megadetector 5.0.9__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.9.dist-info/RECORD +0 -224
  214. megadetector-5.0.9.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,111 +0,0 @@
1
- """
2
-
3
- get_lila_image_counts.py
4
-
5
- Count the number of images and bounding boxes with each label in one or more LILA datasets.
6
-
7
- This script doesn't write these counts out anywhere other than the console, it's just intended
8
- as a template for doing operations like this on LILA data. get_lila_annotation_counts.py writes
9
- information out to a .json file, but it counts *annotations*, not *images*, for each category.
10
-
11
- """
12
-
13
- #%% Constants and imports
14
-
15
- import json
16
- import os
17
-
18
- from collections import defaultdict
19
-
20
- from data_management.lila.lila_common import read_lila_metadata, read_metadata_file_for_dataset
21
-
22
- # If None, will use all datasets
23
- datasets_of_interest = None
24
-
25
- # We'll write images, metadata downloads, and temporary files here
26
- lila_local_base = os.path.expanduser('~/lila')
27
-
28
- metadata_dir = os.path.join(lila_local_base,'metadata')
29
- os.makedirs(metadata_dir,exist_ok=True)
30
-
31
-
32
- #%% Download and parse the metadata file
33
-
34
- metadata_table = read_lila_metadata(metadata_dir)
35
-
36
-
37
- #%% Download and extract metadata for the datasets we're interested in
38
-
39
- if datasets_of_interest is None:
40
- datasets_of_interest = list(metadata_table.keys())
41
-
42
- for ds_name in datasets_of_interest:
43
- metadata_table[ds_name]['json_filename'] = read_metadata_file_for_dataset(ds_name=ds_name,
44
- metadata_dir=metadata_dir,
45
- metadata_table=metadata_table)
46
-
47
-
48
- #%% Count categories
49
-
50
- ds_name_to_category_counts = {}
51
-
52
- # ds_name = datasets_of_interest[0]
53
- for ds_name in datasets_of_interest:
54
-
55
- category_to_image_count = {}
56
- category_to_bbox_count = {}
57
-
58
- print('Counting categories in: ' + ds_name)
59
-
60
- json_filename = metadata_table[ds_name]['json_filename']
61
- with open(json_filename, 'r') as f:
62
- data = json.load(f)
63
-
64
- categories = data['categories']
65
- category_ids = [c['id'] for c in categories]
66
- for c in categories:
67
- category_id_to_name = {c['id']:c['name'] for c in categories}
68
- annotations = data['annotations']
69
- images = data['images']
70
-
71
- for category_id in category_ids:
72
- category_name = category_id_to_name[category_id]
73
- category_to_image_count[category_name] = 0
74
- category_to_bbox_count[category_name] = 0
75
-
76
- image_id_to_category_names = defaultdict(set)
77
-
78
- # Go through annotations, marking each image with the categories that are present
79
- #
80
- # ann = annotations[0]
81
- for ann in annotations:
82
-
83
- category_name = category_id_to_name[ann['category_id']]
84
- image_id_to_category_names[ann['image_id']].add(category_name)
85
-
86
- # Now go through images and count categories
87
- category_to_count = defaultdict(int)
88
-
89
- # im = images[0]
90
- for im in images:
91
- categories_this_image = image_id_to_category_names[im['id']]
92
- for category_name in categories_this_image:
93
- category_to_count[category_name] += 1
94
-
95
- ds_name_to_category_counts[ds_name] = category_to_count
96
-
97
- # ...for each dataset
98
-
99
-
100
- #%% Print the results
101
-
102
- for ds_name in ds_name_to_category_counts:
103
-
104
- print('\n** Category counts for {} **\n'.format(ds_name))
105
-
106
- category_to_count = ds_name_to_category_counts[ds_name]
107
- category_to_count = {k: v for k, v in sorted(category_to_count.items(), reverse=True,
108
- key=lambda item: item[1])}
109
-
110
- for category_name in category_to_count.keys():
111
- print('{}: {}'.format(category_name,category_to_count[category_name]))
@@ -1,300 +0,0 @@
1
- """
2
-
3
- lila_common.py
4
-
5
- Common constants and functions related to LILA data management/retrieval.
6
-
7
- """
8
-
9
- #%% Imports and constants
10
-
11
- import os
12
- import json
13
- import zipfile
14
- import pandas as pd
15
-
16
- from urllib.parse import urlparse
17
-
18
- from md_utils.url_utils import download_url
19
- from md_utils.path_utils import unzip_file
20
- from md_utils.ct_utils import is_empty
21
-
22
- # LILA camera trap primary metadata file
23
- lila_metadata_url = 'http://lila.science/wp-content/uploads/2023/06/lila_camera_trap_datasets.csv'
24
- lila_taxonomy_mapping_url = 'https://lila.science/public/lila-taxonomy-mapping_release.csv'
25
- lila_all_images_url = 'https://lila.science/public/lila_image_urls_and_labels.csv.zip'
26
-
27
- wildlife_insights_page_size = 30000
28
- wildlife_insights_taxonomy_url = 'https://api.wildlifeinsights.org/api/v1/taxonomy/taxonomies-all?fields=class,order,family,genus,species,authority,taxonomyType,uniqueIdentifier,commonNameEnglish&page[size]={}'.format(
29
- wildlife_insights_page_size)
30
- wildlife_insights_taxonomy_local_json_filename = 'wi_taxonomy.json'
31
- wildlife_insights_taxonomy_local_csv_filename = \
32
- wildlife_insights_taxonomy_local_json_filename.replace('.json','.csv')
33
-
34
- # Filenames are consistent across clouds relative to these URLs
35
- lila_base_urls = {
36
- 'azure':'https://lilawildlife.blob.core.windows.net/lila-wildlife/',
37
- 'gcp':'https://storage.googleapis.com/public-datasets-lila/',
38
- 'aws':'http://us-west-2.opendata.source.coop.s3.amazonaws.com/agentmorris/lila-wildlife/'
39
- }
40
-
41
- lila_cloud_urls = {
42
- 'azure':'https://lilawildlife.blob.core.windows.net/lila-wildlife/',
43
- 'gcp':'gs://public-datasets-lila/',
44
- 'aws':'s3://us-west-2.opendata.source.coop/agentmorris/lila-wildlife/'
45
- }
46
-
47
- for url in lila_base_urls.values():
48
- assert url.endswith('/')
49
-
50
-
51
- #%% Common functions
52
-
53
- def read_wildlife_insights_taxonomy_mapping(metadata_dir):
54
- """
55
- Reads the WI taxonomy mapping file, downloading the .json data (and writing to .csv) if necessary.
56
-
57
- Args:
58
- metadata_dir (str): folder to use for temporary LILA metadata files
59
-
60
- Returns:
61
- pd.dataframe: A DataFrame with taxonomy information
62
- """
63
-
64
- wi_taxonomy_csv_path = os.path.join(metadata_dir,wildlife_insights_taxonomy_local_csv_filename)
65
-
66
- if os.path.exists(wi_taxonomy_csv_path):
67
- df = pd.read_csv(wi_taxonomy_csv_path)
68
- else:
69
- wi_taxonomy_json_path = os.path.join(metadata_dir,wildlife_insights_taxonomy_local_json_filename)
70
- download_url(wildlife_insights_taxonomy_url, wi_taxonomy_json_path)
71
- with open(wi_taxonomy_json_path,'r') as f:
72
- d = json.load(f)
73
-
74
- # We haven't implemented paging, make sure that's not an issue
75
- assert d['meta']['totalItems'] < wildlife_insights_page_size
76
-
77
- # d['data'] is a list of items that look like:
78
- """
79
- {'id': 2000003,
80
- 'class': 'Mammalia',
81
- 'order': 'Rodentia',
82
- 'family': 'Abrocomidae',
83
- 'genus': 'Abrocoma',
84
- 'species': 'bennettii',
85
- 'authority': 'Waterhouse, 1837',
86
- 'commonNameEnglish': "Bennett's Chinchilla Rat",
87
- 'taxonomyType': 'biological',
88
- 'uniqueIdentifier': '7a6c93a5-bdf7-4182-82f9-7a67d23f7fe1'}
89
- """
90
- df = pd.DataFrame(d['data'])
91
- df.to_csv(wi_taxonomy_csv_path,index=False)
92
-
93
- return df
94
-
95
-
96
- def read_lila_taxonomy_mapping(metadata_dir):
97
- """
98
- Reads the LILA taxonomy mapping file, downloading the .csv file if necessary.
99
-
100
- Args:
101
- metadata_dir (str): folder to use for temporary LILA metadata files
102
-
103
- Returns:
104
- pd.DataFrame: a DataFrame with one row per identification
105
- """
106
-
107
- p = urlparse(lila_taxonomy_mapping_url)
108
- taxonomy_filename = os.path.join(metadata_dir,os.path.basename(p.path))
109
- download_url(lila_taxonomy_mapping_url, taxonomy_filename)
110
-
111
- df = pd.read_csv(lila_taxonomy_mapping_url)
112
-
113
- return df
114
-
115
-
116
- def read_lila_metadata(metadata_dir):
117
- """
118
- Reads LILA metadata (URLs to each dataset), downloading the .csv file if necessary.
119
-
120
- Args:
121
- metadata_dir (str): folder to use for temporary LILA metadata files
122
-
123
- Returns:
124
- dict: a dict mapping dataset names (e.g. "Caltech Camera Traps") to dicts
125
- with keys corresponding to the headers in the .csv file, currently:
126
-
127
- - name
128
- - short_name
129
- - continent
130
- - country
131
- - region
132
- - image_base_url_relative
133
- - metadata_url_relative
134
- - bbox_url_relative
135
- - image_base_url_gcp
136
- - metadata_url_gcp
137
- - bbox_url_gcp
138
- - image_base_url_aws
139
- - metadata_url_aws
140
- - bbox_url_aws
141
- - image_base_url_azure
142
- - metadata_url_azure
143
- - box_url_azure
144
- - mdv4_results_raw
145
- - mdv5b_results_raw
146
- - md_results_with_rde
147
- - json_filename
148
- """
149
-
150
- # Put the master metadata file in the same folder where we're putting images
151
- p = urlparse(lila_metadata_url)
152
- metadata_filename = os.path.join(metadata_dir,os.path.basename(p.path))
153
- download_url(lila_metadata_url, metadata_filename)
154
-
155
- df = pd.read_csv(metadata_filename)
156
-
157
- records = df.to_dict('records')
158
-
159
- # Parse into a table keyed by dataset name
160
- metadata_table = {}
161
-
162
- # r = records[0]
163
- for r in records:
164
- if is_empty(r['name']):
165
- continue
166
-
167
- # Convert NaN's to None
168
- for k in r.keys():
169
- if is_empty(r[k]):
170
- r[k] = None
171
-
172
- metadata_table[r['name']] = r
173
-
174
- return metadata_table
175
-
176
-
177
- def read_lila_all_images_file(metadata_dir):
178
- """
179
- Downloads if necessary - then unzips if necessary - the .csv file with label mappings for
180
- all LILA files, and opens the resulting .csv file as a Pandas DataFrame.
181
-
182
- Args:
183
- metadata_dir (str): folder to use for temporary LILA metadata files
184
-
185
- Returns:
186
- pd.DataFrame: a DataFrame containing one row per identification in a LILA camera trap image
187
- """
188
-
189
- p = urlparse(lila_all_images_url)
190
- lila_all_images_zip_filename = os.path.join(metadata_dir,os.path.basename(p.path))
191
- download_url(lila_all_images_url, lila_all_images_zip_filename)
192
-
193
- with zipfile.ZipFile(lila_all_images_zip_filename,'r') as z:
194
- files = z.namelist()
195
- assert len(files) == 1
196
-
197
- unzipped_csv_filename = os.path.join(metadata_dir,files[0])
198
- if not os.path.isfile(unzipped_csv_filename):
199
- unzip_file(lila_all_images_zip_filename,metadata_dir)
200
- else:
201
- print('{} already unzipped'.format(unzipped_csv_filename))
202
-
203
- df = pd.read_csv(unzipped_csv_filename)
204
-
205
- return df
206
-
207
-
208
- def read_metadata_file_for_dataset(ds_name,
209
- metadata_dir,
210
- metadata_table=None,
211
- json_url=None,
212
- preferred_cloud='gcp'):
213
- """
214
- Downloads if necessary - then unzips if necessary - the .json file for a specific dataset.
215
-
216
- Args:
217
- ds_name (str): the name of the dataset for which you want to retrieve metadata (e.g.
218
- "Caltech Camera Traps")
219
- metadata_dir (str): folder to use for temporary LILA metadata files
220
- metadata_table (dict, optional): an optional dictionary already loaded via
221
- read_lila_metadata()
222
- json_url (str, optional): the URL of the metadata file, if None will be retrieved
223
- via read_lila_metadata()
224
- preferred_cloud (str, optional): 'gcp' (default), 'azure', or 'aws'
225
-
226
- Returns:
227
- str: the .json filename on the local disk
228
-
229
- """
230
-
231
- assert preferred_cloud in lila_base_urls.keys()
232
-
233
- if json_url is None:
234
-
235
- if metadata_table is None:
236
- metadata_table = read_lila_metadata(metadata_dir)
237
-
238
- json_url = metadata_table[ds_name]['metadata_url_' + preferred_cloud]
239
-
240
- p = urlparse(json_url)
241
- json_filename = os.path.join(metadata_dir,os.path.basename(p.path))
242
- download_url(json_url, json_filename)
243
-
244
- # Unzip if necessary
245
- if json_filename.endswith('.zip'):
246
-
247
- with zipfile.ZipFile(json_filename,'r') as z:
248
- files = z.namelist()
249
- assert len(files) == 1
250
- unzipped_json_filename = os.path.join(metadata_dir,files[0])
251
- if not os.path.isfile(unzipped_json_filename):
252
- unzip_file(json_filename,metadata_dir)
253
- else:
254
- print('{} already unzipped'.format(unzipped_json_filename))
255
- json_filename = unzipped_json_filename
256
-
257
- return json_filename
258
-
259
-
260
- #%% Interactive test driver
261
-
262
- if False:
263
-
264
- pass
265
-
266
- #%% Verify that all base URLs exist
267
-
268
- # LILA camera trap primary metadata file
269
- urls = (lila_metadata_url,lila_taxonomy_mapping_url,lila_all_images_url,wildlife_insights_taxonomy_url)
270
-
271
- from md_utils import url_utils
272
-
273
- status_codes = url_utils.test_urls(urls,timeout=2.0)
274
- assert all([code == 200 for code in status_codes])
275
-
276
-
277
- #%% Verify that the metadata URLs exist for individual datasets
278
-
279
- metadata_dir = os.path.expanduser('~/lila/metadata')
280
-
281
- dataset_metadata = read_lila_metadata(metadata_dir)
282
-
283
- urls_to_test = []
284
-
285
- # ds_name = next(iter(dataset_metadata.keys()))
286
- for ds_name in dataset_metadata.keys():
287
-
288
- ds_info = dataset_metadata[ds_name]
289
- for cloud_name in lila_base_urls.keys():
290
- urls_to_test.append(ds_info['metadata_url_' + cloud_name])
291
- if ds_info['bbox_url_relative'] != None:
292
- urls_to_test.append(ds_info['bbox_url_' + cloud_name])
293
-
294
- status_codes = url_utils.test_urls(urls_to_test,
295
- error_on_failure=True,
296
- n_workers=10,
297
- pool_type='process',
298
- timeout=2.0)
299
- assert all([code == 200 for code in status_codes])
300
-
@@ -1,132 +0,0 @@
1
- """
2
-
3
- test_lila_metadata_urls.py
4
-
5
- Test that all the metadata URLs for LILA camera trap datasets are valid, including MegaDetector
6
- results files.
7
-
8
- Also pick an arbitrary image from each dataset and make sure that URL is valid.
9
-
10
- Also picks an arbitrary image from each dataset's MD results and make sure the corresponding URL is valid.
11
-
12
- """
13
-
14
- #%% Constants and imports
15
-
16
- import json
17
- import os
18
-
19
- from data_management.lila.lila_common import read_lila_metadata,\
20
- read_metadata_file_for_dataset, read_lila_taxonomy_mapping
21
-
22
- # We'll write images, metadata downloads, and temporary files here
23
- lila_local_base = os.path.expanduser('~/lila')
24
-
25
- output_dir = os.path.join(lila_local_base,'lila_metadata_tests')
26
- os.makedirs(output_dir,exist_ok=True)
27
-
28
- metadata_dir = os.path.join(lila_local_base,'metadata')
29
- os.makedirs(metadata_dir,exist_ok=True)
30
-
31
- md_results_dir = os.path.join(lila_local_base,'md_results')
32
- os.makedirs(md_results_dir,exist_ok=True)
33
-
34
- md_results_keys = ['mdv4_results_raw','mdv5a_results_raw','mdv5b_results_raw','md_results_with_rde']
35
-
36
- preferred_cloud = 'gcp' # 'azure', 'aws'
37
-
38
-
39
- #%% Load category and taxonomy files
40
-
41
- taxonomy_df = read_lila_taxonomy_mapping(metadata_dir)
42
-
43
-
44
- #%% Download and parse the metadata file
45
-
46
- metadata_table = read_lila_metadata(metadata_dir)
47
-
48
- print('Loaded metadata URLs for {} datasets'.format(len(metadata_table)))
49
-
50
-
51
- #%% Download and extract metadata and MD results for each dataset
52
-
53
- for ds_name in metadata_table.keys():
54
-
55
- metadata_table[ds_name]['json_filename'] = read_metadata_file_for_dataset(ds_name=ds_name,
56
- metadata_dir=metadata_dir,
57
- metadata_table=metadata_table)
58
- for k in md_results_keys:
59
- md_results_url = metadata_table[ds_name][k]
60
- if md_results_url is None:
61
- metadata_table[ds_name][k + '_filename'] = None
62
- else:
63
- metadata_table[ds_name][k + '_filename'] = read_metadata_file_for_dataset(ds_name=ds_name,
64
- metadata_dir=md_results_dir,
65
- json_url=md_results_url)
66
-
67
-
68
- #%% Build up a list of URLs to test
69
-
70
- # Takes ~15 mins, since it has to open all the giant .json files
71
-
72
- url_to_source = {}
73
-
74
- # The first image in a dataset is disproportionately likely to be human (and thus 404),
75
- # so we pick a semi-arbitrary image that isn't the first. How about the 1000th?
76
- image_index = 1000
77
-
78
- # ds_name = list(metadata_table.keys())[0]
79
- for ds_name in metadata_table.keys():
80
-
81
- if 'bbox' in ds_name:
82
- print('Skipping bbox dataset {}'.format(ds_name))
83
- continue
84
-
85
- print('Processing dataset {}'.format(ds_name))
86
-
87
- json_filename = metadata_table[ds_name]['json_filename']
88
- with open(json_filename, 'r') as f:
89
- data = json.load(f)
90
-
91
- image_base_url = metadata_table[ds_name]['image_base_url_' + preferred_cloud]
92
- assert not image_base_url.endswith('/')
93
- # Download a test image
94
- test_image_relative_path = data['images'][image_index]['file_name']
95
- test_image_url = image_base_url + '/' + test_image_relative_path
96
-
97
- url_to_source[test_image_url] = ds_name + ' metadata'
98
-
99
- # Grab an image from the MegaDetector results
100
-
101
- # k = md_results_keys[2]
102
- for k in md_results_keys:
103
- k_fn = k + '_filename'
104
- if metadata_table[ds_name][k_fn] is not None:
105
- with open(metadata_table[ds_name][k_fn],'r') as f:
106
- md_results = json.load(f)
107
- im = md_results['images'][image_index]
108
- md_image_url = image_base_url + '/' + im['file']
109
- url_to_source[md_image_url] = ds_name + ' ' + k
110
- del md_results
111
- del data
112
-
113
- # ...for each dataset
114
-
115
-
116
- #%% Test URLs
117
-
118
- from md_utils.url_utils import test_urls
119
-
120
- urls_to_test = sorted(url_to_source.keys())
121
- urls_to_test = [fn.replace('\\','/') for fn in urls_to_test]
122
-
123
- status_codes = test_urls(urls_to_test,
124
- error_on_failure=False,
125
- pool_type='thread',
126
- n_workers=10,
127
- timeout=2.0)
128
-
129
- for i_url,url in enumerate(urls_to_test):
130
- if status_codes[i_url] != 200:
131
- print('Status {} for {} ({})'.format(
132
- status_codes[i_url],url,url_to_source[url]))