpacing(scale_factor)
|
|
120
|
+
resampler.SetSize([int(el) for el in new_size])
|
|
121
|
+
|
|
122
|
+
resampler.SetOutputOrigin(original_image.GetOrigin())
|
|
123
|
+
resampler.SetOutputDirection(original_image.GetDirection())
|
|
124
|
+
|
|
125
|
+
if method.lower() == 'linear':
|
|
126
|
+
resampler.SetInterpolator(sitk.sitkLinear) # You can choose different interpolators
|
|
127
|
+
else:
|
|
128
|
+
resampler.SetInterpolator(sitk.sitkBSpline) # You can choose different interpolators
|
|
129
|
+
# Perform resampling
|
|
130
|
+
resized_image = resampler.Execute(original_image)
|
|
131
|
+
#inverse_scale_factor = [s1/float(sz) for sz, s1 in zip(*[resized_image.GetSize(), size])]
|
|
132
|
+
return read_sitk_as_nib(resized_image)#, inverse_scale_factor, list(size)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def scalecrop(data, dst_min, dst_max, src_min, scale):
|
|
136
|
+
"""
|
|
137
|
+
Function to crop the intensity ranges to specific min and max values
|
|
138
|
+
:param np.ndarray data: Image data (intensity values)
|
|
139
|
+
:param float dst_min: future minimal intensity value
|
|
140
|
+
:param float dst_max: future maximal intensity value
|
|
141
|
+
:param float src_min: minimal value to consider from source (crops below)
|
|
142
|
+
:param float scale: scale value by which source will be shifted
|
|
143
|
+
:return: np.ndarray data_new: scaled image data
|
|
144
|
+
"""
|
|
145
|
+
data_new = dst_min + scale * (data - src_min)
|
|
146
|
+
|
|
147
|
+
# clip
|
|
148
|
+
data_new = np.clip(data_new, dst_min, dst_max)
|
|
149
|
+
#print("Output: min: " + format(data_new.min()) + " max: " + format(data_new.max()))
|
|
150
|
+
|
|
151
|
+
return data_new
|
|
152
|
+
|
|
153
|
+
def getscale(data, dst_min, dst_max, f_low=0.0, f_high=0.999):
|
|
154
|
+
"""
|
|
155
|
+
Function to get offset and scale of image intensities to robustly rescale to range dst_min..dst_max.
|
|
156
|
+
Equivalent to how mri_convert conforms images.
|
|
157
|
+
:param np.ndarray data: image data (intensity values)
|
|
158
|
+
:param float dst_min: future minimal intensity value
|
|
159
|
+
:param float dst_max: future maximal intensity value
|
|
160
|
+
:param f_low: robust cropping at low end (0.0 no cropping)
|
|
161
|
+
:param f_high: robust cropping at higher end (0.999 crop one thousandths of high intensity voxels)
|
|
162
|
+
:return: float src_min: (adjusted) offset
|
|
163
|
+
:return: float scale: scale factor
|
|
164
|
+
"""
|
|
165
|
+
# get min and max from source
|
|
166
|
+
src_min = np.min(data)
|
|
167
|
+
src_max = np.max(data)
|
|
168
|
+
|
|
169
|
+
#print("Input: min: " + format(src_min) + " max: " + format(src_max))
|
|
170
|
+
|
|
171
|
+
if f_low == 0.0 and f_high == 1.0:
|
|
172
|
+
return src_min, 1.0
|
|
173
|
+
|
|
174
|
+
# compute non-zeros and total vox num
|
|
175
|
+
nz = (np.abs(data) >= 1e-15).sum()
|
|
176
|
+
voxnum = data.shape[0] * data.shape[1] * data.shape[2]
|
|
177
|
+
|
|
178
|
+
# compute histogram
|
|
179
|
+
histosize = 1000
|
|
180
|
+
bin_size = (src_max - src_min) / histosize
|
|
181
|
+
hist, bin_edges = np.histogram(data, histosize)
|
|
182
|
+
|
|
183
|
+
# compute cummulative sum
|
|
184
|
+
cs = np.concatenate(([0], np.cumsum(hist)))
|
|
185
|
+
|
|
186
|
+
# get lower limit
|
|
187
|
+
nth = int(f_low * voxnum)
|
|
188
|
+
idx = np.where(cs < nth)
|
|
189
|
+
|
|
190
|
+
if len(idx[0]) > 0:
|
|
191
|
+
idx = idx[0][-1] + 1
|
|
192
|
+
|
|
193
|
+
else:
|
|
194
|
+
idx = 0
|
|
195
|
+
|
|
196
|
+
src_min = idx * bin_size + src_min
|
|
197
|
+
|
|
198
|
+
# print("bin min: "+format(idx)+" nth: "+format(nth)+" passed: "+format(cs[idx])+"\n")
|
|
199
|
+
# get upper limit
|
|
200
|
+
nth = voxnum - int((1.0 - f_high) * nz)
|
|
201
|
+
idx = np.where(cs >= nth)
|
|
202
|
+
|
|
203
|
+
if len(idx[0]) > 0:
|
|
204
|
+
idx = idx[0][0] - 2
|
|
205
|
+
|
|
206
|
+
else:
|
|
207
|
+
idx = 0
|
|
208
|
+
print('ERROR: rescale upper bound not found')
|
|
209
|
+
|
|
210
|
+
src_max = idx * bin_size + src_min
|
|
211
|
+
# print("bin max: "+format(idx)+" nth: "+format(nth)+" passed: "+format(voxnum-cs[idx])+"\n")
|
|
212
|
+
|
|
213
|
+
# scale
|
|
214
|
+
if src_min == src_max:
|
|
215
|
+
scale = 1.0
|
|
216
|
+
|
|
217
|
+
else:
|
|
218
|
+
scale = (dst_max - dst_min) / (src_max - src_min)
|
|
219
|
+
|
|
220
|
+
#print("rescale: min: " + format(src_min) + " max: " + format(src_max) + " scale: " + format(scale))
|
|
221
|
+
|
|
222
|
+
return src_min, scale
|
|
223
|
+
|
|
224
|
+
def normalize_mri(img):
|
|
225
|
+
# taken from npp
|
|
226
|
+
#https://github.com/Novestars/Neural_Pre_Processing/blob/master/nppy/models/utils.py
|
|
227
|
+
src_min, scale = getscale(img, 0, 255)
|
|
228
|
+
new_data = scalecrop(img, 0, 255, src_min, scale)
|
|
229
|
+
return new_data
|
|
230
|
+
|
|
231
|
+
def remove_zero(f_data, value=0):
|
|
232
|
+
"""
|
|
233
|
+
Remove non segmented areas from image
|
|
234
|
+
:param f_data:
|
|
235
|
+
:param value:
|
|
236
|
+
:return:
|
|
237
|
+
"""
|
|
238
|
+
|
|
239
|
+
xs, ys, zs = np.where(f_data > value) #find zero values
|
|
240
|
+
tol = 4
|
|
241
|
+
|
|
242
|
+
min_max = []
|
|
243
|
+
for x in [xs, ys, zs]:
|
|
244
|
+
minx = min(x)-tol if min(x)-tol>1 else min(x)
|
|
245
|
+
maxx = max(x) + tol if max(x) + tol < f_data.shape[0]-1 else max(x)
|
|
246
|
+
min_max.append([minx, maxx])
|
|
247
|
+
f_data = f_data[min_max[0][0]:min_max[0][1] + 1, min_max[1][0]:min_max[1][1] + 1, min_max[2][0]:min_max[2][1] + 1]
|
|
248
|
+
|
|
249
|
+
return f_data, min_max
|
|
250
|
+
|
|
251
|
+
def get_back_data(im, shape_initial, pad_zero, border_value):
|
|
252
|
+
"""
|
|
253
|
+
Get data back to its original shape
|
|
254
|
+
"""
|
|
255
|
+
im_fill = np.ones(shape_initial) * border_value
|
|
256
|
+
im_fill[pad_zero[0][0]:pad_zero[0][1] + 1, pad_zero[1][0]:pad_zero[1][1] + 1,
|
|
257
|
+
pad_zero[2][0]:pad_zero[2][1] + 1] = im
|
|
258
|
+
return im_fill
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
__AUTHOR__ = 'Bahram Jafrasteh'
|
|
2
|
+
from .model.mga_net import MGA_NET
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import sys
|
|
6
|
+
import os
|
|
7
|
+
from model.utils import *
|
|
8
|
+
from scipy.ndimage import binary_fill_holes
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
################## Loading model ################################
|
|
16
|
+
def build_model(model_path="MGA_NET.pth", device="cpu"):
|
|
17
|
+
model = MGA_NET(time_embed=True)
|
|
18
|
+
model.to(device)
|
|
19
|
+
if model_path is None:
|
|
20
|
+
model_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), "MGA_NET.pth")
|
|
21
|
+
state_dict = torch.load(model_path, map_location=device)
|
|
22
|
+
model.load_state_dict(state_dict['model'], strict=True)
|
|
23
|
+
return model.eval()
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
################## Loading data and data standardization ################################
|
|
28
|
+
def get_inference(model, imA, device, eco_mri=1, threshold=0.0, high_quality_rec=True):
|
|
29
|
+
time = torch.from_numpy(np.array(eco_mri)).unsqueeze(0).to(torch.float).to(device)
|
|
30
|
+
|
|
31
|
+
border_value = imA[0, 0, 0]
|
|
32
|
+
shape_initial = imA.shape
|
|
33
|
+
image_used, pad_zero = remove_zero(imA, border_value)
|
|
34
|
+
|
|
35
|
+
image_used = normalize_mri(image_used)/255.0
|
|
36
|
+
shape_zero = image_used.shape
|
|
37
|
+
|
|
38
|
+
target_shape = [128, 128, 128]
|
|
39
|
+
#image_used_1 = resample_to_size(nib.Nifti1Image(image_used, affine, header), new_size=target_shape,
|
|
40
|
+
# method='spline').get_fdata()
|
|
41
|
+
image_used_torch = torch.from_numpy(image_used)[None, None, ...].to(torch.float).to(device)
|
|
42
|
+
imB = F.interpolate(image_used_torch, size=target_shape, mode='trilinear', align_corners=False)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
################## Brain extraction and image reconstruction ################################
|
|
46
|
+
im_low = model.forward(imB, time)
|
|
47
|
+
im_mask_low, im_rec_low = im_low
|
|
48
|
+
|
|
49
|
+
if high_quality_rec:
|
|
50
|
+
|
|
51
|
+
target_shape = [192, 192, 192] # to create higher quality images
|
|
52
|
+
#image_used_2 = resample_to_size(nib.Nifti1Image(image_used, affine, header), new_size=target_shape,
|
|
53
|
+
# method='spline').get_fdata()
|
|
54
|
+
image_used_torch = torch.from_numpy(image_used)[None, None, ...].to(torch.float).to(device)
|
|
55
|
+
im_high_input = F.interpolate(image_used_torch, size=target_shape, mode='trilinear', align_corners=False)
|
|
56
|
+
|
|
57
|
+
#imA = torch.from_numpy(image_used_2).to(torch.float).unsqueeze(0).unsqueeze(0)
|
|
58
|
+
#imA = imA.to(device)
|
|
59
|
+
im_high = model.forward(im_high_input, time)
|
|
60
|
+
|
|
61
|
+
im_mask_high, im_rec_high = im_high
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
im_mask = im_mask_low.detach().cpu()
|
|
65
|
+
im_rec = im_rec_high.detach().cpu()
|
|
66
|
+
else:
|
|
67
|
+
im_mask = im_mask_low.detach().cpu()
|
|
68
|
+
im_rec = im_rec_low.detach().cpu()
|
|
69
|
+
|
|
70
|
+
################## resmaple to the original size ################################
|
|
71
|
+
#im_mask = resample_to_size(nib.Nifti1Image(im_mask, affine, header), new_size=shape_zero,
|
|
72
|
+
# method='spline').get_fdata()
|
|
73
|
+
im_mask = F.interpolate(im_mask, size=shape_zero, mode='nearest')
|
|
74
|
+
im_rec = F.interpolate(im_rec, size=shape_zero, mode='trilinear', align_corners=False)
|
|
75
|
+
#im_rec = resample_to_size(nib.Nifti1Image(im_rec, affine, header), new_size=shape_zero,
|
|
76
|
+
# method='spline').get_fdata()
|
|
77
|
+
im_mask = im_mask.detach().squeeze().cpu().numpy()
|
|
78
|
+
im_rec = im_rec.detach().squeeze().cpu().numpy()
|
|
79
|
+
|
|
80
|
+
im_mask = get_back_data(im_mask, shape_initial, pad_zero, im_mask[0, 0, 0])
|
|
81
|
+
im_rec = get_back_data(im_rec, shape_initial, pad_zero, im_rec[0, 0, 0])
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
ind = im_mask >= threshold
|
|
85
|
+
im_mask[ind] = 0
|
|
86
|
+
im_mask[~ind] = 1
|
|
87
|
+
|
|
88
|
+
im_mask = binary_fill_holes(im_mask)
|
|
89
|
+
im_mask, labels_freq = LargestCC(im_mask, connectivity=1)
|
|
90
|
+
if len(labels_freq)>2:
|
|
91
|
+
ind_argmax = np.argmax(
|
|
92
|
+
[imA[im_mask == el].sum() for el in range(len(labels_freq)) if el != 0]) + 1
|
|
93
|
+
ind = im_mask != ind_argmax
|
|
94
|
+
im_mask[ind] = 0
|
|
95
|
+
im_mask[~ind] = 1
|
|
96
|
+
im_rec = normalize_mri(im_rec)
|
|
97
|
+
|
|
98
|
+
return im_rec, im_mask
|
|
99
|
+
|
|
100
|
+
def make_ras_image(imA):
|
|
101
|
+
transform, source = convert_to_ras(imA.affine, target='RAS')
|
|
102
|
+
if source != 'RAS':
|
|
103
|
+
imA = imA.as_reoriented(transform)
|
|
104
|
+
return imA
|
|
105
|
+
def main():
|
|
106
|
+
file_inp = sys.argv[1]
|
|
107
|
+
eco_mri = int(sys.argv[2]) # -1 for US and 1 for MRI
|
|
108
|
+
threshold = 0.0
|
|
109
|
+
if len(sys.argv) > 3:
|
|
110
|
+
threshold = float(sys.argv[3])
|
|
111
|
+
high_quality_rec = True # Network has been trained on 128x128x128 size image. However, it is possible to sample 192x192x192 images to get higher quality images
|
|
112
|
+
basen = os.path.basename(file_inp)
|
|
113
|
+
basen = basen[:basen.find('.nii')]
|
|
114
|
+
|
|
115
|
+
file_inp_mask = os.path.join(os.path.dirname(file_inp), basen + '_mask.nii.gz')
|
|
116
|
+
file_inp_rec = os.path.join(os.path.dirname(file_inp), basen + '_rec.nii.gz')
|
|
117
|
+
if torch.cuda.is_available():
|
|
118
|
+
# device = torch.device("cuda")
|
|
119
|
+
device = torch.device("cuda:0")
|
|
120
|
+
torch.cuda.set_device(0)
|
|
121
|
+
torch.backends.cudnn.benchmark = True
|
|
122
|
+
# else:
|
|
123
|
+
device = torch.device("cpu")
|
|
124
|
+
model = build_model("MGA_NET.pth", device)
|
|
125
|
+
imA = nib.load(file_inp)
|
|
126
|
+
|
|
127
|
+
imA = make_ras_image(imA)
|
|
128
|
+
|
|
129
|
+
affine = imA.affine
|
|
130
|
+
header = imA.header
|
|
131
|
+
imB, im_mask = get_inference(model, imA, device)
|
|
132
|
+
|
|
133
|
+
imB = nib.Nifti1Image(imB, affine, header).to_filename(file_inp_rec)
|
|
134
|
+
im_mask = nib.Nifti1Image(im_mask, affine, header).to_filename(file_inp_mask)
|