megadetector 5.0.9__py3-none-any.whl → 5.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
- {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
- megadetector-5.0.11.dist-info/RECORD +5 -0
- megadetector-5.0.11.dist-info/top_level.txt +1 -0
- api/__init__.py +0 -0
- api/batch_processing/__init__.py +0 -0
- api/batch_processing/api_core/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/score.py +0 -439
- api/batch_processing/api_core/server.py +0 -294
- api/batch_processing/api_core/server_api_config.py +0 -98
- api/batch_processing/api_core/server_app_config.py +0 -55
- api/batch_processing/api_core/server_batch_job_manager.py +0 -220
- api/batch_processing/api_core/server_job_status_table.py +0 -152
- api/batch_processing/api_core/server_orchestration.py +0 -360
- api/batch_processing/api_core/server_utils.py +0 -92
- api/batch_processing/api_core_support/__init__.py +0 -0
- api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
- api/batch_processing/api_support/__init__.py +0 -0
- api/batch_processing/api_support/summarize_daily_activity.py +0 -152
- api/batch_processing/data_preparation/__init__.py +0 -0
- api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
- api/batch_processing/data_preparation/manage_video_batch.py +0 -327
- api/batch_processing/integration/digiKam/setup.py +0 -6
- api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
- api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
- api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
- api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
- api/batch_processing/postprocessing/__init__.py +0 -0
- api/batch_processing/postprocessing/add_max_conf.py +0 -64
- api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
- api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
- api/batch_processing/postprocessing/compare_batch_results.py +0 -958
- api/batch_processing/postprocessing/convert_output_format.py +0 -397
- api/batch_processing/postprocessing/load_api_results.py +0 -195
- api/batch_processing/postprocessing/md_to_coco.py +0 -310
- api/batch_processing/postprocessing/md_to_labelme.py +0 -330
- api/batch_processing/postprocessing/merge_detections.py +0 -401
- api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
- api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
- api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
- api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
- api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
- api/synchronous/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
- api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
- api/synchronous/api_core/animal_detection_api/config.py +0 -35
- api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
- api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
- api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
- api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
- api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
- api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
- api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
- api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
- api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
- api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
- api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
- api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
- api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
- api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
- api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
- api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
- api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
- api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
- api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
- api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
- api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
- api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
- api/synchronous/api_core/tests/__init__.py +0 -0
- api/synchronous/api_core/tests/load_test.py +0 -110
- classification/__init__.py +0 -0
- classification/aggregate_classifier_probs.py +0 -108
- classification/analyze_failed_images.py +0 -227
- classification/cache_batchapi_outputs.py +0 -198
- classification/create_classification_dataset.py +0 -627
- classification/crop_detections.py +0 -516
- classification/csv_to_json.py +0 -226
- classification/detect_and_crop.py +0 -855
- classification/efficientnet/__init__.py +0 -9
- classification/efficientnet/model.py +0 -415
- classification/efficientnet/utils.py +0 -610
- classification/evaluate_model.py +0 -520
- classification/identify_mislabeled_candidates.py +0 -152
- classification/json_to_azcopy_list.py +0 -63
- classification/json_validator.py +0 -695
- classification/map_classification_categories.py +0 -276
- classification/merge_classification_detection_output.py +0 -506
- classification/prepare_classification_script.py +0 -194
- classification/prepare_classification_script_mc.py +0 -228
- classification/run_classifier.py +0 -286
- classification/save_mislabeled.py +0 -110
- classification/train_classifier.py +0 -825
- classification/train_classifier_tf.py +0 -724
- classification/train_utils.py +0 -322
- data_management/__init__.py +0 -0
- data_management/annotations/__init__.py +0 -0
- data_management/annotations/annotation_constants.py +0 -34
- data_management/camtrap_dp_to_coco.py +0 -238
- data_management/cct_json_utils.py +0 -395
- data_management/cct_to_md.py +0 -176
- data_management/cct_to_wi.py +0 -289
- data_management/coco_to_labelme.py +0 -272
- data_management/coco_to_yolo.py +0 -662
- data_management/databases/__init__.py +0 -0
- data_management/databases/add_width_and_height_to_db.py +0 -33
- data_management/databases/combine_coco_camera_traps_files.py +0 -206
- data_management/databases/integrity_check_json_db.py +0 -477
- data_management/databases/subset_json_db.py +0 -115
- data_management/generate_crops_from_cct.py +0 -149
- data_management/get_image_sizes.py +0 -188
- data_management/importers/add_nacti_sizes.py +0 -52
- data_management/importers/add_timestamps_to_icct.py +0 -79
- data_management/importers/animl_results_to_md_results.py +0 -158
- data_management/importers/auckland_doc_test_to_json.py +0 -372
- data_management/importers/auckland_doc_to_json.py +0 -200
- data_management/importers/awc_to_json.py +0 -189
- data_management/importers/bellevue_to_json.py +0 -273
- data_management/importers/cacophony-thermal-importer.py +0 -796
- data_management/importers/carrizo_shrubfree_2018.py +0 -268
- data_management/importers/carrizo_trail_cam_2017.py +0 -287
- data_management/importers/cct_field_adjustments.py +0 -57
- data_management/importers/channel_islands_to_cct.py +0 -913
- data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
- data_management/importers/eMammal/eMammal_helpers.py +0 -249
- data_management/importers/eMammal/make_eMammal_json.py +0 -223
- data_management/importers/ena24_to_json.py +0 -275
- data_management/importers/filenames_to_json.py +0 -385
- data_management/importers/helena_to_cct.py +0 -282
- data_management/importers/idaho-camera-traps.py +0 -1407
- data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
- data_management/importers/jb_csv_to_json.py +0 -150
- data_management/importers/mcgill_to_json.py +0 -250
- data_management/importers/missouri_to_json.py +0 -489
- data_management/importers/nacti_fieldname_adjustments.py +0 -79
- data_management/importers/noaa_seals_2019.py +0 -181
- data_management/importers/pc_to_json.py +0 -365
- data_management/importers/plot_wni_giraffes.py +0 -123
- data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
- data_management/importers/prepare_zsl_imerit.py +0 -131
- data_management/importers/rspb_to_json.py +0 -356
- data_management/importers/save_the_elephants_survey_A.py +0 -320
- data_management/importers/save_the_elephants_survey_B.py +0 -332
- data_management/importers/snapshot_safari_importer.py +0 -758
- data_management/importers/snapshot_safari_importer_reprise.py +0 -665
- data_management/importers/snapshot_serengeti_lila.py +0 -1067
- data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
- data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
- data_management/importers/sulross_get_exif.py +0 -65
- data_management/importers/timelapse_csv_set_to_json.py +0 -490
- data_management/importers/ubc_to_json.py +0 -399
- data_management/importers/umn_to_json.py +0 -507
- data_management/importers/wellington_to_json.py +0 -263
- data_management/importers/wi_to_json.py +0 -441
- data_management/importers/zamba_results_to_md_results.py +0 -181
- data_management/labelme_to_coco.py +0 -548
- data_management/labelme_to_yolo.py +0 -272
- data_management/lila/__init__.py +0 -0
- data_management/lila/add_locations_to_island_camera_traps.py +0 -97
- data_management/lila/add_locations_to_nacti.py +0 -147
- data_management/lila/create_lila_blank_set.py +0 -557
- data_management/lila/create_lila_test_set.py +0 -151
- data_management/lila/create_links_to_md_results_files.py +0 -106
- data_management/lila/download_lila_subset.py +0 -177
- data_management/lila/generate_lila_per_image_labels.py +0 -515
- data_management/lila/get_lila_annotation_counts.py +0 -170
- data_management/lila/get_lila_image_counts.py +0 -111
- data_management/lila/lila_common.py +0 -300
- data_management/lila/test_lila_metadata_urls.py +0 -132
- data_management/ocr_tools.py +0 -874
- data_management/read_exif.py +0 -681
- data_management/remap_coco_categories.py +0 -84
- data_management/remove_exif.py +0 -66
- data_management/resize_coco_dataset.py +0 -189
- data_management/wi_download_csv_to_coco.py +0 -246
- data_management/yolo_output_to_md_output.py +0 -441
- data_management/yolo_to_coco.py +0 -676
- detection/__init__.py +0 -0
- detection/detector_training/__init__.py +0 -0
- detection/detector_training/model_main_tf2.py +0 -114
- detection/process_video.py +0 -703
- detection/pytorch_detector.py +0 -337
- detection/run_detector.py +0 -779
- detection/run_detector_batch.py +0 -1219
- detection/run_inference_with_yolov5_val.py +0 -917
- detection/run_tiled_inference.py +0 -935
- detection/tf_detector.py +0 -188
- detection/video_utils.py +0 -606
- docs/source/conf.py +0 -43
- md_utils/__init__.py +0 -0
- md_utils/azure_utils.py +0 -174
- md_utils/ct_utils.py +0 -612
- md_utils/directory_listing.py +0 -246
- md_utils/md_tests.py +0 -968
- md_utils/path_utils.py +0 -1044
- md_utils/process_utils.py +0 -157
- md_utils/sas_blob_utils.py +0 -509
- md_utils/split_locations_into_train_val.py +0 -228
- md_utils/string_utils.py +0 -92
- md_utils/url_utils.py +0 -323
- md_utils/write_html_image_list.py +0 -225
- md_visualization/__init__.py +0 -0
- md_visualization/plot_utils.py +0 -293
- md_visualization/render_images_with_thumbnails.py +0 -275
- md_visualization/visualization_utils.py +0 -1537
- md_visualization/visualize_db.py +0 -551
- md_visualization/visualize_detector_output.py +0 -406
- megadetector-5.0.9.dist-info/RECORD +0 -224
- megadetector-5.0.9.dist-info/top_level.txt +0 -8
- taxonomy_mapping/__init__.py +0 -0
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
- taxonomy_mapping/map_new_lila_datasets.py +0 -154
- taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
- taxonomy_mapping/preview_lila_taxonomy.py +0 -591
- taxonomy_mapping/retrieve_sample_image.py +0 -71
- taxonomy_mapping/simple_image_download.py +0 -218
- taxonomy_mapping/species_lookup.py +0 -834
- taxonomy_mapping/taxonomy_csv_checker.py +0 -159
- taxonomy_mapping/taxonomy_graph.py +0 -346
- taxonomy_mapping/validate_lila_category_mappings.py +0 -83
- {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
|
@@ -1,272 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
labelme_to_yolo.py
|
|
4
|
-
|
|
5
|
-
Create YOLO .txt files in a folder containing labelme .json files.
|
|
6
|
-
|
|
7
|
-
"""
|
|
8
|
-
|
|
9
|
-
#%% Imports
|
|
10
|
-
|
|
11
|
-
import os
|
|
12
|
-
import json
|
|
13
|
-
|
|
14
|
-
from multiprocessing.pool import Pool, ThreadPool
|
|
15
|
-
from functools import partial
|
|
16
|
-
|
|
17
|
-
from md_utils.path_utils import recursive_file_list
|
|
18
|
-
from tqdm import tqdm
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
#%% Main function
|
|
22
|
-
|
|
23
|
-
def labelme_file_to_yolo_file(labelme_file,
|
|
24
|
-
category_name_to_category_id,
|
|
25
|
-
yolo_file=None,
|
|
26
|
-
required_token=None,
|
|
27
|
-
overwrite_behavior='overwrite'):
|
|
28
|
-
"""
|
|
29
|
-
Convert the single .json file labelme_file to yolo format, writing the results to the text
|
|
30
|
-
file yolo_file (defaults to s/json/txt).
|
|
31
|
-
|
|
32
|
-
If required_token is not None and the dict in labelme_file does not contain the key [required_token],
|
|
33
|
-
this function no-ops (i.e., does not generate a YOLO file).
|
|
34
|
-
|
|
35
|
-
overwrite_behavior should be 'skip' or 'overwrite' (default).
|
|
36
|
-
"""
|
|
37
|
-
|
|
38
|
-
result = {}
|
|
39
|
-
result['labelme_file'] = labelme_file
|
|
40
|
-
result['status'] = 'unknown'
|
|
41
|
-
|
|
42
|
-
assert os.path.isfile(labelme_file), 'Could not find labelme .json file {}'.format(labelme_file)
|
|
43
|
-
assert labelme_file.endswith('.json'), 'Illegal labelme .json file {}'.format(labelme_file)
|
|
44
|
-
|
|
45
|
-
if yolo_file is None:
|
|
46
|
-
yolo_file = os.path.splitext(labelme_file)[0] + '.txt'
|
|
47
|
-
|
|
48
|
-
if os.path.isfile(yolo_file):
|
|
49
|
-
if overwrite_behavior == 'skip':
|
|
50
|
-
result['status'] = 'skip-exists'
|
|
51
|
-
return result
|
|
52
|
-
else:
|
|
53
|
-
assert overwrite_behavior == 'overwrite', \
|
|
54
|
-
'Unrecognized overwrite behavior {}'.format(overwrite_behavior)
|
|
55
|
-
|
|
56
|
-
with open(labelme_file,'r') as f:
|
|
57
|
-
labelme_data = json.load(f)
|
|
58
|
-
|
|
59
|
-
if required_token is not None and required_token not in labelme_data:
|
|
60
|
-
result['status'] = 'skip-no-required-token'
|
|
61
|
-
return result
|
|
62
|
-
|
|
63
|
-
im_height = labelme_data['imageHeight']
|
|
64
|
-
im_width = labelme_data['imageWidth']
|
|
65
|
-
|
|
66
|
-
yolo_lines = []
|
|
67
|
-
|
|
68
|
-
for shape in labelme_data['shapes']:
|
|
69
|
-
|
|
70
|
-
assert shape['shape_type'] == 'rectangle', \
|
|
71
|
-
'I only know how to convert rectangles to YOLO format'
|
|
72
|
-
assert shape['label'] in category_name_to_category_id, \
|
|
73
|
-
'Category {} not in category mapping'.format(shape['label'])
|
|
74
|
-
assert len(shape['points']) == 2, 'Illegal rectangle'
|
|
75
|
-
category_id = category_name_to_category_id[shape['label']]
|
|
76
|
-
|
|
77
|
-
p0 = shape['points'][0]
|
|
78
|
-
p1 = shape['points'][1]
|
|
79
|
-
|
|
80
|
-
# Labelme: [[x0,y0],[x1,y1]] (arbitrarily sorted) (absolute coordinates)
|
|
81
|
-
#
|
|
82
|
-
# YOLO: [class, x_center, y_center, width, height] (normalized coordinates)
|
|
83
|
-
minx_abs = min(p0[0],p1[0])
|
|
84
|
-
maxx_abs = max(p0[0],p1[0])
|
|
85
|
-
miny_abs = min(p0[1],p1[1])
|
|
86
|
-
maxy_abs = max(p0[1],p1[1])
|
|
87
|
-
|
|
88
|
-
if (minx_abs >= (im_width-1)) or (maxx_abs <= 0) or \
|
|
89
|
-
(miny_abs >= (im_height-1)) or (maxy_abs <= 0):
|
|
90
|
-
print('Skipping invalid shape in {}'.format(labelme_file))
|
|
91
|
-
continue
|
|
92
|
-
|
|
93
|
-
# Clip to [0,1]... it's not obvious that the YOLO format doesn't allow bounding
|
|
94
|
-
# boxes to extend outside the image, but YOLOv5 and YOLOv8 get sad about boxes
|
|
95
|
-
# that extend outside the image.
|
|
96
|
-
maxx_abs = min(maxx_abs,im_width-1)
|
|
97
|
-
maxy_abs = min(maxy_abs,im_height-1)
|
|
98
|
-
minx_abs = max(minx_abs,0.0)
|
|
99
|
-
miny_abs = max(miny_abs,0.0)
|
|
100
|
-
|
|
101
|
-
minx_rel = minx_abs / (im_width-1)
|
|
102
|
-
maxx_rel = maxx_abs / (im_width-1)
|
|
103
|
-
miny_rel = miny_abs / (im_height-1)
|
|
104
|
-
maxy_rel = maxy_abs / (im_height-1)
|
|
105
|
-
|
|
106
|
-
assert maxx_rel >= minx_rel
|
|
107
|
-
assert maxy_rel >= miny_rel
|
|
108
|
-
|
|
109
|
-
xcenter_rel = (maxx_rel + minx_rel) / 2.0
|
|
110
|
-
ycenter_rel = (maxy_rel + miny_rel) / 2.0
|
|
111
|
-
w_rel = maxx_rel - minx_rel
|
|
112
|
-
h_rel = maxy_rel - miny_rel
|
|
113
|
-
|
|
114
|
-
yolo_line = '{} {:.3f} {:.3f} {:.3f} {:.3f}'.format(category_id,
|
|
115
|
-
xcenter_rel, ycenter_rel, w_rel, h_rel)
|
|
116
|
-
yolo_lines.append(yolo_line)
|
|
117
|
-
|
|
118
|
-
# ...for each shape
|
|
119
|
-
|
|
120
|
-
with open(yolo_file,'w') as f:
|
|
121
|
-
for s in yolo_lines:
|
|
122
|
-
f.write(s + '\n')
|
|
123
|
-
|
|
124
|
-
result['status'] = 'converted'
|
|
125
|
-
return result
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
def labelme_folder_to_yolo(labelme_folder,
|
|
129
|
-
category_name_to_category_id=None,
|
|
130
|
-
required_token=None,
|
|
131
|
-
overwrite_behavior='overwrite',
|
|
132
|
-
relative_filenames_to_convert=None,
|
|
133
|
-
n_workers=1,
|
|
134
|
-
use_threads=True):
|
|
135
|
-
"""
|
|
136
|
-
Given a folder with images and labelme .json files, convert the .json files
|
|
137
|
-
to YOLO .txt format. If category_name_to_category_id is None, first reads
|
|
138
|
-
all the labels in the folder to build a zero-indexed name --> ID mapping.
|
|
139
|
-
|
|
140
|
-
If required_token is not None and a labelme_file does not contain the key [required_token],
|
|
141
|
-
it won't be converted. Typically used to specify a field that indicates which files have
|
|
142
|
-
been reviewed.
|
|
143
|
-
|
|
144
|
-
If relative_filenames_to_convert is not None, this should be a list of .json (not image)
|
|
145
|
-
files that should get converted, relative to the base folder.
|
|
146
|
-
|
|
147
|
-
overwrite_behavior should be 'skip' or 'overwrite' (default).
|
|
148
|
-
|
|
149
|
-
returns a dict with:
|
|
150
|
-
'category_name_to_category_id', whether it was passed in or constructed
|
|
151
|
-
'image_results': a list of results for each image (converted, skipped, error)
|
|
152
|
-
|
|
153
|
-
"""
|
|
154
|
-
|
|
155
|
-
if relative_filenames_to_convert is not None:
|
|
156
|
-
labelme_files_relative = relative_filenames_to_convert
|
|
157
|
-
assert all([fn.endswith('.json') for fn in labelme_files_relative]), \
|
|
158
|
-
'relative_filenames_to_convert contains non-json files'
|
|
159
|
-
else:
|
|
160
|
-
labelme_files_relative = recursive_file_list(labelme_folder,return_relative_paths=True)
|
|
161
|
-
labelme_files_relative = [fn for fn in labelme_files_relative if fn.endswith('.json')]
|
|
162
|
-
|
|
163
|
-
if required_token is None:
|
|
164
|
-
valid_labelme_files_relative = labelme_files_relative
|
|
165
|
-
else:
|
|
166
|
-
valid_labelme_files_relative = []
|
|
167
|
-
|
|
168
|
-
# fn_relative = labelme_files_relative[-1]
|
|
169
|
-
for fn_relative in labelme_files_relative:
|
|
170
|
-
|
|
171
|
-
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
172
|
-
|
|
173
|
-
with open(fn_abs,'r') as f:
|
|
174
|
-
labelme_data = json.load(f)
|
|
175
|
-
if required_token not in labelme_data:
|
|
176
|
-
continue
|
|
177
|
-
|
|
178
|
-
valid_labelme_files_relative.append(fn_relative)
|
|
179
|
-
|
|
180
|
-
print('{} of {} files are valid'.format(len(valid_labelme_files_relative),
|
|
181
|
-
len(labelme_files_relative)))
|
|
182
|
-
|
|
183
|
-
del labelme_files_relative
|
|
184
|
-
|
|
185
|
-
if category_name_to_category_id is None:
|
|
186
|
-
|
|
187
|
-
category_name_to_category_id = {}
|
|
188
|
-
|
|
189
|
-
for fn_relative in valid_labelme_files_relative:
|
|
190
|
-
|
|
191
|
-
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
192
|
-
with open(fn_abs,'r') as f:
|
|
193
|
-
labelme_data = json.load(f)
|
|
194
|
-
for shape in labelme_data['shapes']:
|
|
195
|
-
label = shape['label']
|
|
196
|
-
if label not in category_name_to_category_id:
|
|
197
|
-
category_name_to_category_id[label] = len(category_name_to_category_id)
|
|
198
|
-
# ...for each file
|
|
199
|
-
|
|
200
|
-
# ...if we need to build a category mapping
|
|
201
|
-
|
|
202
|
-
image_results = []
|
|
203
|
-
|
|
204
|
-
n_workers = min(n_workers,len(valid_labelme_files_relative))
|
|
205
|
-
|
|
206
|
-
if n_workers <= 1:
|
|
207
|
-
for fn_relative in tqdm(valid_labelme_files_relative):
|
|
208
|
-
|
|
209
|
-
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
210
|
-
image_result = labelme_file_to_yolo_file(fn_abs,
|
|
211
|
-
category_name_to_category_id,
|
|
212
|
-
yolo_file=None,
|
|
213
|
-
required_token=required_token,
|
|
214
|
-
overwrite_behavior=overwrite_behavior)
|
|
215
|
-
image_results.append(image_result)
|
|
216
|
-
# ...for each file
|
|
217
|
-
else:
|
|
218
|
-
if use_threads:
|
|
219
|
-
pool = ThreadPool(n_workers)
|
|
220
|
-
else:
|
|
221
|
-
pool = Pool(n_workers)
|
|
222
|
-
|
|
223
|
-
valid_labelme_files_abs = [os.path.join(labelme_folder,fn_relative) for \
|
|
224
|
-
fn_relative in valid_labelme_files_relative]
|
|
225
|
-
|
|
226
|
-
image_results = list(tqdm(pool.imap(
|
|
227
|
-
partial(labelme_file_to_yolo_file,
|
|
228
|
-
category_name_to_category_id=category_name_to_category_id,
|
|
229
|
-
yolo_file=None,
|
|
230
|
-
required_token=required_token,
|
|
231
|
-
overwrite_behavior=overwrite_behavior),
|
|
232
|
-
valid_labelme_files_abs),
|
|
233
|
-
total=len(valid_labelme_files_abs)))
|
|
234
|
-
|
|
235
|
-
assert len(valid_labelme_files_relative) == len(image_results)
|
|
236
|
-
|
|
237
|
-
print('Converted {} labelme .json files to YOLO'.format(
|
|
238
|
-
len(valid_labelme_files_relative)))
|
|
239
|
-
|
|
240
|
-
labelme_to_yolo_results = {}
|
|
241
|
-
labelme_to_yolo_results['category_name_to_category_id'] = category_name_to_category_id
|
|
242
|
-
labelme_to_yolo_results['image_results'] = image_results
|
|
243
|
-
|
|
244
|
-
return labelme_to_yolo_results
|
|
245
|
-
|
|
246
|
-
# ...def labelme_folder_to_yolo(...)
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
#%% Interactive driver
|
|
250
|
-
|
|
251
|
-
if False:
|
|
252
|
-
|
|
253
|
-
pass
|
|
254
|
-
|
|
255
|
-
#%%
|
|
256
|
-
|
|
257
|
-
labelme_file = os.path.expanduser('~/tmp/labels/x.json')
|
|
258
|
-
required_token = 'saved_by_labelme'
|
|
259
|
-
category_name_to_category_id = {'animal':0}
|
|
260
|
-
labelme_folder = os.path.expanduser('~/tmp/labels')
|
|
261
|
-
|
|
262
|
-
#%%
|
|
263
|
-
|
|
264
|
-
category_name_to_category_id = \
|
|
265
|
-
labelme_folder_to_yolo(labelme_folder,
|
|
266
|
-
category_name_to_category_id=category_name_to_category_id,
|
|
267
|
-
required_token=required_token,
|
|
268
|
-
overwrite_behavior='overwrite')
|
|
269
|
-
|
|
270
|
-
#%% Command-line driver
|
|
271
|
-
|
|
272
|
-
# TODO
|
data_management/lila/__init__.py
DELETED
|
File without changes
|
|
@@ -1,97 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
add_locations_to_island_camera_traps.py
|
|
4
|
-
|
|
5
|
-
The Island Conservation Camera Traps dataset had unique camera identifiers embedded
|
|
6
|
-
in filenames, but not in the proper metadata fields. This script copies that information
|
|
7
|
-
to metadata.
|
|
8
|
-
|
|
9
|
-
"""
|
|
10
|
-
|
|
11
|
-
#%% Imports and constants
|
|
12
|
-
|
|
13
|
-
import os
|
|
14
|
-
import json
|
|
15
|
-
from tqdm import tqdm
|
|
16
|
-
|
|
17
|
-
input_fn = os.path.expanduser('~/lila/metadata/island_conservation.json')
|
|
18
|
-
output_fn = os.path.expanduser('~/tmp/island_conservation.json')
|
|
19
|
-
preview_folder = os.path.expanduser('~/tmp/island_conservation_preview')
|
|
20
|
-
image_directory = os.path.expanduser('~/data/icct/public/')
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
#%% Read input file
|
|
24
|
-
|
|
25
|
-
with open(input_fn,'r') as f:
|
|
26
|
-
d = json.load(f)
|
|
27
|
-
|
|
28
|
-
d['info']
|
|
29
|
-
d['info']['version'] = '1.01'
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
#%% Find locations
|
|
33
|
-
|
|
34
|
-
images = d['images']
|
|
35
|
-
|
|
36
|
-
locations = set()
|
|
37
|
-
|
|
38
|
-
for i_image,im in tqdm(enumerate(images),total=len(images)):
|
|
39
|
-
tokens_fn = im['file_name'].split('/')
|
|
40
|
-
tokens_id = im['id'].split('_')
|
|
41
|
-
assert tokens_fn[0] == tokens_id[0]
|
|
42
|
-
assert tokens_fn[1] == tokens_id[1]
|
|
43
|
-
location = tokens_fn[0] + '_' + tokens_fn[1]
|
|
44
|
-
im['location'] = location
|
|
45
|
-
locations.add(location)
|
|
46
|
-
|
|
47
|
-
locations = sorted(list(locations))
|
|
48
|
-
|
|
49
|
-
for s in locations:
|
|
50
|
-
print(s)
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
#%% Write output file
|
|
54
|
-
|
|
55
|
-
with open(output_fn,'w') as f:
|
|
56
|
-
json.dump(d,f,indent=1)
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
#%% Validate .json files
|
|
60
|
-
|
|
61
|
-
from data_management.databases import integrity_check_json_db
|
|
62
|
-
|
|
63
|
-
options = integrity_check_json_db.IntegrityCheckOptions()
|
|
64
|
-
options.baseDir = image_directory
|
|
65
|
-
options.bCheckImageSizes = False
|
|
66
|
-
options.bCheckImageExistence = True
|
|
67
|
-
options.bFindUnusedImages = True
|
|
68
|
-
|
|
69
|
-
sorted_categories, data, error_info = integrity_check_json_db.integrity_check_json_db(output_fn, options)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
#%% Preview labels
|
|
73
|
-
|
|
74
|
-
from md_visualization import visualize_db
|
|
75
|
-
|
|
76
|
-
viz_options = visualize_db.DbVizOptions()
|
|
77
|
-
viz_options.num_to_visualize = 2000
|
|
78
|
-
viz_options.trim_to_images_with_bboxes = False
|
|
79
|
-
viz_options.add_search_links = False
|
|
80
|
-
viz_options.sort_by_filename = False
|
|
81
|
-
viz_options.parallelize_rendering = True
|
|
82
|
-
viz_options.classes_to_exclude = ['test']
|
|
83
|
-
html_output_file, image_db = visualize_db.visualize_db(db_path=output_fn,
|
|
84
|
-
output_dir=preview_folder,
|
|
85
|
-
image_base_dir=image_directory,
|
|
86
|
-
options=viz_options)
|
|
87
|
-
|
|
88
|
-
from md_utils import path_utils
|
|
89
|
-
path_utils.open_file(html_output_file)
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
#%% Zip output file
|
|
93
|
-
|
|
94
|
-
from md_utils.path_utils import zip_file
|
|
95
|
-
|
|
96
|
-
zip_file(output_fn, verbose=True)
|
|
97
|
-
assert os.path.isfile(output_fn + '.zip')
|
|
@@ -1,147 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
add_locations_to_nacti.py
|
|
4
|
-
|
|
5
|
-
As of 10.2023, NACTI metadata only has very coarse location information (e.g. "Florida"),
|
|
6
|
-
but camera IDs are embedded in filenames. This script pulls that information from filenames
|
|
7
|
-
and adds it to metadata.
|
|
8
|
-
|
|
9
|
-
"""
|
|
10
|
-
|
|
11
|
-
#%% Imports and constants
|
|
12
|
-
|
|
13
|
-
import os
|
|
14
|
-
import json
|
|
15
|
-
import shutil
|
|
16
|
-
|
|
17
|
-
from tqdm import tqdm
|
|
18
|
-
from collections import defaultdict
|
|
19
|
-
|
|
20
|
-
input_file = r'd:\lila\nacti\nacti_metadata.json.1.13\nacti_metadata.json'
|
|
21
|
-
output_file = r'g:\temp\nacti_metadata.1.14.json'
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
#%% Read metadata
|
|
25
|
-
|
|
26
|
-
with open(input_file,'r') as f:
|
|
27
|
-
d = json.load(f)
|
|
28
|
-
|
|
29
|
-
assert d['info']['version'] == 1.13
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
#%% Map images to locations (according to the metadata)
|
|
33
|
-
|
|
34
|
-
file_name_to_original_location = {}
|
|
35
|
-
|
|
36
|
-
# im = dataset_labels['images'][0]
|
|
37
|
-
for im in tqdm(d['images']):
|
|
38
|
-
file_name_to_original_location[im['file_name']] = im['location']
|
|
39
|
-
|
|
40
|
-
original_locations = set(file_name_to_original_location.values())
|
|
41
|
-
|
|
42
|
-
print('Found {} locations in the original metadata:'.format(len(original_locations)))
|
|
43
|
-
for loc in original_locations:
|
|
44
|
-
print('[{}]'.format(loc))
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
#%% Map images to new locations
|
|
48
|
-
|
|
49
|
-
def path_to_location(relative_path):
|
|
50
|
-
|
|
51
|
-
relative_path = relative_path.replace('\\','/')
|
|
52
|
-
if relative_path in file_name_to_original_location:
|
|
53
|
-
location_name = file_name_to_original_location[relative_path]
|
|
54
|
-
if location_name == 'San Juan Mntns, Colorado':
|
|
55
|
-
# "part0/sub000/2010_Unit150_Ivan097_img0003.jpg"
|
|
56
|
-
tokens = relative_path.split('/')[-1].split('_')
|
|
57
|
-
assert tokens[1].startswith('Unit')
|
|
58
|
-
location_name = 'sanjuan_{}_{}_{}'.format(tokens[0],tokens[1],tokens[2])
|
|
59
|
-
elif location_name == 'Lebec, California':
|
|
60
|
-
# "part0/sub035/CA-03_08_13_2015_CA-03_0009738.jpg"
|
|
61
|
-
tokens = relative_path.split('/')[-1].split('_')
|
|
62
|
-
assert tokens[0].startswith('CA-') or tokens[0].startswith('TAG-')
|
|
63
|
-
location_name = 'lebec_{}'.format(tokens[0])
|
|
64
|
-
elif location_name == 'Archbold, FL':
|
|
65
|
-
# "part1/sub110/FL-01_01_25_2016_FL-01_0040421.jpg"
|
|
66
|
-
tokens = relative_path.split('/')[-1].split('_')
|
|
67
|
-
assert tokens[0].startswith('FL-')
|
|
68
|
-
location_name = 'archbold_{}'.format(tokens[0])
|
|
69
|
-
else:
|
|
70
|
-
assert location_name == ''
|
|
71
|
-
tokens = relative_path.split('/')[-1].split('_')
|
|
72
|
-
if tokens[0].startswith('CA-') or tokens[0].startswith('TAG-') or tokens[0].startswith('FL-'):
|
|
73
|
-
location_name = '{}'.format(tokens[0])
|
|
74
|
-
|
|
75
|
-
else:
|
|
76
|
-
|
|
77
|
-
location_name = 'unknown'
|
|
78
|
-
|
|
79
|
-
# print('Returning location {} for file {}'.format(location_name,relative_path))
|
|
80
|
-
|
|
81
|
-
return location_name
|
|
82
|
-
|
|
83
|
-
file_name_to_updated_location = {}
|
|
84
|
-
updated_location_to_count = defaultdict(int)
|
|
85
|
-
for im in tqdm(d['images']):
|
|
86
|
-
|
|
87
|
-
updated_location = path_to_location(im['file_name'])
|
|
88
|
-
file_name_to_updated_location[im['file_name']] = updated_location
|
|
89
|
-
updated_location_to_count[updated_location] += 1
|
|
90
|
-
|
|
91
|
-
updated_location_to_count = {k: v for k, v in sorted(updated_location_to_count.items(),
|
|
92
|
-
key=lambda item: item[1],
|
|
93
|
-
reverse=True)}
|
|
94
|
-
|
|
95
|
-
updated_locations = set(file_name_to_updated_location.values())
|
|
96
|
-
|
|
97
|
-
print('Found {} updated locations in the original metadata:'.format(len(updated_locations)))
|
|
98
|
-
for loc in updated_location_to_count:
|
|
99
|
-
print('{}: {}'.format(loc,updated_location_to_count[loc]))
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
#%% Re-write metadata
|
|
103
|
-
|
|
104
|
-
for im in d['images']:
|
|
105
|
-
im['location'] = file_name_to_updated_location[im['file_name']]
|
|
106
|
-
d['info']['version'] = 1.14
|
|
107
|
-
|
|
108
|
-
with open(output_file,'w') as f:
|
|
109
|
-
json.dump(d,f,indent=1)
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
#%% For each location, sample some random images to make sure they look consistent
|
|
113
|
-
|
|
114
|
-
input_base = r'd:\lila\nacti-unzipped'
|
|
115
|
-
assert os.path.isdir(input_base)
|
|
116
|
-
|
|
117
|
-
location_to_images = defaultdict(list)
|
|
118
|
-
|
|
119
|
-
for im in d['images']:
|
|
120
|
-
location_to_images[im['location']].append(im)
|
|
121
|
-
|
|
122
|
-
n_to_sample = 10
|
|
123
|
-
import random
|
|
124
|
-
random.seed(0)
|
|
125
|
-
sampling_folder_base = r'g:\temp\nacti_samples'
|
|
126
|
-
|
|
127
|
-
for location in tqdm(location_to_images):
|
|
128
|
-
|
|
129
|
-
images_this_location = location_to_images[location]
|
|
130
|
-
if len(images_this_location) > n_to_sample:
|
|
131
|
-
images_this_location = random.sample(images_this_location,n_to_sample)
|
|
132
|
-
|
|
133
|
-
for i_image,im in enumerate(images_this_location):
|
|
134
|
-
|
|
135
|
-
fn_relative = im['file_name']
|
|
136
|
-
source_fn_abs = os.path.join(input_base,fn_relative)
|
|
137
|
-
assert os.path.isfile(source_fn_abs)
|
|
138
|
-
ext = os.path.splitext(fn_relative)[1]
|
|
139
|
-
target_fn_abs = os.path.join(sampling_folder_base,'{}/{}'.format(
|
|
140
|
-
location,'image_{}{}'.format(str(i_image).zfill(2),ext)))
|
|
141
|
-
os.makedirs(os.path.dirname(target_fn_abs),exist_ok=True)
|
|
142
|
-
shutil.copyfile(source_fn_abs,target_fn_abs)
|
|
143
|
-
|
|
144
|
-
# ...for each image
|
|
145
|
-
|
|
146
|
-
# ...for each location
|
|
147
|
-
|