megadetector 5.0.28__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +231 -224
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +340 -337
  65. megadetector/detection/pytorch_detector.py +304 -262
  66. megadetector/detection/run_detector.py +177 -164
  67. megadetector/detection/run_detector_batch.py +364 -363
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +256 -249
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +290 -282
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +415 -415
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +219 -146
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -499
  81. megadetector/postprocessing/load_api_results.py +23 -20
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +313 -298
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -66
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1018 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1457 -398
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +61 -61
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2526
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +401 -397
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +79 -73
  124. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/METADATA +135 -132
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  128. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
  129. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  130. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  131. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  132. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  133. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  134. megadetector/data_management/importers/awc_to_json.py +0 -191
  135. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  136. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  137. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  138. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  139. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  140. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  141. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  142. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  143. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  144. megadetector/data_management/importers/ena24_to_json.py +0 -276
  145. megadetector/data_management/importers/filenames_to_json.py +0 -386
  146. megadetector/data_management/importers/helena_to_cct.py +0 -283
  147. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  148. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  149. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  150. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  151. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  152. megadetector/data_management/importers/missouri_to_json.py +0 -490
  153. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  154. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  155. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  156. megadetector/data_management/importers/pc_to_json.py +0 -365
  157. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  158. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  159. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  160. megadetector/data_management/importers/rspb_to_json.py +0 -356
  161. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  162. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  163. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  164. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  165. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  166. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  167. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  168. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  169. megadetector/data_management/importers/ubc_to_json.py +0 -399
  170. megadetector/data_management/importers/umn_to_json.py +0 -507
  171. megadetector/data_management/importers/wellington_to_json.py +0 -263
  172. megadetector/data_management/importers/wi_to_json.py +0 -442
  173. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  174. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  175. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  176. megadetector-5.0.28.dist-info/RECORD +0 -209
@@ -1,399 +0,0 @@
1
- """
2
-
3
- ubc_to_json.py
4
-
5
- Convert the .csv file provided for the UBC data set to a
6
- COCO-camera-traps .json file
7
-
8
- Images were provided in eight folders, each of which contained a .csv
9
- file with annotations. Those annotations came in two slightly different
10
- formats, the two formats corresponding to folders starting with "SC_" and
11
- otherwise.
12
-
13
- """
14
-
15
- #%% Constants and environment
16
-
17
- import pandas as pd
18
- import os
19
- import json
20
- import uuid
21
- import numpy as np
22
- import shutil
23
-
24
- from tqdm import tqdm
25
- from PIL import Image
26
-
27
- from megadetector.visualization import visualize_db
28
- from megadetector.data_management.databases import integrity_check_json_db
29
- from megadetector.utils.path_utils import find_images
30
-
31
- input_base = r'e:\ubc'
32
- assert(os.path.isdir(input_base))
33
-
34
- output_base = r'f:\data_staging\ubc'
35
- output_json_file = os.path.join(output_base,'ubc.json')
36
- file_list_file = os.path.join(output_base,'all_files.txt')
37
-
38
- os.makedirs(output_base,exist_ok=True)
39
-
40
- # Map Excel column names - which vary a little across spreadsheets - to a common set of names
41
- mapped_fields = {"Survey.Name" : "survey_name",
42
- "project_id": "survey_name",
43
- "Camera.Name": "camera_name",
44
- "station_id": "camera_name",
45
- "Media.Filename": "filename",
46
- "orig_file": "filename",
47
- "timestamp_pst": "datetime",
48
- "Date.Time": "datetime",
49
- "Species": "species",
50
- "latin_name": "species",
51
- "common.name": "common_name",
52
- "common_names": "common_name",
53
- "Sighting.Quantity": "species_count"
54
- }
55
-
56
- category_mappings = {
57
- 'bird_spp.':'unknown_bird',
58
- 'dog_dog':'dog',
59
- 'hiker_hiker':'hiker',
60
- 'quad_quad':'quad',
61
- 'skier_skier':'skier',
62
- 'snowshoer_snowshoer':'showshoer',
63
- 'quad_quad':'quad'
64
- }
65
-
66
- target_fields = ['species_count','group_count','behaviour']
67
-
68
-
69
- #%% Enumerate images
70
-
71
- # Load from file if we've already enumerated
72
- if os.path.isfile(file_list_file):
73
- with open(file_list_file,'r') as f:
74
- files = f.readlines()
75
- files = [s.strip() for s in files]
76
- image_full_paths = files
77
- print('Loaded {} images from {}'.format(len(image_full_paths),file_list_file))
78
- else:
79
- image_full_paths = find_images(input_base, recursive=True)
80
- with open(file_list_file,'w') as f:
81
- for line in image_full_paths:
82
- f.write(line + '\n')
83
- print('Enumerated {} images from {}'.format(len(image_full_paths),input_base))
84
-
85
- image_full_paths_set = set(image_full_paths)
86
- image_relative_paths = [os.path.relpath(fn,input_base) for fn in image_full_paths]
87
- image_relative_paths_set = set(image_relative_paths)
88
-
89
-
90
- #%% Create CCT dictionaries
91
-
92
- annotations = []
93
- image_ids_to_images = {}
94
- category_name_to_category = {}
95
-
96
- # Force the empty category to be ID 0
97
- empty_category = {}
98
- empty_category['name'] = 'empty'
99
- empty_category['id'] = 0
100
- empty_category['common_name'] = 'empty'
101
- category_name_to_category['empty'] = empty_category
102
- next_category_id = 1
103
-
104
- latin_to_common = {}
105
-
106
- folders = os.listdir(input_base)
107
-
108
- # To simplify debugging of the loop below
109
- i_folder = 0; folder = folders[i_folder];
110
-
111
-
112
- ##%% Create CCT dictionaries (loop)
113
-
114
- invalid_images = []
115
-
116
- for i_folder,folder in enumerate(folders):
117
-
118
- ##%%
119
-
120
- print('\nProcessing folder {} of {}: {}'.format(i_folder,len(folders),folder))
121
-
122
- filenames_to_rows = {}
123
- filenames_with_multiple_annotations = []
124
- missing_images = []
125
- image_directory = os.path.join(input_base, folder)
126
- files = os.listdir(image_directory)
127
- files = list(filter(lambda f: f.endswith('.csv'), files))
128
- input_metadata_file = os.path.join(input_base, folder, files[0])
129
- assert(os.path.isfile(input_metadata_file))
130
-
131
- # Read source data for this folder
132
- input_metadata = pd.read_csv(input_metadata_file)
133
-
134
- # Rename columns
135
- input_metadata.rename(columns=mapped_fields, inplace=True)
136
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns), len(input_metadata)))
137
-
138
- if folder.startswith("SC_"):
139
- # Folder name is the first two characters of the filename
140
- #
141
- # Create relative path names from the filename itself
142
- input_metadata['image_relative_path'] = input_metadata['filename'].apply(
143
- lambda x: os.path.join(folder, x[0:2], x.replace(".JPG", ".jpg")))
144
- else:
145
- # Folder name is the camera name
146
- #
147
- # Create relative path names from camera name and filename
148
- input_metadata['image_relative_path'] = input_metadata[['camera_name', 'filename']].apply(
149
- lambda x: os.path.join(folder, x[0], x[1]), axis = 1)
150
-
151
- # Which of our images are in the spreadsheet?
152
- # i_row = 0; fn = input_metadata['image_relative_path'][i_row]
153
- for i_row, image_relative_path in enumerate(input_metadata['image_relative_path']):
154
-
155
- if image_relative_path in filenames_to_rows:
156
- filenames_with_multiple_annotations.append(image_relative_path)
157
- filenames_to_rows[image_relative_path].append(i_row)
158
- else:
159
- filenames_to_rows[image_relative_path] = [i_row]
160
- image_full_path = os.path.join(input_base, image_relative_path)
161
-
162
- if not image_full_path in image_full_paths_set:
163
- assert image_relative_path not in image_relative_paths_set
164
- missing_images.append(image_full_path)
165
-
166
- print('Finished verifying image existence for {} files in {} rows\nFound {} filenames with multiple labels, {} missing images'.format(
167
- len(input_metadata), len(filenames_to_rows),
168
- len(filenames_with_multiple_annotations), len(missing_images)))
169
-
170
-
171
- ##%% Check for images that aren't included in the metadata file
172
-
173
- # Find all the images in this folder
174
- image_relative_paths_this_folder = [s for s in image_relative_paths if s.startswith(folder)]
175
-
176
- # Which of these aren't in the spreadsheet?
177
- annotated_files_this_folder = list(filenames_to_rows.keys())
178
- annotated_files_this_folder_set = set(annotated_files_this_folder)
179
- unannotated_images = [s for s in image_relative_paths_this_folder if s not in annotated_files_this_folder_set]
180
-
181
- print('Found {} unannotated images (of {}) in this folder'.format(
182
- len(unannotated_images),len(image_relative_paths_this_folder)))
183
-
184
-
185
- ##%% Create entries in CCT dictionaries
186
-
187
- image_relative_path = list(filenames_to_rows.keys())[0]
188
-
189
- for image_relative_path in list(filenames_to_rows.keys()):
190
-
191
- # Only process images we have on disk
192
- if image_relative_path not in image_relative_paths_set:
193
- continue
194
-
195
- image_full_path = os.path.join(input_base,image_relative_path)
196
-
197
- # This is redundant, but doing this for clarity, at basically no performance
198
- # cost since we need to *read* the images below to check validity.
199
- assert os.path.isfile(image_full_path)
200
-
201
- img_id = image_relative_path.replace('\\','/').replace('/','_').replace(' ','_')
202
- row_indices = filenames_to_rows[image_relative_path]
203
-
204
- # i_row = row_indices[0]
205
- for i_row in row_indices:
206
-
207
- row = input_metadata.iloc[i_row]
208
- assert(row['image_relative_path'] == image_relative_path)
209
- timestamp = row['datetime']
210
- location = row['survey_name'] + '_' + row['camera_name']
211
-
212
- if img_id in image_ids_to_images:
213
- im = image_ids_to_images[img_id]
214
- assert im['file_name'] == image_relative_path
215
- assert im['location'] == location
216
- else:
217
- im = {}
218
-
219
- try:
220
- pil_image = Image.open(image_full_path)
221
- width, height = pil_image.size
222
- im['width'] = width
223
- im['height'] = height
224
- except:
225
- # These generally represent zero-byte images in this data set, don't try
226
- # to find the very small handful that might be other kinds of failures we
227
- # might want to keep around.
228
- # print('Error opening image {}'.format(image_relative_path))
229
- invalid_images.append(image_relative_path)
230
- continue
231
-
232
- im['id'] = img_id
233
- im['file_name'] = image_relative_path
234
- im['datetime'] = timestamp
235
- im['location'] = location
236
-
237
- image_ids_to_images[img_id] = im
238
-
239
- species = row['species'].lower().strip().replace(' ','_')
240
-
241
- if (isinstance(species,float) or \
242
- (isinstance(species,str) and (len(species) == 0))):
243
- category_name = 'empty'
244
- else:
245
- category_name = species
246
- del species
247
-
248
- category_name = category_name.strip().lower()
249
-
250
- common_name = row['common_name']
251
- if isinstance(common_name,float) and np.isnan(common_name):
252
- common_name = ''
253
- else:
254
- common_name = str(common_name).lower().strip().replace(', ',',').replace(' ','_')
255
-
256
- for k,v in category_mappings.items():
257
- common_name = common_name.replace(k,v)
258
- category_name = category_name.replace(k,v)
259
- common_name = common_name.replace('.','').replace('spp','species')
260
- category_name = category_name.replace('.','').replace('spp','species')
261
-
262
- if category_name == 'passerine_species' and common_name != '' and common_name != 'passerine_species':
263
- category_name = common_name
264
-
265
- # If we've seen this category before...
266
- if category_name in category_name_to_category:
267
-
268
- category = category_name_to_category[category_name]
269
- category_id = category['id']
270
-
271
- # ...make sure it used the same latin --> common mapping
272
- #
273
- # If the previous instance had no mapping, use the new one.
274
- if category['common_name'] == '':
275
- category['common_name'] = common_name
276
- else:
277
- # assert common_name == category['common_name']
278
- if common_name != category['common_name']:
279
- print('Warning: common name {} used for species {}, previously {}'.format(
280
- common_name,category_name,category['common_name']))
281
-
282
- else:
283
-
284
- category_id = next_category_id
285
- category = {}
286
- category['id'] = category_id
287
- category['name'] = category_name
288
- category['common_name'] = common_name
289
- category_name_to_category[category_name] = category
290
- next_category_id += 1
291
-
292
- # Create an annotation
293
- ann = {}
294
- ann['id'] = str(uuid.uuid1())
295
- ann['image_id'] = im['id']
296
- ann['category_id'] = category_id
297
-
298
- for target_field in target_fields:
299
- if target_field in input_metadata.columns:
300
- val = row[target_field]
301
- if isinstance(val,float) and np.isnan(val):
302
- val = ''
303
- else:
304
- val = str(val).strip()
305
- ann[target_field] = val
306
-
307
- annotations.append(ann)
308
-
309
- # ...for each annotation we found for this image
310
-
311
- # ...for each image
312
-
313
- # ...for each dataset
314
-
315
- images = list(image_ids_to_images.values())
316
- categories = list(category_name_to_category.values())
317
-
318
- # Print all of our species mappings
319
- for c in categories:
320
- print(c['name'].ljust(30) + c['common_name'])
321
-
322
- print('Finished creating CCT dictionaries, loaded {} images of {} total on disk ({} invalid)'.format(
323
- len(images), len(image_relative_paths_set), len(invalid_images)))
324
-
325
-
326
- #%% Copy images for which we actually have annotations to a new folder, lowercase everything
327
-
328
- # im = images[0]
329
- for im in tqdm(images):
330
- relative_filename = im['file_name']
331
- input_filename = os.path.join(input_base,relative_filename)
332
- output_filename = os.path.join(output_base,relative_filename).lower()
333
- os.makedirs(os.path.dirname(output_filename),exist_ok=True)
334
-
335
- shutil.copy(input_filename, output_filename)
336
- im['file_name'] = im['file_name'].lower()
337
- im['id'] = im['id'].lower()
338
-
339
-
340
- #%% Create info struct
341
-
342
- info = {}
343
- info['year'] = 2020
344
- info['version'] = 1
345
- info['description'] = 'UBC Camera Traps'
346
- info['contributor'] = 'UBC'
347
-
348
-
349
- #%% Convert image IDs to lowercase in annotations, tag as sequence level
350
-
351
- # While there isn't any sequence information, the nature of false positives
352
- # here leads me to believe the images were labeled at the sequence level, so
353
- # we should trust labels more when positives are verified. Overall false
354
- # positive rate looks to be between 1% and 5%.
355
-
356
- for ann in annotations:
357
- ann['image_id'] = ann['image_id'].lower()
358
- ann['sequence_level_annotation'] = True
359
-
360
-
361
- #%% Write output
362
-
363
- json_data = {}
364
- json_data['images'] = images
365
- json_data['annotations'] = annotations
366
- json_data['categories'] = categories
367
- json_data['info'] = info
368
- json.dump(json_data, open(output_json_file, 'w'), indent=2)
369
-
370
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
371
- len(images), len(annotations), len(categories)))
372
-
373
-
374
- #%% Validate output
375
-
376
- options = integrity_check_json_db.IntegrityCheckOptions()
377
- options.baseDir = output_base
378
- options.bCheckImageSizes = False
379
- options.bCheckImageExistence = False
380
- options.bFindUnusedImages = True
381
-
382
- sortedCategories, data, errors = integrity_check_json_db.integrity_check_json_db(
383
- output_json_file, options)
384
-
385
-
386
- #%% Preview labels
387
-
388
- viz_options = visualize_db.DbVizOptions()
389
- viz_options.num_to_visualize = 2000
390
- viz_options.trim_to_images_with_bboxes = False
391
- viz_options.add_search_links = True
392
- viz_options.sort_by_filename = False
393
- viz_options.parallelize_rendering = True
394
- html_output_file, image_db = visualize_db.visualize_db(db_path=output_json_file,
395
- output_dir=os.path.join(
396
- output_base, 'preview'),
397
- image_base_dir=output_base,
398
- options=viz_options)
399
- os.startfile(html_output_file)