melage 0.0.65__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- assets/copyright.png +0 -0
- assets/resource/color/FreeSurferColorLUT.txt +2006 -0
- assets/resource/color/LUT_30.txt +31 -0
- assets/resource/color/SynthSeg.txt +34 -0
- assets/resource/color/lut_prostate.txt +20 -0
- assets/resource/horizontalview.png +0 -0
- assets/resource/main.ico +0 -0
- assets/resource/theme/create_ticks.py +85 -0
- assets/resource/theme/rc/checkbox_checked.png +0 -0
- assets/resource/theme/rc/checkbox_checked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- assets/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- assets/resource/verticalview.png +0 -0
- assets/resource/zoom_in.png +0 -0
- assets/resource/zoom_neutral (copy).png +0 -0
- assets/resource/zoom_neutral.png +0 -0
- assets/resource/zoom_out.png +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a.nii +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_masked.nii.gz +0 -0
- data/MNI/mni_icbm152_t1_tal_nlin_sym_09a_seg.nii.gz +0 -0
- docs/manual_images/3D_rightc.png +0 -0
- docs/manual_images/3D_rightc_goto.png +0 -0
- docs/manual_images/3D_rightc_paint.png +0 -0
- docs/manual_images/3D_rightc_paint_draw1.png +0 -0
- docs/manual_images/3D_rightc_paint_draw2.png +0 -0
- docs/manual_images/3D_rightc_paint_render.png +0 -0
- docs/manual_images/3D_rightc_paint_render2.png +0 -0
- docs/manual_images/3D_rightc_paint_render3.png +0 -0
- docs/manual_images/3D_rightc_paint_render4.png +0 -0
- docs/manual_images/3D_rightc_paint_render5.png +0 -0
- docs/manual_images/3D_rightc_paint_render6.png +0 -0
- docs/manual_images/3D_rightc_seg.png +0 -0
- docs/manual_images/exit_toolbar.png +0 -0
- docs/manual_images/load_image_file.png +0 -0
- docs/manual_images/load_image_file_openp.png +0 -0
- docs/manual_images/main_page.png +0 -0
- docs/manual_images/menu_file.png +0 -0
- docs/manual_images/menu_file_export.png +0 -0
- docs/manual_images/menu_file_import.png +0 -0
- docs/manual_images/menu_file_settings.png +0 -0
- docs/manual_images/menu_file_ss.png +0 -0
- docs/manual_images/open_save_load.png +0 -0
- docs/manual_images/panning_toolbar.png +0 -0
- docs/manual_images/segmentation_toolbar.png +0 -0
- docs/manual_images/tab_mri.png +0 -0
- docs/manual_images/tab_us.png +0 -0
- docs/manual_images/tabs.png +0 -0
- docs/manual_images/toolbar_tools.png +0 -0
- docs/manual_images/tools_basic.png +0 -0
- docs/manual_images/tools_bet.png +0 -0
- docs/manual_images/tools_cs.png +0 -0
- docs/manual_images/tools_deepbet.png +0 -0
- docs/manual_images/tools_imageinfo.png +0 -0
- docs/manual_images/tools_maskO.png +0 -0
- docs/manual_images/tools_masking.png +0 -0
- docs/manual_images/tools_n4b.png +0 -0
- docs/manual_images/tools_resize.png +0 -0
- docs/manual_images/tools_ruler.png +0 -0
- docs/manual_images/tools_seg.png +0 -0
- docs/manual_images/tools_threshold.png +0 -0
- docs/manual_images/tools_tools.png +0 -0
- docs/manual_images/widget_color.png +0 -0
- docs/manual_images/widget_color_add.png +0 -0
- docs/manual_images/widget_color_add2.png +0 -0
- docs/manual_images/widget_color_additional.png +0 -0
- docs/manual_images/widget_images.png +0 -0
- docs/manual_images/widget_images2.png +0 -0
- docs/manual_images/widget_images3.png +0 -0
- docs/manual_images/widget_marker.png +0 -0
- docs/manual_images/widget_mri.png +0 -0
- docs/manual_images/widget_mri2.png +0 -0
- docs/manual_images/widget_segintensity.png +0 -0
- docs/manual_images/widget_tab_mutualview.png +0 -0
- docs/manual_images/widget_tab_mutualview2.png +0 -0
- docs/manual_images/widget_table.png +0 -0
- docs/manual_images/widget_table2.png +0 -0
- docs/manual_images/widget_us.png +0 -0
- melage/__init__.py +1 -1
- melage/config/__init__.py +100 -0
- melage/core/Registration/registration.py +54 -0
- melage/{utils/readData.py → core/io.py} +12 -4
- melage/{widgets/melageAbout.py → dialogs/AboutDialog.py} +1 -1
- melage/dialogs/MaskOperationsDialog.py +146 -0
- melage/dialogs/MaskingDialog.py +139 -0
- melage/dialogs/RegistrationDialog.py +311 -0
- melage/{widgets/ImageThresholding.py → dialogs/ThresholdingDialog.py} +2 -2
- melage/dialogs/TransformationDialog.py +275 -0
- melage/dialogs/__init__.py +9 -0
- melage/dialogs/dynamic_gui.py +327 -0
- melage/{widgets/fileDialog_widget.py → dialogs/helpers/FileDialog.py} +226 -1
- melage/dialogs/helpers/__init__.py +5 -0
- melage/main.py +13 -13
- melage/{widgets/mainwindow_widget.py → mainwindow_widget.py} +1434 -1408
- melage/plugins/N4_bias/N4.py +115 -0
- melage/plugins/N4_bias/N4_schema.py +40 -0
- melage/plugins/N4_bias/main/utils.py +46 -0
- melage/plugins/__init__.py +2 -0
- melage/plugins/bet/bet.py +176 -0
- melage/plugins/bet/bet_schema.py +73 -0
- melage/{widgets/brain_extraction.py → plugins/bet/main/BET.py} +51 -316
- melage/plugins/change_coord/change_coord.py +197 -0
- melage/plugins/change_coord/change_coord_schema.py +31 -0
- melage/plugins/change_coord/main/utils.py +15 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/FCM.py +3 -5
- melage/plugins/esfcm/main/test.py +57 -0
- melage/{widgets/Segmentation → plugins/esfcm/main}/utils.py +20 -0
- melage/plugins/esfcm/tissue_segmentation.py +124 -0
- melage/plugins/esfcm/tissue_segmentation_schema.py +33 -0
- melage/plugins/masking_operation/mo.py +115 -0
- melage/plugins/masking_operation/mo_schema.py +33 -0
- melage/plugins/mga_net/MGA_Net.py +145 -0
- melage/plugins/mga_net/MGA_Net_schema.py +29 -0
- melage/plugins/mga_net/main/figures/Network.txt +1 -0
- melage/{widgets/DeepLModels/new_unet.py → plugins/mga_net/main/model/mga_net.py} +3 -3
- melage/plugins/mga_net/main/model/utils.py +258 -0
- melage/plugins/mga_net/main/test_mgaNet.py +134 -0
- melage/plugins/resize/resize.py +136 -0
- melage/plugins/resize/resize_schema.py +41 -0
- melage/plugins/ui_helpers.py +144 -0
- melage/plugins/warpseg/WarpSeg.py +195 -0
- melage/plugins/warpseg/WarpSeg_schema.py +41 -0
- melage/plugins/warpseg/__init__.py +2 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSet.py +303 -0
- melage/plugins/warpseg/warpseg_main/data_reader/DDSetSeg.py +279 -0
- melage/plugins/warpseg/warpseg_main/data_reader/__init__.py +60 -0
- melage/plugins/warpseg/warpseg_main/data_reader/baseData.py +18 -0
- melage/plugins/warpseg/warpseg_main/data_reader/utils.py +267 -0
- melage/plugins/warpseg/warpseg_main/dist_utils.py +18 -0
- melage/plugins/warpseg/warpseg_main/requirements.txt +10 -0
- melage/plugins/warpseg/warpseg_main/test.py +272 -0
- melage/plugins/warpseg/warpseg_main/train.py +432 -0
- melage/plugins/warpseg/warpseg_main/train_reg.py +373 -0
- melage/plugins/warpseg/warpseg_main/verify_post_process.py +73 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/__init__.py +45 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/__init__.py +1 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/py/utils.py +99 -0
- melage/{widgets/Synthstrip.py → plugins/warpseg/warpseg_main/voxelmorph/torch/Unet.py} +71 -51
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/__init__.py +4 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/layers.py +97 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/losses.py +462 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/modelio.py +77 -0
- melage/{widgets/DeepLModels/InfantSegment/Unet.py → plugins/warpseg/warpseg_main/voxelmorph/torch/multi_stage_net.py} +76 -52
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/networks.py +308 -0
- melage/plugins/warpseg/warpseg_main/voxelmorph/torch/utils.py +470 -0
- melage/{utils/DispalyIm.py → rendering/DisplayIm.py} +67 -79
- melage/{utils → rendering}/glScientific.py +1 -1
- melage/utils/__init__.py +1 -0
- melage/utils/utils.py +343 -196
- melage/widgets/{dockWidgets.py → DockWidgets.py} +123 -55
- melage/widgets/SettingsWidget.py +98 -0
- melage/widgets/__init__.py +49 -0
- melage/widgets/openglWidgets.py +344 -156
- melage/widgets/openglWidgets_bu.py +645 -0
- melage/widgets/plugin_manager.py +62 -0
- melage-1.0.0.dist-info/METADATA +953 -0
- melage-1.0.0.dist-info/RECORD +571 -0
- melage-1.0.0.dist-info/entry_points.txt +2 -0
- melage-1.0.0.dist-info/top_level.txt +4 -0
- melage/requirements22.txt +0 -25
- melage/requirements_old.txt +0 -28
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/some_notes.txt +0 -3
- melage/utils/GMM.py +0 -720
- melage/utils/Shaders_bu.py +0 -314
- melage/utils/__init__0.py +0 -7
- melage/utils/glScientific_bc.py +0 -1585
- melage/utils/registration.py +0 -512
- melage/utils/source_folder.py +0 -18
- melage/version.txt +0 -1
- melage/widgets/ApplyMask.py +0 -212
- melage/widgets/ChangeSystem.py +0 -152
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +0 -149
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +0 -146
- melage/widgets/DeepLModels/NPP/models/model.py +0 -272
- melage/widgets/DeepLModels/NPP/models/utils.py +0 -303
- melage/widgets/DeepLModels/NPP/npp.py +0 -116
- melage/widgets/DeepLModels/NPP/requirements.txt +0 -8
- melage/widgets/DeepLModels/NPP/train/train.py +0 -116
- melage/widgets/DeepLModels/Unet3DAtt.py +0 -657
- melage/widgets/DeepLModels/Unet3D_basic.py +0 -648
- melage/widgets/DeepLModels/new_unet_old.py +0 -639
- melage/widgets/DeepLModels/new_unet_old2.py +0 -658
- melage/widgets/MaskOperations.py +0 -147
- melage/widgets/N4Dialog.py +0 -241
- melage/widgets/Segmentation/__init__.py +0 -588
- melage/widgets/SemiAutoSeg.py +0 -666
- melage/widgets/__init__0.py +0 -5
- melage/widgets/about.py +0 -246
- melage/widgets/activator.py +0 -147
- melage/widgets/be_dl.py +0 -409
- melage/widgets/be_dl_unet3d.py +0 -441
- melage/widgets/brain_extraction_dl.py +0 -887
- melage/widgets/brain_extraction_dl_bu.py +0 -869
- melage/widgets/registrationWidget.py +0 -342
- melage/widgets/settings_widget.py +0 -77
- melage/widgets/tranformationWidget.py +0 -275
- melage-0.0.65.dist-info/METADATA +0 -742
- melage-0.0.65.dist-info/RECORD +0 -501
- melage-0.0.65.dist-info/entry_points.txt +0 -2
- melage-0.0.65.dist-info/top_level.txt +0 -1
- {melage/resource → assets}/main.ico +0 -0
- {melage → assets}/resource/0circle.png +0 -0
- {melage → assets}/resource/0circle_faded.png +0 -0
- {melage → assets}/resource/3d.png +0 -0
- {melage → assets}/resource/3d.psd +0 -0
- {melage → assets}/resource/3dFaded.png +0 -0
- {melage → assets}/resource/Eraser.png +0 -0
- {melage → assets}/resource/EraserFaded.png +0 -0
- {melage → assets}/resource/EraserX.png +0 -0
- {melage → assets}/resource/EraserXFaded.png +0 -0
- {melage → assets}/resource/Eraser_icon.svg +0 -0
- {melage → assets}/resource/Hand.png +0 -0
- {melage → assets}/resource/HandIcons_0.png +0 -0
- {melage → assets}/resource/Hand_IX.png +0 -0
- {melage → assets}/resource/Hand_IXFaded.png +0 -0
- {melage → assets}/resource/Handsqueezed.png +0 -0
- {melage → assets}/resource/Handwriting (copy).png +0 -0
- {melage → assets}/resource/Handwriting.png +0 -0
- {melage → assets}/resource/HandwritingMinus.png +0 -0
- {melage → assets}/resource/HandwritingMinusX.png +0 -0
- {melage → assets}/resource/HandwritingPlus.png +0 -0
- {melage → assets}/resource/HandwritingPlusX.png +0 -0
- {melage → assets}/resource/Move_icon.svg +0 -0
- {melage → assets}/resource/PngItem_2422924.png +0 -0
- {melage → assets}/resource/about.png +0 -0
- {melage → assets}/resource/about_logo.png +0 -0
- {melage → assets}/resource/about_logo0.png +0 -0
- {melage → assets}/resource/action_check.png +0 -0
- {melage → assets}/resource/action_check_OFF.png +0 -0
- {melage → assets}/resource/arrow).png +0 -0
- {melage → assets}/resource/arrow.png +0 -0
- {melage → assets}/resource/arrowFaded.png +0 -0
- {melage → assets}/resource/arrow_org.png +0 -0
- {melage → assets}/resource/arrow_org.png.png +0 -0
- {melage → assets}/resource/arrows.png +0 -0
- {melage → assets}/resource/authors.mp4 +0 -0
- {melage → assets}/resource/box.png +0 -0
- {melage → assets}/resource/check-image-icon-0.jpg +0 -0
- {melage → assets}/resource/circle.png +0 -0
- {melage → assets}/resource/circle_faded.png +0 -0
- {melage → assets}/resource/circle_or.png +0 -0
- {melage → assets}/resource/close.png +0 -0
- {melage → assets}/resource/close_bg.png +0 -0
- {melage → assets}/resource/color/Simple.txt +0 -0
- {melage → assets}/resource/color/Tissue.txt +0 -0
- {melage → assets}/resource/color/Tissue12.txt +0 -0
- {melage → assets}/resource/color/albert_LUT.txt +0 -0
- {melage → assets}/resource/color/mcrib_LUT.txt +0 -0
- {melage → assets}/resource/color/pediatric1.txt +0 -0
- {melage → assets}/resource/color/pediatric1_old.txt +0 -0
- {melage → assets}/resource/color/pediatric2.txt +0 -0
- {melage → assets}/resource/color/pediatric3.txt +0 -0
- {melage → assets}/resource/color/pediatrics (copy).csv +0 -0
- {melage → assets}/resource/color/tissue_seg.txt +0 -0
- {melage → assets}/resource/contour.png +0 -0
- {melage → assets}/resource/contour.svg +0 -0
- {melage → assets}/resource/contourFaded.png +0 -0
- {melage → assets}/resource/contourX.png +0 -0
- {melage → assets}/resource/contourXFaded.png +0 -0
- {melage → assets}/resource/dti.png +0 -0
- {melage → assets}/resource/dti0.png +0 -0
- {melage → assets}/resource/dti222.png +0 -0
- {melage → assets}/resource/dti_or.png +0 -0
- {melage → assets}/resource/eco.png +0 -0
- {melage → assets}/resource/eco22.png +0 -0
- {melage → assets}/resource/eco_old.png +0 -0
- {melage → assets}/resource/eco_or.png +0 -0
- {melage → assets}/resource/eco_or2.png +0 -0
- {melage → assets}/resource/eco_seg.png +0 -0
- {melage → assets}/resource/eco_seg_old.png +0 -0
- {melage → assets}/resource/export.png +0 -0
- {melage → assets}/resource/hand-grab-icon-10.jpg +0 -0
- {melage → assets}/resource/hand-grab-icon-25.jpg +0 -0
- {melage → assets}/resource/info.png +0 -0
- {melage → assets}/resource/line.png +0 -0
- {melage → assets}/resource/linefaded.png +0 -0
- {melage → assets}/resource/load.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_goto.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- {melage → assets}/resource/manual_images/3D_rightc_seg.png +0 -0
- {melage → assets}/resource/manual_images/exit_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file.png +0 -0
- {melage → assets}/resource/manual_images/load_image_file_openp.png +0 -0
- {melage → assets}/resource/manual_images/main_page.png +0 -0
- {melage → assets}/resource/manual_images/menu_file.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_export.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_import.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_settings.png +0 -0
- {melage → assets}/resource/manual_images/menu_file_ss.png +0 -0
- {melage → assets}/resource/manual_images/open_save_load.png +0 -0
- {melage → assets}/resource/manual_images/panning_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/segmentation_toolbar.png +0 -0
- {melage → assets}/resource/manual_images/tab_mri.png +0 -0
- {melage → assets}/resource/manual_images/tab_us.png +0 -0
- {melage → assets}/resource/manual_images/tabs.png +0 -0
- {melage → assets}/resource/manual_images/toolbar_tools.png +0 -0
- {melage → assets}/resource/manual_images/tools_basic.png +0 -0
- {melage → assets}/resource/manual_images/tools_bet.png +0 -0
- {melage → assets}/resource/manual_images/tools_cs.png +0 -0
- {melage → assets}/resource/manual_images/tools_deepbet.png +0 -0
- {melage → assets}/resource/manual_images/tools_imageinfo.png +0 -0
- {melage → assets}/resource/manual_images/tools_maskO.png +0 -0
- {melage → assets}/resource/manual_images/tools_masking.png +0 -0
- {melage → assets}/resource/manual_images/tools_n4b.png +0 -0
- {melage → assets}/resource/manual_images/tools_resize.png +0 -0
- {melage → assets}/resource/manual_images/tools_ruler.png +0 -0
- {melage → assets}/resource/manual_images/tools_seg.png +0 -0
- {melage → assets}/resource/manual_images/tools_threshold.png +0 -0
- {melage → assets}/resource/manual_images/tools_tools.png +0 -0
- {melage → assets}/resource/manual_images/widget_color.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_add2.png +0 -0
- {melage → assets}/resource/manual_images/widget_color_additional.png +0 -0
- {melage → assets}/resource/manual_images/widget_images.png +0 -0
- {melage → assets}/resource/manual_images/widget_images2.png +0 -0
- {melage → assets}/resource/manual_images/widget_images3.png +0 -0
- {melage → assets}/resource/manual_images/widget_marker.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri.png +0 -0
- {melage → assets}/resource/manual_images/widget_mri2.png +0 -0
- {melage → assets}/resource/manual_images/widget_segintensity.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview.png +0 -0
- {melage → assets}/resource/manual_images/widget_tab_mutualview2.png +0 -0
- {melage → assets}/resource/manual_images/widget_table.png +0 -0
- {melage → assets}/resource/manual_images/widget_table2.png +0 -0
- {melage → assets}/resource/manual_images/widget_us.png +0 -0
- {melage → assets}/resource/melage_top.ico +0 -0
- {melage → assets}/resource/melage_top.png +0 -0
- {melage → assets}/resource/melage_top0.png +0 -0
- {melage → assets}/resource/melage_top1.png +0 -0
- {melage → assets}/resource/melage_top4.png +0 -0
- {melage → assets}/resource/mri (copy).png +0 -0
- {melage → assets}/resource/mri.png +0 -0
- {melage → assets}/resource/mri0.png +0 -0
- {melage → assets}/resource/mri000.png +0 -0
- {melage → assets}/resource/mri22.png +0 -0
- {melage → assets}/resource/mri_big.png +0 -0
- {melage → assets}/resource/mri_old.png +0 -0
- {melage → assets}/resource/mri_seg.png +0 -0
- {melage → assets}/resource/mri_seg_old.png +0 -0
- {melage → assets}/resource/new.png +0 -0
- {melage → assets}/resource/open.png +0 -0
- {melage → assets}/resource/open2.png +0 -0
- {melage → assets}/resource/pan.png +0 -0
- {melage → assets}/resource/pencil.png +0 -0
- {melage → assets}/resource/pencilFaded.png +0 -0
- {melage → assets}/resource/points.png +0 -0
- {melage → assets}/resource/pointsFaded.png +0 -0
- {melage → assets}/resource/rotate.png +0 -0
- {melage → assets}/resource/ruler.png +0 -0
- {melage → assets}/resource/rulerFaded.png +0 -0
- {melage → assets}/resource/s.png +0 -0
- {melage → assets}/resource/s.psd +0 -0
- {melage → assets}/resource/save.png +0 -0
- {melage → assets}/resource/saveas.png +0 -0
- {melage → assets}/resource/seg_mri.png +0 -0
- {melage → assets}/resource/seg_mri2.png +0 -0
- {melage → assets}/resource/settings.png +0 -0
- {melage → assets}/resource/synch.png +0 -0
- {melage → assets}/resource/synchFaded.png +0 -0
- {melage → assets}/resource/theme/rc/.keep +0 -0
- {melage → assets}/resource/theme/rc/arrow_down.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/checkbox_checked0.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent.png +0 -0
- {melage → assets}/resource/theme/rc/transparent@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/transparent_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close.png +0 -0
- {melage → assets}/resource/theme/rc/window_close@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_close_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_focus@2x.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed.png +0 -0
- {melage → assets}/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- {melage → assets}/resource/theme/style.qss +0 -0
- {melage → assets}/resource/tract.png +0 -0
- {melage → assets}/resource/view1.png +0 -0
- {melage → assets}/resource/view1_eco.png +0 -0
- {melage → assets}/resource/view1_mri.png +0 -0
- {melage → assets}/resource/view1_seg.png +0 -0
- {melage → assets}/resource/view2.png +0 -0
- {melage → assets}/resource/view2_seg.png +0 -0
- {melage → assets}/resource/w.png +0 -0
- {melage → assets}/resource/zoom_inFaded.png +0 -0
- /melage/resource/zoom_in.png → /assets/resource/zoom_in_old.png +0 -0
- {melage → assets}/resource/zoom_outFaded.png +0 -0
- /melage/resource/zoom_out.png → /assets/resource/zoom_out_old.png +0 -0
- /melage/{widgets/activation.py → dialogs/ActivationDialog.py} +0 -0
- /melage/{widgets/HistImage.py → dialogs/HistogramDialog.py} +0 -0
- /melage/{widgets/iminfo.py → dialogs/ImInfoDialog.py} +0 -0
- /melage/{widgets/colorwidget.py → dialogs/helpers/ColorDialog.py} +0 -0
- /melage/{utils/custom_QScrollBar.py → dialogs/helpers/CustomScrollbar.py} +0 -0
- /melage/{widgets/repeat_widget.py → dialogs/helpers/RepeatDialog.py} +0 -0
- /melage/{widgets/screenshot_widget.py → dialogs/helpers/ScreenshotDialog.py} +0 -0
- /melage/{cli.py → melage.py} +0 -0
- /melage/{utils/brain_extraction_helper.py → plugins/bet/main/utils.py} +0 -0
- /melage/{graphics → rendering}/GLGraphicsItem.py +0 -0
- /melage/{graphics → rendering}/GLViewWidget.py +0 -0
- /melage/{graphics → rendering}/Transform3D.py +0 -0
- /melage/{graphics → rendering}/__init__.py +0 -0
- /melage/{graphics → rendering}/functions.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_120.py +0 -0
- /melage/{utils → rendering/helpers}/Shaders_330.py +0 -0
- /melage/{graphics → rendering}/items/GLAxisItem.py +0 -0
- /melage/{graphics → rendering}/items/GLGridItem.py +0 -0
- /melage/{graphics → rendering}/items/GLPolygonItem.py +0 -0
- /melage/{graphics → rendering}/items/GLScatterPlotItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem.py +0 -0
- /melage/{graphics → rendering}/items/GLVolumeItem_b.py +0 -0
- /melage/{graphics → rendering}/items/__init__.py +0 -0
- /melage/{graphics → rendering}/shaders.py +0 -0
- /melage/widgets/{enhanceImWidget.py → EnhanceImageWidget.py} +0 -0
- {melage-0.0.65.dist-info → melage-1.0.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,303 @@
|
|
|
1
|
+
import os.path
|
|
2
|
+
from os.path import basename, splitext
|
|
3
|
+
import random
|
|
4
|
+
random.seed(0)
|
|
5
|
+
import torch
|
|
6
|
+
import numpy as np
|
|
7
|
+
import traceback
|
|
8
|
+
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
import json
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
import os
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from .baseData import baseData
|
|
16
|
+
from .utils import remove_zero, restore_zero, pad_to_multiple_of_32, createPathData_IXI, creaePathData_LDM_fullhead
|
|
17
|
+
|
|
18
|
+
import SimpleITK as sitk
|
|
19
|
+
from .utils import resample_to_size, read_atlas_file
|
|
20
|
+
import nibabel as nib
|
|
21
|
+
from .utils import normalize as normalize_image
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def softmax_to_logits(softmax_probs, epsilon=1e-6):
|
|
27
|
+
softmax_probs = np.clip(softmax_probs, epsilon, 1 - epsilon) # Avoid log(0)
|
|
28
|
+
return np.log(softmax_probs) - np.log(1 - softmax_probs)
|
|
29
|
+
|
|
30
|
+
class DDSet(baseData):
|
|
31
|
+
def options(self, opt, type, novalid):
|
|
32
|
+
"""
|
|
33
|
+
options of the data set
|
|
34
|
+
:param opt:
|
|
35
|
+
:return:
|
|
36
|
+
"""
|
|
37
|
+
self.opt = opt
|
|
38
|
+
self.state = 'train'
|
|
39
|
+
self.opt = opt
|
|
40
|
+
|
|
41
|
+
images_IXI = createPathData_IXI()
|
|
42
|
+
if self.opt.state=='test':
|
|
43
|
+
self.ILpath = images_IXI
|
|
44
|
+
else:
|
|
45
|
+
image_full_head = creaePathData_LDM_fullhead()
|
|
46
|
+
self.ILpath = image_full_head + images_IXI
|
|
47
|
+
self.ILpath = self.ILpath[4000:]
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
target_shapes = [None]
|
|
51
|
+
self.y_true = []
|
|
52
|
+
self.probs = []
|
|
53
|
+
self.prob_file = '/atlas/processed/atlas_prob30_raw_fastSurfer.nii.gz'
|
|
54
|
+
|
|
55
|
+
prob_values_ = read_atlas_file(self.prob_file, save_again=True)
|
|
56
|
+
prob_values = prob_values_.get_fdata()
|
|
57
|
+
|
|
58
|
+
self.target_size = []
|
|
59
|
+
for target_shape in target_shapes:
|
|
60
|
+
#if target_shape==[128, 160, 128]:
|
|
61
|
+
# print('r')
|
|
62
|
+
y_true, probs, target_size = self.compute_prob_atlas(prob_values, target_shape)
|
|
63
|
+
self.y_true.append(y_true)
|
|
64
|
+
self.probs.append(probs)
|
|
65
|
+
self.target_size.append(target_size)
|
|
66
|
+
|
|
67
|
+
self.max_count = self.__len__()+1
|
|
68
|
+
self.new_path = os.path.join(self.opt.chkptDir, 'save_images')
|
|
69
|
+
if not os.path.exists(self.new_path):
|
|
70
|
+
os.makedirs(self.new_path)
|
|
71
|
+
|
|
72
|
+
def compute_prob_atlas(self, prob_values, target_shape=None):
|
|
73
|
+
|
|
74
|
+
def resize_data(im, mode = 'trilinear'):
|
|
75
|
+
if mode=='nearest':
|
|
76
|
+
im = F.interpolate(torch.from_numpy(im).unsqueeze(0).unsqueeze(0), size=target_size,
|
|
77
|
+
mode=mode)
|
|
78
|
+
else:
|
|
79
|
+
im = F.interpolate(torch.from_numpy(im).unsqueeze(0).unsqueeze(0), size=target_size,
|
|
80
|
+
mode=mode, align_corners=False)
|
|
81
|
+
return im
|
|
82
|
+
|
|
83
|
+
#(192, 192, 192)
|
|
84
|
+
f_y_true = self.opt.atlas
|
|
85
|
+
#
|
|
86
|
+
if target_shape is None:
|
|
87
|
+
target_size = [224, 256, 192]
|
|
88
|
+
i_y_true = read_atlas_file(f_y_true, save_again=True)
|
|
89
|
+
i_y_true,pad_zero,_ = remove_zero(i_y_true.get_fdata())
|
|
90
|
+
|
|
91
|
+
mask = (i_y_true>0)
|
|
92
|
+
|
|
93
|
+
mask =resize_data(mask.astype(np.float32), mode='nearest').squeeze(0)>0
|
|
94
|
+
y_true = resize_data(i_y_true).squeeze().detach().cpu().numpy()
|
|
95
|
+
y_true = normalize_image(y_true)
|
|
96
|
+
y_true = torch.from_numpy(y_true).unsqueeze(0)
|
|
97
|
+
y_true[~mask] = 0
|
|
98
|
+
#self.y_true = y_true
|
|
99
|
+
|
|
100
|
+
prob_values_new = []
|
|
101
|
+
for ii in range(prob_values.shape[-1]):
|
|
102
|
+
i_y_true = prob_values[...,ii].copy()
|
|
103
|
+
i_y_true, _ ,_ = remove_zero(i_y_true, min_max=pad_zero)
|
|
104
|
+
prob_tm = resize_data(i_y_true).squeeze()
|
|
105
|
+
prob_values_new.append(prob_tm)
|
|
106
|
+
|
|
107
|
+
probs = torch.stack(prob_values_new)
|
|
108
|
+
return y_true, probs, target_size
|
|
109
|
+
else:
|
|
110
|
+
i_y_true = read_atlas_file(f_y_true, save_again=True)
|
|
111
|
+
|
|
112
|
+
mask = (i_y_true.get_fdata() > 0)
|
|
113
|
+
mask = resample_to_size(
|
|
114
|
+
nib.Nifti1Image(mask, i_y_true.affine, i_y_true.header),
|
|
115
|
+
new_size=target_shape,
|
|
116
|
+
method='nearest').get_fdata()>0
|
|
117
|
+
|
|
118
|
+
y_true = resample_to_size(
|
|
119
|
+
nib.Nifti1Image(i_y_true.get_fdata(), i_y_true.affine, i_y_true.header),
|
|
120
|
+
new_size=target_shape,
|
|
121
|
+
method='spline').get_fdata()
|
|
122
|
+
|
|
123
|
+
mask,pad_zero ,_ = remove_zero(mask)
|
|
124
|
+
|
|
125
|
+
y_true, _ ,_ = remove_zero(y_true, min_max=pad_zero)
|
|
126
|
+
|
|
127
|
+
y_true = normalize_image(y_true)
|
|
128
|
+
y_true[~mask] = 0
|
|
129
|
+
y_true, _ = pad_to_multiple_of_32(y_true, target_size=target_shape)
|
|
130
|
+
prob_values_new = []
|
|
131
|
+
for ii in range(prob_values.shape[-1]):
|
|
132
|
+
bg = resample_to_size(
|
|
133
|
+
nib.Nifti1Image(prob_values[...,ii], i_y_true.affine, i_y_true.header),
|
|
134
|
+
new_size=target_shape,
|
|
135
|
+
method='nearest').get_fdata()
|
|
136
|
+
bg, _ ,_ = remove_zero(bg, min_max=pad_zero)
|
|
137
|
+
if ii==0:
|
|
138
|
+
val_const = 1
|
|
139
|
+
else:
|
|
140
|
+
val_const = 0
|
|
141
|
+
bg, _ = pad_to_multiple_of_32(bg, target_size=target_shape, val_const=val_const)
|
|
142
|
+
prob_values_new.append(bg)
|
|
143
|
+
probs = np.stack(prob_values_new)
|
|
144
|
+
return y_true, probs, target_shape
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
def plot_image_seg(self, imA, imB, outf):
|
|
150
|
+
fig, ax = plt.subplots(2)
|
|
151
|
+
ax[0].axis('off')
|
|
152
|
+
ax[1].axis('off')
|
|
153
|
+
ax[0].imshow(imB[:, :, imB.shape[2] // 2])
|
|
154
|
+
ax[1].imshow(imA[:, :, imB.shape[2] // 2])
|
|
155
|
+
plt.savefig(outf)
|
|
156
|
+
plt.close()
|
|
157
|
+
|
|
158
|
+
def __getitem__(self, item):
|
|
159
|
+
"""
|
|
160
|
+
randomly select one image form the pool
|
|
161
|
+
:param item:
|
|
162
|
+
:return:
|
|
163
|
+
"""
|
|
164
|
+
|
|
165
|
+
use_registation = True
|
|
166
|
+
|
|
167
|
+
ind_image = np.random.randint(len(self.ILpath[item]['T1']))
|
|
168
|
+
|
|
169
|
+
pathA = self.ILpath[item]['T1'][ind_image]
|
|
170
|
+
|
|
171
|
+
##'Check is file avialable'
|
|
172
|
+
|
|
173
|
+
baseNameA = os.path.basename(pathA)
|
|
174
|
+
dirNameA = os.path.dirname(pathA)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
pathMask = self.ILpath[item]['Mask'][ind_image]
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
pathMask_noCSF = self.ILpath[item]['Mask_NoCSF'][ind_image]
|
|
181
|
+
|
|
182
|
+
pathfile_affine = self.ILpath[item]['PathTransform'][ind_image]
|
|
183
|
+
pathfile_t1_original = self.ILpath[item]['PathA_original'][ind_image]
|
|
184
|
+
|
|
185
|
+
pathB = self.ILpath[item]['T2'][ind_image]
|
|
186
|
+
|
|
187
|
+
mask_noCSF = read_atlas_file(pathMask_noCSF, save_again=True).get_fdata()>0
|
|
188
|
+
|
|
189
|
+
try:
|
|
190
|
+
|
|
191
|
+
imA = read_atlas_file(pathA, save_again=True)
|
|
192
|
+
imB = read_atlas_file(pathB, save_again=True)
|
|
193
|
+
mask = read_atlas_file(pathMask, save_again=True).get_fdata()>0
|
|
194
|
+
if mask.sum()<100:
|
|
195
|
+
item = np.random.randint(len(self.ILpath)) % len(self.ILpath)
|
|
196
|
+
return self.__getitem__(item)
|
|
197
|
+
header = imB.header
|
|
198
|
+
affine = imB.affine
|
|
199
|
+
|
|
200
|
+
info_back = []
|
|
201
|
+
spacing = imA.header['pixdim'][1:4]
|
|
202
|
+
|
|
203
|
+
min_max = [[0, 0], [0, 0], [0, 0]]
|
|
204
|
+
shape_original = imA.shape
|
|
205
|
+
|
|
206
|
+
zero_r = False
|
|
207
|
+
if np.random.rand() > 0.5 and self.opt.state!='test':
|
|
208
|
+
zero_r = True
|
|
209
|
+
|
|
210
|
+
selcted_size = np.random.choice(len(self.y_true))
|
|
211
|
+
|
|
212
|
+
avaial_shape = self.target_size[selcted_size]
|
|
213
|
+
im_shape = imA.shape
|
|
214
|
+
comp_shapes = all([i1 <= i2 for [i1, i2] in zip(*[im_shape, avaial_shape])])
|
|
215
|
+
if use_registation:
|
|
216
|
+
zero_r = True # for registration
|
|
217
|
+
_mask, _ ,_ = remove_zero(mask)
|
|
218
|
+
im_shape = _mask.shape
|
|
219
|
+
comp_shapes = all([i1 <= i2 for [i1, i2] in zip(*[im_shape, avaial_shape])])
|
|
220
|
+
|
|
221
|
+
y_true, probs, target_shape = self.y_true[selcted_size], self.probs[selcted_size], self.target_size[selcted_size]
|
|
222
|
+
image_original = imA.get_fdata()
|
|
223
|
+
if zero_r:
|
|
224
|
+
mask,min_max, shape_original = remove_zero(mask)
|
|
225
|
+
mask_noCSF, _, _ = remove_zero(mask_noCSF, min_max=min_max)
|
|
226
|
+
imA, _ ,_ = remove_zero(imA.get_fdata(), min_max=min_max)
|
|
227
|
+
imB, _ ,_ = remove_zero(imB.get_fdata(), min_max=min_max)
|
|
228
|
+
else:
|
|
229
|
+
imA = imA.get_fdata()
|
|
230
|
+
imB = imB.get_fdata()
|
|
231
|
+
mask = mask == 1
|
|
232
|
+
|
|
233
|
+
mask_noCSF = mask_noCSF == 1
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
imA = normalize_image(imA, mask)
|
|
237
|
+
|
|
238
|
+
imB = normalize_image(imB, mask)
|
|
239
|
+
|
|
240
|
+
if np.random.rand() > 0.5 and self.opt.state!='test':
|
|
241
|
+
imA[~mask] = 0
|
|
242
|
+
imB[~mask] = 0
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
imA = torch.from_numpy(imA).to(torch.float).unsqueeze(0)
|
|
246
|
+
|
|
247
|
+
pad_width = np.array([0,0,0], dtype=np.int32)
|
|
248
|
+
min_max = np.array(min_max, dtype=np.int32)
|
|
249
|
+
shape_original = np.array(shape_original, dtype=np.int32)
|
|
250
|
+
|
|
251
|
+
imB = torch.from_numpy(imB).to(torch.float).unsqueeze(0)
|
|
252
|
+
maskT1 = torch.from_numpy(mask).to(torch.int).unsqueeze(0)
|
|
253
|
+
maskT1_noCSF = torch.from_numpy(mask_noCSF).to(torch.int).unsqueeze(0)
|
|
254
|
+
atlas_probs = probs.to(torch.float)
|
|
255
|
+
imout = y_true.to(torch.float)
|
|
256
|
+
image_original = torch.from_numpy(image_original).to(torch.float).unsqueeze(0)
|
|
257
|
+
resized_im = False
|
|
258
|
+
return {'T1': imA,'T1_orig':image_original, 'atlas_probs':atlas_probs,'pathA': pathA, 'atlas': imout,'maskT1': maskT1, 'info_back':info_back,
|
|
259
|
+
'pixdim':spacing, 'affine':affine, 'pad_width': pad_width, 'min_max': min_max, 'shape_original': shape_original,'resized': resized_im,
|
|
260
|
+
'maskNoCSF': maskT1_noCSF, 'pathAffine': pathfile_affine, 'pathAOrig':pathfile_t1_original}
|
|
261
|
+
except Exception as e:
|
|
262
|
+
print(pathA)
|
|
263
|
+
print(e)
|
|
264
|
+
#print('Exception occurred:')
|
|
265
|
+
traceback.print_exc()
|
|
266
|
+
#print(min_max)
|
|
267
|
+
#print(shape_original)
|
|
268
|
+
#print(e)
|
|
269
|
+
item = np.random.randint(len(self.ILpath)) % len(self.ILpath)
|
|
270
|
+
return self.__getitem__(item)
|
|
271
|
+
|
|
272
|
+
def __len__(self):
|
|
273
|
+
if self.state.lower() == 'train' or self.state.lower()=='total':
|
|
274
|
+
return len(self.ILpath)
|
|
275
|
+
elif self.state.lower() == 'valid':
|
|
276
|
+
return len(self.ILpath)
|
|
277
|
+
else:
|
|
278
|
+
return len(self.ILpath)
|
|
279
|
+
|
|
280
|
+
def name(self):
|
|
281
|
+
return "Tb"
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
import random
|
|
4
|
+
import json
|
|
5
|
+
import warnings
|
|
6
|
+
warnings.filterwarnings("ignore", message="pkg_resources is deprecated.*")
|
|
7
|
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow warnings
|
|
8
|
+
from os.path import basename, splitext
|
|
9
|
+
import numpy as np
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
import matplotlib.pyplot as plt
|
|
13
|
+
from .baseData import baseData
|
|
14
|
+
from .utils import remove_zero
|
|
15
|
+
from .utils import normalize as normalize_image
|
|
16
|
+
import sys
|
|
17
|
+
#sys.modules['tensorflow'] = None
|
|
18
|
+
try:
|
|
19
|
+
from monai.transforms import RandRotateD, RandHistogramShiftd, RandGaussianNoised, RandBiasFieldd, ScaleIntensityd, \
|
|
20
|
+
Compose, ToTensor, ToTensorD, RandZoomD, OneOf, EnsureChannelFirstD, EnsureTypeD
|
|
21
|
+
except:
|
|
22
|
+
pass
|
|
23
|
+
# Suppress specific warnings
|
|
24
|
+
warnings.filterwarnings("ignore", message="pkg_resources is deprecated.*")
|
|
25
|
+
|
|
26
|
+
# Set random seed
|
|
27
|
+
random.seed(0)
|
|
28
|
+
|
|
29
|
+
# Define constants
|
|
30
|
+
LABEL_MAPPING = {
|
|
31
|
+
'BACKGROUND': 0, 'CORTICAL_GM': 1, 'LAT_VENT_L': 3,
|
|
32
|
+
'CEREBELLUM_CORTEX_L': 5, 'CSF': 15, 'LAT_VENT_R': 19,
|
|
33
|
+
'CEREBELLUM_CORTEX_R': 21,
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class DDSetSeg(baseData):
|
|
38
|
+
def options(self, opt, type, novalid):
|
|
39
|
+
"""
|
|
40
|
+
options of the data set
|
|
41
|
+
:param opt:
|
|
42
|
+
:return:
|
|
43
|
+
"""
|
|
44
|
+
self.opt = opt
|
|
45
|
+
self.state = 'train'
|
|
46
|
+
|
|
47
|
+
self.target_size = [
|
|
48
|
+
[128, 128, 96], [128, 128, 128], [128, 160, 128],
|
|
49
|
+
[160, 160, 128], [160, 160, 160], [160, 192, 160],
|
|
50
|
+
[192, 192, 160], [192, 224, 192], [192, 256, 192], [224, 256, 192]
|
|
51
|
+
]
|
|
52
|
+
|
|
53
|
+
images_IXI = createPathData_IXI()
|
|
54
|
+
if self.opt.state == 'test':
|
|
55
|
+
self.ILpath =images_IXI #images_OASIS#adni#images_IXI#image_full_head#images_IXI[10:]
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
self.train_transforms = Compose([
|
|
59
|
+
# Step A: Add a channel dim ONLY to 'image' and 'mask'.
|
|
60
|
+
# 'prob' is skipped because it's not in the `keys` list.
|
|
61
|
+
EnsureChannelFirstD(keys=["image", "mask"], channel_dim='no_channel'),
|
|
62
|
+
# Step B: Convert all tensors to a float type for calculations.
|
|
63
|
+
EnsureTypeD(keys=["image", "prob", "mask"], dtype=torch.float32),
|
|
64
|
+
OneOf(transforms=[
|
|
65
|
+
RandHistogramShiftd(keys=["image"], prob=0.5),
|
|
66
|
+
]),
|
|
67
|
+
# Step C: Apply the same affine transform to all keys.
|
|
68
|
+
# This works now because all tensors are 4D (C,D,H,W) and have matching spatial dims.
|
|
69
|
+
RandAffineD(
|
|
70
|
+
keys=["image", "prob", "mask"],
|
|
71
|
+
prob=1.0, # Using 1.0 for testing
|
|
72
|
+
rotate_range=(np.pi / 12, np.pi / 12, np.pi / 12),
|
|
73
|
+
scale_range=(0.1, 0.1, 0.1),
|
|
74
|
+
mode=("bilinear", "bilinear", "nearest"),
|
|
75
|
+
padding_mode="zeros"
|
|
76
|
+
)
|
|
77
|
+
])
|
|
78
|
+
|
|
79
|
+
self.max_count = self.__len__() + 1
|
|
80
|
+
self.new_path = os.path.join(self.opt.chkptDir, 'save_images')
|
|
81
|
+
if not os.path.exists(self.new_path):
|
|
82
|
+
os.makedirs(self.new_path)
|
|
83
|
+
|
|
84
|
+
def plot_image_seg(self, imA, imB, outf):
|
|
85
|
+
fig, ax = plt.subplots(2)
|
|
86
|
+
ax[0].axis('off')
|
|
87
|
+
ax[1].axis('off')
|
|
88
|
+
ax[0].imshow(imB[:, :, imB.shape[2] // 2])
|
|
89
|
+
ax[1].imshow(imA[:, :, imB.shape[2] // 2])
|
|
90
|
+
plt.savefig(outf)
|
|
91
|
+
plt.close()
|
|
92
|
+
|
|
93
|
+
def _weight_roi(self, seg, num_classes):
|
|
94
|
+
total_pixels = np.zeros(num_classes)
|
|
95
|
+
class_present = np.zeros(num_classes)
|
|
96
|
+
|
|
97
|
+
for c in range(num_classes):
|
|
98
|
+
class_mask = (seg == c)
|
|
99
|
+
pixel_count = class_mask.sum()
|
|
100
|
+
total_pixels[c] = pixel_count
|
|
101
|
+
if pixel_count > 0:
|
|
102
|
+
class_present[c] = 1 # only count if present at all in this volume
|
|
103
|
+
frequencies = total_pixels / (class_present + 1e-6)
|
|
104
|
+
weights = 1.0 / np.log(1.02 + frequencies) # Smoothed Weighting Formula
|
|
105
|
+
return weights
|
|
106
|
+
|
|
107
|
+
def _make_tissue_(self, prob):
|
|
108
|
+
# Core deep gray matter indices
|
|
109
|
+
dgm_indices = [6, 7, 8, 9, 22, 23, 24, 25]
|
|
110
|
+
# Optional (extended) subcortical GM indices — sometimes included in DGM analyses
|
|
111
|
+
extended_dgm_indices = [13, 14, 16, 17, 26, 27, 28, 29]
|
|
112
|
+
dgm_indices += extended_dgm_indices
|
|
113
|
+
prob_tissues = torch.stack(
|
|
114
|
+
[prob[0], prob[[1, 5, 21]].sum(0), prob[[2, 18, 4, 12, 20]].sum(0), prob[[3, 19]].sum(0),
|
|
115
|
+
prob[[10, 11, 15]].sum(0),
|
|
116
|
+
prob[dgm_indices].sum(0)])
|
|
117
|
+
prob_tissues_d = prob_tissues.sum(dim=0, keepdim=True) + 1e-6 # [1, D, H, W]
|
|
118
|
+
prob_tissues = (prob_tissues) / prob_tissues_d
|
|
119
|
+
return prob_tissues
|
|
120
|
+
|
|
121
|
+
def __getitem__(self, item):
|
|
122
|
+
"""
|
|
123
|
+
randomly select one image form the pool
|
|
124
|
+
:param item:
|
|
125
|
+
:return:
|
|
126
|
+
"""
|
|
127
|
+
ind_image = 0
|
|
128
|
+
|
|
129
|
+
pathA = self.ILpath[item]['T1'][ind_image]
|
|
130
|
+
pathA_seg = self.ILpath[item]['T1_seg'][ind_image]
|
|
131
|
+
pathA_brain = self.ILpath[item]['T1_brain'][ind_image]
|
|
132
|
+
path_prob_A = self.ILpath[item]['probT1'][ind_image]
|
|
133
|
+
pathMaskA = self.ILpath[item]['Mask'][ind_image]
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
zero_r = False
|
|
137
|
+
if np.random.rand() < 0.5:
|
|
138
|
+
zero_r = True
|
|
139
|
+
|
|
140
|
+
if not os.path.isfile(path_prob_A) and self.opt.state != 'test':
|
|
141
|
+
next_item = (item + 1) % len(self.ILpath)
|
|
142
|
+
return self.__getitem__(next_item)
|
|
143
|
+
|
|
144
|
+
try:
|
|
145
|
+
imA = vxm.py.utils.read_atlas_file(pathA, save_again=True)
|
|
146
|
+
seg = vxm.py.utils.read_atlas_file(pathA_seg, save_again=True).get_fdata()
|
|
147
|
+
imA_brain = vxm.py.utils.read_atlas_file(pathA_brain, save_again=True).get_fdata()
|
|
148
|
+
mask = vxm.py.utils.read_atlas_file(pathMaskA, save_again=True)
|
|
149
|
+
|
|
150
|
+
mask = mask.get_fdata() > 0
|
|
151
|
+
# normalize intensities
|
|
152
|
+
header = imA.header
|
|
153
|
+
affine = imA.affine
|
|
154
|
+
spacing = imA.header['pixdim'][1:4]
|
|
155
|
+
min_max = [[0, 0], [0, 0], [0, 0]]
|
|
156
|
+
shape_original = imA.shape
|
|
157
|
+
imA = imA.get_fdata().copy()
|
|
158
|
+
imA = normalize_image(imA, mask)
|
|
159
|
+
imA_brain = normalize_image(imA_brain, mask)
|
|
160
|
+
imA = (np.random.uniform(0.5, 2) * imA_brain * (~mask) + imA)
|
|
161
|
+
|
|
162
|
+
prob = vxm.py.utils.read_atlas_file(path_prob_A, save_again=True)
|
|
163
|
+
prob = prob.get_fdata()
|
|
164
|
+
prob[0, seg == 0] = 100
|
|
165
|
+
|
|
166
|
+
if len(prob.shape) <= 3:
|
|
167
|
+
prob = None
|
|
168
|
+
seg = None
|
|
169
|
+
if prob is not None:
|
|
170
|
+
num_classes = prob.shape[0]
|
|
171
|
+
weights = self._weight_roi(seg, num_classes)
|
|
172
|
+
|
|
173
|
+
if self.opt.state == 'test':
|
|
174
|
+
zero_r = False
|
|
175
|
+
if zero_r:
|
|
176
|
+
if np.random.rand() < 0.5 or self.opt.state == 'test':
|
|
177
|
+
mask, min_max, shape_original = remove_zero(mask)
|
|
178
|
+
|
|
179
|
+
imA, _, _ = remove_zero(imA, min_max=min_max)
|
|
180
|
+
prob = prob[:, min_max[0][0]:min_max[0][1] + 1, min_max[1][0]:min_max[1][1] + 1,
|
|
181
|
+
min_max[2][0]:min_max[2][1] + 1]
|
|
182
|
+
else:
|
|
183
|
+
imA = imA * mask
|
|
184
|
+
else:
|
|
185
|
+
weights = None
|
|
186
|
+
|
|
187
|
+
avaial_shape = imA.shape
|
|
188
|
+
|
|
189
|
+
ind_selcted_size = np.random.choice(len(self.target_size))
|
|
190
|
+
selcted_size = self.target_size[ind_selcted_size]
|
|
191
|
+
|
|
192
|
+
# The original code had a commented-out line `if self.opt.state=='test':`
|
|
193
|
+
# followed by `selcted_size = self.target_size[-1]`.
|
|
194
|
+
# This implies that for 'test' state, it was intended to always use the last target size.
|
|
195
|
+
# I'm keeping the behavior as it was in the original code, which was to always use the last size,
|
|
196
|
+
# regardless of the `if` condition being commented out.
|
|
197
|
+
selcted_size = self.target_size[-1]
|
|
198
|
+
|
|
199
|
+
if prob is not None:
|
|
200
|
+
prob = F.interpolate(torch.from_numpy(prob).unsqueeze(0), size=selcted_size, mode='trilinear',
|
|
201
|
+
align_corners=False).squeeze()
|
|
202
|
+
imA = F.interpolate(torch.from_numpy(imA).unsqueeze(0).unsqueeze(0), size=selcted_size, mode='trilinear',
|
|
203
|
+
align_corners=False).squeeze()
|
|
204
|
+
mask = F.interpolate(torch.from_numpy(mask).to(torch.float).unsqueeze(0).unsqueeze(0), size=selcted_size,
|
|
205
|
+
mode='nearest').squeeze()
|
|
206
|
+
|
|
207
|
+
sample = {"image": imA, "prob": prob, "mask": mask}
|
|
208
|
+
if self.opt.state != 'test' and np.random.rand() < 0.5:
|
|
209
|
+
sample = self.train_transforms(sample)
|
|
210
|
+
imA = sample['image'].to(torch.float)
|
|
211
|
+
prob = sample['prob'].to(torch.float)
|
|
212
|
+
prob = prob / 100
|
|
213
|
+
prob_tissues = self._make_tissue_(prob)
|
|
214
|
+
mask = sample['mask'].to(torch.float)
|
|
215
|
+
weight_roi = torch.from_numpy(weights).to(torch.float)[:, None, None, None]
|
|
216
|
+
else:
|
|
217
|
+
imA = imA.unsqueeze(0)
|
|
218
|
+
if prob is not None:
|
|
219
|
+
prob = prob.to(torch.float)
|
|
220
|
+
prob = prob / 100
|
|
221
|
+
prob_tissues = self._make_tissue_(prob)
|
|
222
|
+
weight_roi = torch.from_numpy(weights).to(torch.float)[:, None, None, None]
|
|
223
|
+
else:
|
|
224
|
+
prob_tissues = None
|
|
225
|
+
mask = mask.to(torch.float).unsqueeze(0)
|
|
226
|
+
|
|
227
|
+
if prob_tissues is not None:
|
|
228
|
+
num_classes = prob_tissues.shape[0]
|
|
229
|
+
seg_t = prob_tissues.argmax(0)
|
|
230
|
+
weights_tissue = self._weight_roi(seg_t, num_classes)
|
|
231
|
+
weights_tissue = torch.from_numpy(weights_tissue).to(torch.float)[:, None, None, None]
|
|
232
|
+
else:
|
|
233
|
+
weights_tissue = None
|
|
234
|
+
min_max = np.array(min_max, dtype=np.int32)
|
|
235
|
+
shape_original = np.array(shape_original, dtype=np.int32)
|
|
236
|
+
shape_original = torch.from_numpy(np.array(shape_original)).unsqueeze(0)
|
|
237
|
+
if prob is not None:
|
|
238
|
+
return {'T1': imA.to(torch.float), 'T1_prob': prob.to(torch.float),
|
|
239
|
+
'T1_prob_edt': weight_roi.to(torch.float), 'pathA': pathA, 'maskT1': mask.to(torch.float),
|
|
240
|
+
'pixdim': spacing, 'affine': affine, 'min_max': min_max, 'shape_original': shape_original,
|
|
241
|
+
'interShape': avaial_shape, 'prob_tissue': prob_tissues.to(torch.float),
|
|
242
|
+
'weight_tissue': weights_tissue.to(torch.float), }
|
|
243
|
+
else:
|
|
244
|
+
return {'T1': imA.to(torch.float), 'pathA': pathA, 'maskT1': mask.to(torch.float),
|
|
245
|
+
'pixdim': spacing, 'affine': affine, 'min_max': min_max, 'shape_original': shape_original,
|
|
246
|
+
'interShape': avaial_shape, }
|
|
247
|
+
|
|
248
|
+
except Exception as e:
|
|
249
|
+
print(e, pathA)
|
|
250
|
+
item = np.random.randint(len(self.ILpath)) % len(self.ILpath)
|
|
251
|
+
return self.__getitem__(item)
|
|
252
|
+
|
|
253
|
+
def __len__(self):
|
|
254
|
+
return len(self.ILpath)
|
|
255
|
+
|
|
256
|
+
def name(self):
|
|
257
|
+
return "Tb"
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
from .DDSet import DDSet
|
|
5
|
+
from .DDSetSeg import DDSetSeg
|
|
6
|
+
import argparse
|
|
7
|
+
from torch.utils.data.distributed import DistributedSampler
|
|
8
|
+
# function loaders
|
|
9
|
+
funcLoaders = {'D':DDSet,'segDN':DDSetSeg}
|
|
10
|
+
import os
|
|
11
|
+
from argparse import Namespace
|
|
12
|
+
import os
|
|
13
|
+
import torch
|
|
14
|
+
from argparse import Namespace
|
|
15
|
+
|
|
16
|
+
def get_dataloader(opt, split='train', pin_memory=True, prefetch_factor=2,
|
|
17
|
+
name='D', num_workers=None, collate_fn=None, params=None):
|
|
18
|
+
# Use a shallow copy, as we are only modifying top-level attributes.
|
|
19
|
+
# If opt contained nested dicts/lists that you intended to modify,
|
|
20
|
+
# you would use opt_local = copy.deepcopy(opt)
|
|
21
|
+
opt_local = Namespace(**vars(opt))
|
|
22
|
+
|
|
23
|
+
# 1. Use a descriptive name like 'split' instead of 'type'
|
|
24
|
+
opt_local.state = split.lower()
|
|
25
|
+
is_train = (opt_local.state == 'train')
|
|
26
|
+
|
|
27
|
+
# 2. Set batch size for non-training splits
|
|
28
|
+
if not is_train:
|
|
29
|
+
opt_local.batchSize = 1
|
|
30
|
+
|
|
31
|
+
dataset = funcLoaders[name]()
|
|
32
|
+
dataset.options(opt_local, params, None)
|
|
33
|
+
|
|
34
|
+
# 3. Use a more sensible default for num_workers
|
|
35
|
+
if num_workers is None:
|
|
36
|
+
# Default to 4 workers, or all CPUs if less than 4 are available
|
|
37
|
+
num_workers = min(os.cpu_count(), 4)
|
|
38
|
+
|
|
39
|
+
print(f"Using {num_workers} workers for the '{split}' split.")
|
|
40
|
+
|
|
41
|
+
dataloader = torch.utils.data.DataLoader(
|
|
42
|
+
dataset,
|
|
43
|
+
batch_size=opt_local.batchSize,
|
|
44
|
+
# 4. Correctly set shuffle only for training
|
|
45
|
+
shuffle=is_train,
|
|
46
|
+
num_workers=num_workers,
|
|
47
|
+
prefetch_factor=prefetch_factor,
|
|
48
|
+
# 5. It's common to drop the last batch for training
|
|
49
|
+
drop_last=is_train,
|
|
50
|
+
pin_memory=pin_memory,
|
|
51
|
+
# 6. Fix typo
|
|
52
|
+
collate_fn=collate_fn
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
return dataloader
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
if __name__=='__main__':
|
|
60
|
+
None
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.utils.data as data
|
|
3
|
+
import abc
|
|
4
|
+
|
|
5
|
+
class baseData(data.Dataset):
|
|
6
|
+
def __init__(self):
|
|
7
|
+
super(baseData, self).__init__()
|
|
8
|
+
@abc.abstractmethod
|
|
9
|
+
def options(self, opt):
|
|
10
|
+
raise NotImplementedError("Subclass should be implemented.")
|
|
11
|
+
|
|
12
|
+
@abc.abstractmethod
|
|
13
|
+
def __len__(self):
|
|
14
|
+
raise NotImplementedError("Subclass should be implemented.")
|
|
15
|
+
|
|
16
|
+
@abc.abstractmethod
|
|
17
|
+
def name(self):
|
|
18
|
+
raise NotImplementedError("Subclass should be implemented.")
|