megadetector 5.0.28__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +231 -224
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +340 -337
  65. megadetector/detection/pytorch_detector.py +304 -262
  66. megadetector/detection/run_detector.py +177 -164
  67. megadetector/detection/run_detector_batch.py +364 -363
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +256 -249
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +290 -282
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +415 -415
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +219 -146
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -499
  81. megadetector/postprocessing/load_api_results.py +23 -20
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +313 -298
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -66
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1018 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1457 -398
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +61 -61
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2526
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +401 -397
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +79 -73
  124. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/METADATA +135 -132
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  128. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
  129. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  130. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  131. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  132. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  133. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  134. megadetector/data_management/importers/awc_to_json.py +0 -191
  135. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  136. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  137. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  138. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  139. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  140. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  141. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  142. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  143. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  144. megadetector/data_management/importers/ena24_to_json.py +0 -276
  145. megadetector/data_management/importers/filenames_to_json.py +0 -386
  146. megadetector/data_management/importers/helena_to_cct.py +0 -283
  147. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  148. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  149. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  150. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  151. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  152. megadetector/data_management/importers/missouri_to_json.py +0 -490
  153. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  154. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  155. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  156. megadetector/data_management/importers/pc_to_json.py +0 -365
  157. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  158. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  159. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  160. megadetector/data_management/importers/rspb_to_json.py +0 -356
  161. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  162. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  163. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  164. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  165. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  166. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  167. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  168. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  169. megadetector/data_management/importers/ubc_to_json.py +0 -399
  170. megadetector/data_management/importers/umn_to_json.py +0 -507
  171. megadetector/data_management/importers/wellington_to_json.py +0 -263
  172. megadetector/data_management/importers/wi_to_json.py +0 -442
  173. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  174. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  175. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  176. megadetector-5.0.28.dist-info/RECORD +0 -209
@@ -1,329 +0,0 @@
1
- """
2
-
3
- save_the_elephants_survey_B.py
4
-
5
- Convert the .csv file provided for the Save the Elephants Survey B data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import pandas as pd
13
- import os
14
- import json
15
- import uuid
16
- import time
17
- import humanfriendly
18
- import numpy as np
19
- from tqdm import tqdm
20
-
21
- from megadetector.utils.path_utils import find_images
22
- from megadetector.visualization import visualize_db
23
- from megadetector.data_management.databases import integrity_check_json_db
24
-
25
- input_base = r'z:/ste_2019_08_drop'
26
- # input_base = r'/mnt/blobfuse/wildlifeblobssc/ste_2019_08_drop'
27
- input_metadata_file = os.path.join(input_base,'SURVEY B.xlsx')
28
-
29
- output_base = r'f:/save_the_elephants/survey_b'
30
- # output_base = r'/home/gramener/survey_b'
31
- output_json_file = os.path.join(output_base,'ste_survey_b.json')
32
- image_directory = os.path.join(input_base,'SURVEY B with False Triggers')
33
-
34
- os.makedirs(output_base,exist_ok=True)
35
- assert(os.path.isdir(image_directory))
36
- assert(os.path.isfile(input_metadata_file))
37
-
38
- # Handle all unstructured fields in the source data as extra fields in the annotations
39
- mapped_fields = {'No. of Animals in Photo':'num_animals',
40
- 'No. of new indiviauls (first sighting of new individual)':'num_new_individuals',
41
- 'Number Adult Males (first sighting of new individual)':'num_adult_males',
42
- 'Number Adult Females (first sighting of new individual)':'num_adult_females',
43
- 'Number Adult Unknown (first sighting of new individual)':'num_adult_unknown',
44
- 'Number Sub-adult Males (first sighting of new individual)':'num_subadult_males',
45
- 'Number Sub-adult Females (first sighting of new individual)':'num_subadult_females',
46
- 'Number Sub-adult Unknown (first sighting of new individual)':'num_subadult_unknown',
47
- 'Number Juvenile (first sighting of new individual)':'num_juvenile',
48
- 'Number Newborn (first sighting of new individual)':'num_newborn',
49
- 'Activity':'activity',
50
- 'Animal ID':'animal_id',
51
- 'Specific Notes':'notes'}
52
-
53
- # photo_type really should be an image property, but there are a few conflicts
54
- # that forced me to handle it as an annotation proprerty
55
- mapped_fields['Photo Type '] = 'photo_type'
56
-
57
- #%% Read source data
58
-
59
- input_metadata = pd.read_excel(input_metadata_file, sheet_name='9. CT Image')
60
- input_metadata = input_metadata.iloc[2:]
61
-
62
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
63
- len(input_metadata)))
64
-
65
-
66
- #%% Map filenames to rows, verify image existence
67
-
68
- #%% Map filenames to rows, verify image existence
69
-
70
- start_time = time.time()
71
-
72
- # Maps relative paths to row indices in input_metadata
73
- filenames_to_rows = {}
74
- filenames_with_multiple_annotations = []
75
- missing_images = []
76
-
77
- # Build up a map from filenames to a list of rows, checking image existence as we go
78
- for i_row, fn in tqdm(enumerate(input_metadata['Image Name']), total=len(input_metadata)):
79
- try:
80
- # Ignore directories
81
- if not fn.endswith('.JPG'):
82
- continue
83
-
84
- if fn in filenames_to_rows:
85
- filenames_with_multiple_annotations.append(fn)
86
- filenames_to_rows[fn].append(i_row)
87
- else:
88
- filenames_to_rows[fn] = [i_row]
89
- image_path = os.path.join(image_directory, fn)
90
- if not os.path.isfile(image_path):
91
- missing_images.append(image_path)
92
- except:
93
- continue
94
-
95
- elapsed = time.time() - start_time
96
-
97
- print('Finished verifying image existence for {} files in {}, found {} filenames with multiple labels, {} missing images'.format(
98
- len(filenames_to_rows), humanfriendly.format_timespan(elapsed),
99
- len(filenames_with_multiple_annotations), len(missing_images)))
100
-
101
- #%% Make sure the multiple-annotation cases make sense
102
-
103
- if False:
104
-
105
- #%%
106
-
107
- fn = filenames_with_multiple_annotations[1000]
108
- rows = filenames_to_rows[fn]
109
- assert(len(rows) > 1)
110
- for i_row in rows:
111
- print(input_metadata.iloc[i_row]['Species'])
112
-
113
- #%% Check for images that aren't included in the metadata file
114
-
115
- # Enumerate all images
116
- image_full_paths = find_images(image_directory, bRecursive=True)
117
-
118
- unannotated_images = []
119
-
120
- for iImage, image_path in tqdm(enumerate(image_full_paths),total=len(image_full_paths)):
121
- relative_path = os.path.relpath(image_path,image_directory)
122
- if relative_path not in filenames_to_rows:
123
- unannotated_images.append(relative_path)
124
-
125
- print('Finished checking {} images to make sure they\'re in the metadata, found {} unannotated images'.format(
126
- len(image_full_paths),len(unannotated_images)))
127
-
128
-
129
- #%% Create CCT dictionaries
130
-
131
- images = []
132
- annotations = []
133
- categories = []
134
-
135
- image_ids_to_images = {}
136
-
137
- category_name_to_category = {}
138
-
139
- # Force the empty category to be ID 0
140
- empty_category = {}
141
- empty_category['name'] = 'empty'
142
- empty_category['id'] = 0
143
- category_name_to_category['empty'] = empty_category
144
- categories.append(empty_category)
145
- next_category_id = 1
146
-
147
- start_time = time.time()
148
- # i_image = 0; image_name = list(filenames_to_rows.keys())[i_image]
149
- for image_name in tqdm(list(filenames_to_rows.keys())):
150
-
151
- # Example filename:
152
- #
153
- # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2\100EK113\EK001382.JPG'
154
- # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2.1\100EK113\EK001382.JPG'
155
- img_id = image_name.replace('\\','/').replace('\n','').replace('/','_').replace(' ','_')
156
-
157
- row_indices = filenames_to_rows[image_name]
158
-
159
- # i_row = row_indices[0]
160
- for i_row in row_indices:
161
-
162
- row = input_metadata.iloc[i_row]
163
- assert(row['Image Name'] == image_name)
164
- try:
165
- timestamp = row['Date'].strftime("%d/%m/%Y")
166
- except:
167
- timestamp = ""
168
- # timestamp = row['Date']
169
- station_label = row['Camera Trap Station Label']
170
- photo_type = row['Photo Type ']
171
- if isinstance(photo_type,float):
172
- photo_type = ''
173
- photo_type = photo_type.strip().lower()
174
-
175
- if img_id in image_ids_to_images:
176
-
177
- im = image_ids_to_images[img_id]
178
- assert im['file_name'] == image_name
179
- assert im['station_label'] == station_label
180
-
181
- # There are a small handful of datetime mismatches across annotations
182
- # for the same image
183
- # assert im['datetime'] == timestamp
184
- if im['datetime'] != timestamp:
185
- print('Warning: timestamp conflict for image {}: {},{}'.format(
186
- image_name,im['datetime'],timestamp))
187
-
188
- else:
189
-
190
- im = {}
191
- im['id'] = img_id
192
- im['file_name'] = image_name
193
- im['datetime'] = timestamp
194
- im['station_label'] = station_label
195
- im['photo_type'] = photo_type
196
-
197
- image_ids_to_images[img_id] = im
198
- images.append(im)
199
-
200
- species = row['Species']
201
-
202
- if (isinstance(species,float) or \
203
- (isinstance(species,str) and (len(species) == 0))):
204
- category_name = 'empty'
205
- elif species.startswith('?'):
206
- category_name = 'unknown'
207
- else:
208
- category_name = species
209
-
210
- # Special cases based on the 'photo type' field
211
- if 'vehicle' in photo_type:
212
- category_name = 'vehicle'
213
- # Various spellings of 'community'
214
- elif 'comm' in photo_type:
215
- category_name = 'human'
216
- elif 'camera' in photo_type or 'researcher' in photo_type:
217
- category_name = 'human'
218
- elif 'livestock' in photo_type:
219
- category_name = 'livestock'
220
- elif 'blank' in photo_type:
221
- category_name = 'empty'
222
- elif 'plant movement' in photo_type:
223
- category_name = 'empty'
224
-
225
- category_name = category_name.strip().lower()
226
-
227
- # Have we seen this category before?
228
- if category_name in category_name_to_category:
229
- category_id = category_name_to_category[category_name]['id']
230
- else:
231
- category_id = next_category_id
232
- category = {}
233
- category['id'] = category_id
234
- category['name'] = category_name
235
- category_name_to_category[category_name] = category
236
- categories.append(category)
237
- next_category_id += 1
238
-
239
- # Create an annotation
240
- ann = {}
241
- ann['id'] = str(uuid.uuid1())
242
- ann['image_id'] = im['id']
243
- ann['category_id'] = category_id
244
-
245
- # fieldname = list(mapped_fields.keys())[0]
246
- for fieldname in mapped_fields:
247
- target_field = mapped_fields[fieldname]
248
- val = row[fieldname]
249
- if isinstance(val,float) and np.isnan(val):
250
- val = ''
251
- else:
252
- val = str(val).strip()
253
- ann[target_field] = val
254
-
255
- annotations.append(ann)
256
-
257
- # ...for each row
258
-
259
- # ...for each image
260
-
261
- print('Finished creating CCT dictionaries in {}'.format(
262
- humanfriendly.format_timespan(elapsed)))
263
-
264
-
265
- #%% Create info struct
266
-
267
- info = {}
268
- info['year'] = 2019
269
- info['version'] = 1
270
- info['description'] = 'Save the Elephants Survey B'
271
- info['contributor'] = 'Save the Elephants'
272
-
273
-
274
- #%% Write output
275
-
276
- json_data = {}
277
- json_data['images'] = images
278
- json_data['annotations'] = annotations
279
- json_data['categories'] = categories
280
- json_data['info'] = info
281
- json.dump(json_data, open(output_json_file, 'w'), indent=2)
282
-
283
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
284
- len(images),len(annotations),len(categories)))
285
-
286
-
287
- #%% Validate output
288
-
289
- from megadetector.data_management.databases import integrity_check_json_db
290
-
291
- options = integrity_check_json_db.IntegrityCheckOptions()
292
- options.baseDir = image_directory
293
- options.bCheckImageSizes = False
294
- options.bCheckImageExistence = False
295
- options.bFindUnusedImages = False
296
-
297
- sortedCategories, data = integrity_check_json_db.integrity_check_json_db(output_json_file,options)
298
-
299
-
300
- #%% Preview labels
301
-
302
- from megadetector.visualization import visualize_db
303
- from megadetector.data_management.databases import integrity_check_json_db
304
-
305
- viz_options = visualize_db.DbVizOptions()
306
- viz_options.num_to_visualize = 1000
307
- viz_options.trim_to_images_with_bboxes = False
308
- viz_options.add_search_links = True
309
- viz_options.sort_by_filename = False
310
- viz_options.parallelize_rendering = True
311
- html_output_file,image_db = visualize_db.visualize_db(db_path=output_json_file,
312
- output_dir=os.path.join(output_base,'preview'),
313
- image_base_dir=image_directory,
314
- options=viz_options)
315
- os.startfile(html_output_file)
316
-
317
-
318
- #%% Scrap
319
-
320
- if False:
321
-
322
- pass
323
-
324
- #%% Find unique photo types
325
-
326
- annotations = image_db['annotations']
327
- photo_types = set()
328
- for ann in tqdm(annotations):
329
- photo_types.add(ann['photo_type'])