megadetector 5.0.9__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.9.dist-info/RECORD +0 -224
  214. megadetector-5.0.9.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,332 +0,0 @@
1
- """
2
-
3
- save_the_elephants_survey_B.py
4
-
5
- Convert the .csv file provided for the Save the Elephants Survey B data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- from md_visualization import visualize_db
13
- from data_management.databases import integrity_check_json_db
14
- import pandas as pd
15
- import os
16
- import glob
17
- import json
18
- import uuid
19
- import time
20
- import humanfriendly
21
- from PIL import Image
22
- import numpy as np
23
- import logging
24
- from tqdm import tqdm
25
-
26
- from md_utils.path_utils import find_images
27
-
28
- input_base = r'z:/ste_2019_08_drop'
29
- # input_base = r'/mnt/blobfuse/wildlifeblobssc/ste_2019_08_drop'
30
- input_metadata_file = os.path.join(input_base,'SURVEY B.xlsx')
31
-
32
- output_base = r'f:/save_the_elephants/survey_b'
33
- # output_base = r'/home/gramener/survey_b'
34
- output_json_file = os.path.join(output_base,'ste_survey_b.json')
35
- image_directory = os.path.join(input_base,'SURVEY B with False Triggers')
36
-
37
- os.makedirs(output_base,exist_ok=True)
38
- assert(os.path.isdir(image_directory))
39
- assert(os.path.isfile(input_metadata_file))
40
-
41
- # Handle all unstructured fields in the source data as extra fields in the annotations
42
- mapped_fields = {'No. of Animals in Photo':'num_animals',
43
- 'No. of new indiviauls (first sighting of new individual)':'num_new_individuals',
44
- 'Number Adult Males (first sighting of new individual)':'num_adult_males',
45
- 'Number Adult Females (first sighting of new individual)':'num_adult_females',
46
- 'Number Adult Unknown (first sighting of new individual)':'num_adult_unknown',
47
- 'Number Sub-adult Males (first sighting of new individual)':'num_subadult_males',
48
- 'Number Sub-adult Females (first sighting of new individual)':'num_subadult_females',
49
- 'Number Sub-adult Unknown (first sighting of new individual)':'num_subadult_unknown',
50
- 'Number Juvenile (first sighting of new individual)':'num_juvenile',
51
- 'Number Newborn (first sighting of new individual)':'num_newborn',
52
- 'Activity':'activity',
53
- 'Animal ID':'animal_id',
54
- 'Specific Notes':'notes'}
55
-
56
- # photo_type really should be an image property, but there are a few conflicts
57
- # that forced me to handle it as an annotation proprerty
58
- mapped_fields['Photo Type '] = 'photo_type'
59
-
60
- #%% Read source data
61
-
62
- input_metadata = pd.read_excel(input_metadata_file, sheet_name='9. CT Image')
63
- input_metadata = input_metadata.iloc[2:]
64
-
65
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
66
- len(input_metadata)))
67
-
68
-
69
- #%% Map filenames to rows, verify image existence
70
-
71
- #%% Map filenames to rows, verify image existence
72
-
73
- start_time = time.time()
74
-
75
- # Maps relative paths to row indices in input_metadata
76
- filenames_to_rows = {}
77
- filenames_with_multiple_annotations = []
78
- missing_images = []
79
-
80
- # Build up a map from filenames to a list of rows, checking image existence as we go
81
- for i_row, fn in tqdm(enumerate(input_metadata['Image Name']), total=len(input_metadata)):
82
- try:
83
- # Ignore directories
84
- if not fn.endswith('.JPG'):
85
- continue
86
-
87
- if fn in filenames_to_rows:
88
- filenames_with_multiple_annotations.append(fn)
89
- filenames_to_rows[fn].append(i_row)
90
- else:
91
- filenames_to_rows[fn] = [i_row]
92
- image_path = os.path.join(image_directory, fn)
93
- if not os.path.isfile(image_path):
94
- missing_images.append(image_path)
95
- except:
96
- continue
97
-
98
- elapsed = time.time() - start_time
99
-
100
- print('Finished verifying image existence for {} files in {}, found {} filenames with multiple labels, {} missing images'.format(
101
- len(filenames_to_rows), humanfriendly.format_timespan(elapsed),
102
- len(filenames_with_multiple_annotations), len(missing_images)))
103
-
104
- #%% Make sure the multiple-annotation cases make sense
105
-
106
- if False:
107
-
108
- #%%
109
-
110
- fn = filenames_with_multiple_annotations[1000]
111
- rows = filenames_to_rows[fn]
112
- assert(len(rows) > 1)
113
- for i_row in rows:
114
- print(input_metadata.iloc[i_row]['Species'])
115
-
116
- #%% Check for images that aren't included in the metadata file
117
-
118
- # Enumerate all images
119
- image_full_paths = find_images(image_directory, bRecursive=True)
120
-
121
- unannotated_images = []
122
-
123
- for iImage, image_path in tqdm(enumerate(image_full_paths),total=len(image_full_paths)):
124
- relative_path = os.path.relpath(image_path,image_directory)
125
- if relative_path not in filenames_to_rows:
126
- unannotated_images.append(relative_path)
127
-
128
- print('Finished checking {} images to make sure they\'re in the metadata, found {} unannotated images'.format(
129
- len(image_full_paths),len(unannotated_images)))
130
-
131
-
132
- #%% Create CCT dictionaries
133
-
134
- images = []
135
- annotations = []
136
- categories = []
137
-
138
- image_ids_to_images = {}
139
-
140
- category_name_to_category = {}
141
-
142
- # Force the empty category to be ID 0
143
- empty_category = {}
144
- empty_category['name'] = 'empty'
145
- empty_category['id'] = 0
146
- category_name_to_category['empty'] = empty_category
147
- categories.append(empty_category)
148
- next_category_id = 1
149
-
150
- start_time = time.time()
151
- # i_image = 0; image_name = list(filenames_to_rows.keys())[i_image]
152
- for image_name in tqdm(list(filenames_to_rows.keys())):
153
-
154
- # Example filename:
155
- #
156
- # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2\100EK113\EK001382.JPG'
157
- # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2.1\100EK113\EK001382.JPG'
158
- img_id = image_name.replace('\\','/').replace('\n','').replace('/','_').replace(' ','_')
159
-
160
- row_indices = filenames_to_rows[image_name]
161
-
162
- # i_row = row_indices[0]
163
- for i_row in row_indices:
164
-
165
- row = input_metadata.iloc[i_row]
166
- assert(row['Image Name'] == image_name)
167
- try:
168
- timestamp = row['Date'].strftime("%d/%m/%Y")
169
- except:
170
- timestamp = ""
171
- # timestamp = row['Date']
172
- station_label = row['Camera Trap Station Label']
173
- photo_type = row['Photo Type ']
174
- if isinstance(photo_type,float):
175
- photo_type = ''
176
- photo_type = photo_type.strip().lower()
177
-
178
- if img_id in image_ids_to_images:
179
-
180
- im = image_ids_to_images[img_id]
181
- assert im['file_name'] == image_name
182
- assert im['station_label'] == station_label
183
-
184
- # There are a small handful of datetime mismatches across annotations
185
- # for the same image
186
- # assert im['datetime'] == timestamp
187
- if im['datetime'] != timestamp:
188
- print('Warning: timestamp conflict for image {}: {},{}'.format(
189
- image_name,im['datetime'],timestamp))
190
-
191
- else:
192
-
193
- im = {}
194
- im['id'] = img_id
195
- im['file_name'] = image_name
196
- im['datetime'] = timestamp
197
- im['station_label'] = station_label
198
- im['photo_type'] = photo_type
199
-
200
- image_ids_to_images[img_id] = im
201
- images.append(im)
202
-
203
- species = row['Species']
204
-
205
- if (isinstance(species,float) or \
206
- (isinstance(species,str) and (len(species) == 0))):
207
- category_name = 'empty'
208
- elif species.startswith('?'):
209
- category_name = 'unknown'
210
- else:
211
- category_name = species
212
-
213
- # Special cases based on the 'photo type' field
214
- if 'vehicle' in photo_type:
215
- category_name = 'vehicle'
216
- # Various spellings of 'community'
217
- elif 'comm' in photo_type:
218
- category_name = 'human'
219
- elif 'camera' in photo_type or 'researcher' in photo_type:
220
- category_name = 'human'
221
- elif 'livestock' in photo_type:
222
- category_name = 'livestock'
223
- elif 'blank' in photo_type:
224
- category_name = 'empty'
225
- elif 'plant movement' in photo_type:
226
- category_name = 'empty'
227
-
228
- category_name = category_name.strip().lower()
229
-
230
- # Have we seen this category before?
231
- if category_name in category_name_to_category:
232
- category_id = category_name_to_category[category_name]['id']
233
- else:
234
- category_id = next_category_id
235
- category = {}
236
- category['id'] = category_id
237
- category['name'] = category_name
238
- category_name_to_category[category_name] = category
239
- categories.append(category)
240
- next_category_id += 1
241
-
242
- # Create an annotation
243
- ann = {}
244
- ann['id'] = str(uuid.uuid1())
245
- ann['image_id'] = im['id']
246
- ann['category_id'] = category_id
247
-
248
- # fieldname = list(mapped_fields.keys())[0]
249
- for fieldname in mapped_fields:
250
- target_field = mapped_fields[fieldname]
251
- val = row[fieldname]
252
- if isinstance(val,float) and np.isnan(val):
253
- val = ''
254
- else:
255
- val = str(val).strip()
256
- ann[target_field] = val
257
-
258
- annotations.append(ann)
259
-
260
- # ...for each row
261
-
262
- # ...for each image
263
-
264
- print('Finished creating CCT dictionaries in {}'.format(
265
- humanfriendly.format_timespan(elapsed)))
266
-
267
-
268
- #%% Create info struct
269
-
270
- info = {}
271
- info['year'] = 2019
272
- info['version'] = 1
273
- info['description'] = 'Save the Elephants Survey B'
274
- info['contributor'] = 'Save the Elephants'
275
-
276
-
277
- #%% Write output
278
-
279
- json_data = {}
280
- json_data['images'] = images
281
- json_data['annotations'] = annotations
282
- json_data['categories'] = categories
283
- json_data['info'] = info
284
- json.dump(json_data, open(output_json_file, 'w'), indent=2)
285
-
286
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
287
- len(images),len(annotations),len(categories)))
288
-
289
-
290
- #%% Validate output
291
-
292
- from data_management.databases import integrity_check_json_db
293
-
294
- options = integrity_check_json_db.IntegrityCheckOptions()
295
- options.baseDir = image_directory
296
- options.bCheckImageSizes = False
297
- options.bCheckImageExistence = False
298
- options.bFindUnusedImages = False
299
-
300
- sortedCategories, data = integrity_check_json_db.integrity_check_json_db(output_json_file,options)
301
-
302
-
303
- #%% Preview labels
304
-
305
- from md_visualization import visualize_db
306
- from data_management.databases import integrity_check_json_db
307
-
308
- viz_options = visualize_db.DbVizOptions()
309
- viz_options.num_to_visualize = 1000
310
- viz_options.trim_to_images_with_bboxes = False
311
- viz_options.add_search_links = True
312
- viz_options.sort_by_filename = False
313
- viz_options.parallelize_rendering = True
314
- html_output_file,image_db = visualize_db.visualize_db(db_path=output_json_file,
315
- output_dir=os.path.join(output_base,'preview'),
316
- image_base_dir=image_directory,
317
- options=viz_options)
318
- os.startfile(html_output_file)
319
-
320
-
321
- #%% Scrap
322
-
323
- if False:
324
-
325
- pass
326
-
327
- #%% Find unique photo types
328
-
329
- annotations = image_db['annotations']
330
- photo_types = set()
331
- for ann in tqdm(annotations):
332
- photo_types.add(ann['photo_type'])