megadetector 5.0.9__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.9.dist-info/RECORD +0 -224
  214. megadetector-5.0.9.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.9.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,115 +0,0 @@
1
- """
2
-
3
- subset_json_db.py
4
-
5
- Select a subset of images (and associated annotations) from a .json file in COCO
6
- Camera Traps format based on a string query.
7
-
8
- To subset .json files in the MegaDetector output format, see
9
- subset_json_detector_output.py.
10
-
11
- """
12
-
13
- #%% Constants and imports
14
-
15
- import sys
16
- import json
17
- import argparse
18
-
19
- from tqdm import tqdm
20
-
21
-
22
- #%% Functions
23
-
24
- def subset_json_db(input_json, query, output_json=None, ignore_case=False):
25
- """
26
- Given a json file (or dictionary already loaded from a json file), produce a new
27
- database containing only the images whose filenames contain the string 'query',
28
- optionally writing that DB output to a new json file.
29
-
30
- Args:
31
- input_json (str): COCO Camera Traps .json file to load, or an already-loaded dict
32
- query (str): string to query for, only include images in the output whose filenames
33
- contain this string.
34
- output_json (str, optional): file to write the resulting .json file to
35
- ignore_case (bool, optional): whether to perform a case-insensitive search for [query]
36
-
37
- Returns:
38
- dict: possibly-modified CCT dictionary
39
- """
40
-
41
- if ignore_case:
42
- query = query.lower()
43
-
44
- # Load the input file if necessary
45
- if isinstance(input_json,str):
46
- print('Loading input .json...')
47
- with open(input_json, 'r') as f:
48
- data = json.load(f)
49
- else:
50
- data = input_json
51
-
52
- # Find images matching the query
53
- images = []
54
- image_ids = set()
55
-
56
- for im in tqdm(data['images']):
57
- fn = im['file_name']
58
- if ignore_case:
59
- fn = fn.lower()
60
- if query in fn:
61
- images.append(im)
62
- image_ids.add(im['id'])
63
-
64
- # Find annotations referring to those images
65
- annotations = []
66
-
67
- for ann in tqdm(data['annotations']):
68
- if ann['image_id'] in image_ids:
69
- annotations.append(ann)
70
-
71
- output_data = data
72
- output_data['images'] = images
73
- output_data['annotations'] = annotations
74
-
75
- # Write the output file if requested
76
- if output_json is not None:
77
- print('Writing output .json...')
78
- json.dump(output_data,open(output_json,'w'),indent=1)
79
-
80
- return output_data
81
-
82
-
83
- #%% Interactive driver
84
-
85
- if False:
86
-
87
- #%%
88
-
89
- input_json = r"e:\Statewide_wolf_container\idfg_20190409.json"
90
- output_json = r"e:\Statewide_wolf_container\idfg_20190409_clearcreek.json"
91
- query = 'clearcreek'
92
- ignore_case = True
93
- db = subset_json_db(input_json, query, output_json, ignore_case)
94
-
95
-
96
- #%% Command-line driver
97
-
98
- def main():
99
-
100
- parser = argparse.ArgumentParser()
101
- parser.add_argument('input_json', type=str, help='Input file (a COCO Camera Traps .json file)')
102
- parser.add_argument('output_json', type=str, help='Output file')
103
- parser.add_argument('query', type=str, help='Filename query')
104
- parser.add_argument('--ignore_case', action='store_true')
105
-
106
- if len(sys.argv[1:]) == 0:
107
- parser.print_help()
108
- parser.exit()
109
-
110
- args = parser.parse_args()
111
-
112
- subset_json_db(args.input_json,args.query,args.output_json,args.ignore_case)
113
-
114
- if __name__ == '__main__':
115
- main()
@@ -1,149 +0,0 @@
1
- """
2
-
3
- generate_crops_from_cct.py
4
-
5
- Given a .json file in COCO Camera Traps format, creates a cropped image for
6
- each bounding box.
7
-
8
- """
9
-
10
- #%% Imports and constants
11
-
12
- import os
13
- import json
14
-
15
- from tqdm import tqdm
16
- from PIL import Image
17
-
18
-
19
- #%% Functions
20
-
21
- def generate_crops_from_cct(cct_file,image_dir,output_dir,padding=0,flat_output=True):
22
- """
23
- Given a .json file in COCO Camera Traps format, creates a cropped image for
24
- each bounding box.
25
-
26
- Args:
27
- cct_file (str): the COCO .json file from which we should load data
28
- image_dir (str): the folder where the images live; filenames in the .json
29
- file should be relative to this folder
30
- output_dir (str): the folder where we should write cropped images
31
- padding (float, optional): number of pixels we should expand each box before
32
- cropping
33
- flat_output (bool, optional): if False, folder structure will be preserved
34
- in the output, e.g. the image a/b/c/d.jpg will result in image files
35
- in the output folder called, e.g., a/b/c/d_crop_000_id_12345.jpg. If
36
- [flat_output] is True, the corresponding output image will be
37
- a_b_c_d_crop_000_id_12345.jpg.
38
- """
39
-
40
- ## Read and validate input
41
-
42
- assert os.path.isfile(cct_file)
43
- assert os.path.isdir(image_dir)
44
- os.makedirs(output_dir,exist_ok=True)
45
-
46
- with open(cct_file,'r') as f:
47
- d = json.load(f)
48
-
49
-
50
- ## Find annotations for each image
51
-
52
- from collections import defaultdict
53
-
54
- # This actually maps image IDs to annotations, but only to annotations
55
- # containing boxes
56
- image_id_to_boxes = defaultdict(list)
57
-
58
- n_boxes = 0
59
-
60
- for ann in d['annotations']:
61
- if 'bbox' in ann:
62
- image_id_to_boxes[ann['image_id']].append(ann)
63
- n_boxes += 1
64
-
65
- print('Found {} boxes in {} annotations for {} images'.format(
66
- n_boxes,len(d['annotations']),len(d['images'])))
67
-
68
-
69
- ## Generate crops
70
-
71
- # im = d['images'][0]
72
- for im in tqdm(d['images']):
73
-
74
- input_image_fn = os.path.join(os.path.join(image_dir,im['file_name']))
75
- assert os.path.isfile(input_image_fn), 'Could not find image {}'.format(input_image_fn)
76
-
77
- if im['id'] not in image_id_to_boxes:
78
- continue
79
-
80
- annotations_this_image = image_id_to_boxes[im['id']]
81
-
82
- # Load the image
83
- img = Image.open(input_image_fn)
84
-
85
- # Generate crops
86
- # i_ann = 0; ann = annotations_this_image[i_ann]
87
- for i_ann,ann in enumerate(annotations_this_image):
88
-
89
- # x/y/w/h, origin at the upper-left
90
- bbox = ann['bbox']
91
-
92
- xmin = bbox[0]
93
- ymin = bbox[1]
94
- xmax = xmin + bbox[2]
95
- ymax = ymin + bbox[3]
96
-
97
- xmin -= padding / 2
98
- ymin -= padding / 2
99
- xmax += padding / 2
100
- ymax += padding / 2
101
-
102
- xmin = max(xmin,0)
103
- ymin = max(ymin,0)
104
- xmax = min(xmax,img.width-1)
105
- ymax = min(ymax,img.height-1)
106
-
107
- crop = img.crop(box=[xmin, ymin, xmax, ymax])
108
-
109
- output_fn = os.path.splitext(im['file_name'])[0].replace('\\','/')
110
- if flat_output:
111
- output_fn = output_fn.replace('/','_')
112
- output_fn = output_fn + '_crop' + str(i_ann).zfill(3) + '_id_' + ann['id']
113
- output_fn = output_fn + '.jpg'
114
-
115
- output_full_path = os.path.join(output_dir,output_fn)
116
-
117
- if not flat_output:
118
- os.makedirs(os.path.dirname(output_full_path),exist_ok=True)
119
-
120
- crop.save(output_full_path)
121
-
122
- # ...for each box
123
-
124
- # ...for each image
125
-
126
- # ...generate_crops_from_cct()
127
-
128
-
129
- #%% Interactive driver
130
-
131
- if False:
132
-
133
- pass
134
-
135
- #%%
136
-
137
- cct_file = os.path.expanduser('~/data/noaa/noaa_estuary_fish.json')
138
- image_dir = os.path.expanduser('~/data/noaa/JPEGImages')
139
- padding = 50
140
- flat_output = True
141
- output_dir = '/home/user/tmp/noaa-fish-crops'
142
-
143
- generate_crops_from_cct(cct_file,image_dir,output_dir,padding,flat_output=True)
144
- files = os.listdir(output_dir)
145
-
146
-
147
- #%% Command-line driver
148
-
149
- # TODO
@@ -1,188 +0,0 @@
1
- """
2
-
3
- get_image_sizes.py
4
-
5
- Given a json-formatted list of image filenames, retrieves the width and height of
6
- every image, optionally writing the results to a new .json file.
7
-
8
- """
9
-
10
- #%% Constants and imports
11
-
12
- import argparse
13
- import json
14
- import os
15
- from PIL import Image
16
- import sys
17
-
18
- from multiprocessing.pool import ThreadPool
19
- from multiprocessing.pool import Pool
20
- from functools import partial
21
- from tqdm import tqdm
22
-
23
- from md_utils.path_utils import find_images
24
-
25
- image_base = ''
26
- default_n_threads = 1
27
- use_threads = False
28
-
29
-
30
- #%% Processing functions
31
-
32
- def _get_image_size(image_path,image_prefix=None):
33
- """
34
- Support function to get the size of a single image. Returns a (path,w,h) tuple.
35
- w and h will be -1 if the image fails to load.
36
- """
37
-
38
- if image_prefix is not None:
39
- full_path = os.path.join(image_prefix,image_path)
40
- else:
41
- full_path = image_path
42
-
43
- # Is this image on disk?
44
- if not os.path.isfile(full_path):
45
- print('Could not find image {}'.format(full_path))
46
- return (image_path,-1,-1)
47
-
48
- try:
49
- pil_im = Image.open(full_path)
50
- w = pil_im.width
51
- h = pil_im.height
52
- return (image_path,w,h)
53
- except Exception as e:
54
- print('Error reading image {}: {}'.format(full_path,str(e)))
55
- return (image_path,-1,-1)
56
-
57
-
58
- def get_image_sizes(filenames,image_prefix=None,output_file=None,
59
- n_workers=default_n_threads,use_threads=True,
60
- recursive=True):
61
- """
62
- Gets the width and height of all images in [filenames], which can be:
63
-
64
- * A .json-formatted file containing list of strings
65
- * A folder
66
- * A list of files
67
-
68
- ...returning a list of (path,w,h) tuples, and optionally writing the results to [output_file].
69
-
70
- Args:
71
- filenames (str or list): the image filenames for which we should retrieve sizes,
72
- can be the name of a .json-formatted file containing list of strings, a folder
73
- in which we should enumerate images, or a list of files.
74
- image_prefix (str, optional): optional prefix to add to images to get to full paths;
75
- useful when [filenames] contains relative files, in which case [image_prefix] is the
76
- base folder for the source images.
77
- output_file (str, optional): a .json file to write the imgae sizes
78
- n_workers (int, optional): number of parallel workers to use, set to <=1 to
79
- disable parallelization
80
- use_threads (bool, optional): whether to use threads (True) or processes (False)
81
- for parallelization; not relevant if [n_workers] <= 1
82
- recursive (bool, optional): only relevant if [filenames] is actually a folder,
83
- determines whether image enumeration within that folder will be recursive
84
-
85
- Returns:
86
- list: list of (path,w,h) tuples
87
- """
88
-
89
- if output_file is not None:
90
- assert os.path.isdir(os.path.dirname(output_file)), \
91
- 'Illegal output file {}, parent folder does not exist'.format(output_file)
92
-
93
- if isinstance(filenames,str) and os.path.isfile(filenames):
94
- with open(filenames,'r') as f:
95
- filenames = json.load(f)
96
- filenames = [s.strip() for s in filenames]
97
- elif isinstance(filenames,str) and os.path.isdir(filenames):
98
- filenames = find_images(filenames,recursive=recursive,
99
- return_relative_paths=False,convert_slashes=True)
100
- else:
101
- assert isinstance(filenames,list)
102
-
103
- if n_workers <= 1:
104
-
105
- all_results = []
106
- for i_file,fn in tqdm(enumerate(filenames),total=len(filenames)):
107
- all_results.append(_get_image_size(fn,image_prefix=image_prefix))
108
-
109
- else:
110
-
111
- print('Creating a pool with {} workers'.format(n_workers))
112
- if use_threads:
113
- pool = ThreadPool(n_workers)
114
- else:
115
- pool = Pool(n_workers)
116
- # all_results = list(tqdm(pool.imap(process_image, filenames), total=len(filenames)))
117
- all_results = list(tqdm(pool.imap(
118
- partial(_get_image_size,image_prefix=image_prefix), filenames), total=len(filenames)))
119
-
120
- if output_file is not None:
121
- with open(output_file,'w') as f:
122
- json.dump(all_results,f,indent=1)
123
-
124
- return all_results
125
-
126
-
127
- #%% Interactive driver
128
-
129
- if False:
130
-
131
- pass
132
-
133
- #%%
134
-
135
- # List images in a test folder
136
- base_dir = r'c:\temp\test_images'
137
- image_list_file = os.path.join(base_dir,'images.json')
138
- relative_image_list_file = os.path.join(base_dir,'images_relative.json')
139
- image_size_file = os.path.join(base_dir,'image_sizes.json')
140
- from md_utils import path_utils
141
- image_names = path_utils.find_images(base_dir,recursive=True)
142
-
143
- with open(image_list_file,'w') as f:
144
- json.dump(image_names,f,indent=1)
145
-
146
- relative_image_names = []
147
- for s in image_names:
148
- relative_image_names.append(os.path.relpath(s,base_dir))
149
-
150
- with open(relative_image_list_file,'w') as f:
151
- json.dump(relative_image_names,f,indent=1)
152
-
153
-
154
- #%%
155
-
156
- get_image_sizes(relative_image_list_file,image_size_file,image_prefix=base_dir,n_threads=4)
157
-
158
-
159
- #%% Command-line driver
160
-
161
- def main():
162
-
163
- parser = argparse.ArgumentParser()
164
- parser.add_argument('filenames',type=str,
165
- help='Folder from which we should fetch image sizes, or .json file with a list of filenames')
166
- parser.add_argument('output_file',type=str,
167
- help='Output file (.json) to which we should write image size information')
168
- parser.add_argument('--image_prefix', type=str, default=None,
169
- help='Prefix to append to image filenames, only relevant if [filenames] points to a list of ' + \
170
- 'relative paths')
171
- parser.add_argument('--n_threads', type=int, default=default_n_threads,
172
- help='Number of concurrent workers, set to <=1 to disable parallelization (default {})'.format(
173
- default_n_threads))
174
-
175
- if len(sys.argv[1:])==0:
176
- parser.print_help()
177
- parser.exit()
178
-
179
- args = parser.parse_args()
180
-
181
- _ = get_image_sizes(filenames=args.filenames,
182
- output_file=args.output_file,
183
- image_prefix=args.image_prefix,
184
- n_workers=args.n_threads)
185
-
186
- if __name__ == '__main__':
187
-
188
- main()
@@ -1,52 +0,0 @@
1
- """
2
-
3
- add_nacti_sizes.py
4
-
5
- NACTI bounding box metadata was posted before we inclduded width and height as semi-standard
6
- fields; pull size information from the main metadata file and add to the bbox file.
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import json
13
- from tqdm import tqdm
14
-
15
- input_file = 'G:/temp/nacti_metadata.json'
16
- input_bbox_file = 'G:/temp/nacti_20200401_bboxes.json'
17
- output_bbox_file = 'G:/temp/nacti_20230920_bboxes.json'
18
-
19
-
20
- #%% Read .json files
21
-
22
- with open(input_file,'r') as f:
23
- input_data = json.load(f)
24
-
25
- with open(input_bbox_file,'r') as f:
26
- input_bbox_data = json.load(f)
27
-
28
- print('Finished reading .json data')
29
-
30
-
31
- #%% Map image names to width and height
32
-
33
- filename_to_size = {}
34
- for im in tqdm(input_data['images']):
35
- filename_to_size[im['file_name']] = (im['width'],im['height'])
36
-
37
-
38
- #%% Add to output data
39
-
40
- for im in tqdm(input_bbox_data['images']):
41
- size = filename_to_size[im['file_name']]
42
- im['width'] = size[0]
43
- im['height'] = size[1]
44
-
45
-
46
- #%% Write output
47
-
48
- output_bbox_data = input_bbox_data
49
- output_bbox_data['version'] = '2023-09-20'
50
-
51
- with open(output_bbox_file,'w') as f:
52
- json.dump(output_bbox_data,f,indent=1)
@@ -1,79 +0,0 @@
1
- """
2
-
3
- add_timestamps_to_icct.py
4
-
5
- The Island Conservation Camera Traps dataset was originally posted without timestamps
6
- in either .json metadata or EXIF metadata. We pulled timestamps out using ocr_tools.py,
7
- this script adds those timestamps into the .json metadata.
8
-
9
- """
10
-
11
- #%% Imports and constants
12
-
13
- import json
14
-
15
- ocr_results_file = r'g:\temp\ocr_results.2023.10.31.07.37.54.json'
16
- input_metadata_file = r'd:\lila\islandconservationcameratraps\island_conservation.json'
17
- output_metadata_file = r'g:\temp\island_conservation_camera_traps_1.02.json'
18
- ocr_results_file_base = 'g:/temp/island_conservation_camera_traps/'
19
- assert ocr_results_file_base.endswith('/')
20
-
21
-
22
- #%% Read input metadata
23
-
24
- with open(input_metadata_file,'r') as f:
25
- input_metadata = json.load(f)
26
-
27
- assert input_metadata['info']['version'] == '1.01'
28
-
29
- # im = input_metadata['images'][0]
30
- for im in input_metadata['images']:
31
- assert 'datetime' not in im
32
-
33
-
34
- #%% Read OCR results
35
-
36
- with open(ocr_results_file,'r') as f:
37
- abs_filename_to_ocr_results = json.load(f)
38
-
39
- relative_filename_to_ocr_results = {}
40
-
41
- for fn_abs in abs_filename_to_ocr_results:
42
- assert ocr_results_file_base in fn_abs
43
- fn_relative = fn_abs.replace(ocr_results_file_base,'')
44
- relative_filename_to_ocr_results[fn_relative] = abs_filename_to_ocr_results[fn_abs]
45
-
46
-
47
- #%% Add datetimes to metadata
48
-
49
- images_not_in_datetime_results = []
50
- images_with_failed_datetimes = []
51
-
52
- for i_image,im in enumerate(input_metadata['images']):
53
- if im['file_name'] not in relative_filename_to_ocr_results:
54
- images_not_in_datetime_results.append(im)
55
- im['datetime'] = None
56
- continue
57
- ocr_results = relative_filename_to_ocr_results[im['file_name']]
58
- if ocr_results['datetime'] is None:
59
- images_with_failed_datetimes.append(im)
60
- im['datetime'] = None
61
- continue
62
- im['datetime'] = ocr_results['datetime']
63
-
64
- print('{} of {} images were not in datetime results'.format(
65
- len(images_not_in_datetime_results),len(input_metadata['images'])))
66
-
67
- print('{} of {} images were had failed datetime results'.format(
68
- len(images_with_failed_datetimes),len(input_metadata['images'])))
69
-
70
- for im in input_metadata['images']:
71
- assert 'datetime' in im
72
-
73
-
74
- #%% Write output
75
-
76
- input_metadata['info']['version'] = '1.02'
77
-
78
- with open(output_metadata_file,'w') as f:
79
- json.dump(input_metadata,f,indent=1)