megadetector 5.0.28__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +231 -224
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +340 -337
  65. megadetector/detection/pytorch_detector.py +304 -262
  66. megadetector/detection/run_detector.py +177 -164
  67. megadetector/detection/run_detector_batch.py +364 -363
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +256 -249
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +290 -282
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +415 -415
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +219 -146
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -499
  81. megadetector/postprocessing/load_api_results.py +23 -20
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +313 -298
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -66
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1018 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1457 -398
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +61 -61
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2526
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +401 -397
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +79 -73
  124. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/METADATA +135 -132
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  128. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
  129. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  130. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  131. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  132. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  133. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  134. megadetector/data_management/importers/awc_to_json.py +0 -191
  135. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  136. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  137. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  138. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  139. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  140. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  141. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  142. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  143. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  144. megadetector/data_management/importers/ena24_to_json.py +0 -276
  145. megadetector/data_management/importers/filenames_to_json.py +0 -386
  146. megadetector/data_management/importers/helena_to_cct.py +0 -283
  147. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  148. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  149. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  150. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  151. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  152. megadetector/data_management/importers/missouri_to_json.py +0 -490
  153. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  154. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  155. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  156. megadetector/data_management/importers/pc_to_json.py +0 -365
  157. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  158. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  159. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  160. megadetector/data_management/importers/rspb_to_json.py +0 -356
  161. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  162. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  163. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  164. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  165. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  166. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  167. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  168. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  169. megadetector/data_management/importers/ubc_to_json.py +0 -399
  170. megadetector/data_management/importers/umn_to_json.py +0 -507
  171. megadetector/data_management/importers/wellington_to_json.py +0 -263
  172. megadetector/data_management/importers/wi_to_json.py +0 -442
  173. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  174. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  175. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  176. megadetector-5.0.28.dist-info/RECORD +0 -209
@@ -1,150 +0,0 @@
1
- #
2
- # make_full_SS_json.py
3
- #
4
- # Create a COCO-camera-traps .json file for Snapshot Serengeti data from
5
- # the original .csv files provided on Dryad.
6
- #
7
- # This was used for "version 1.0" of the public Snapshot Serengeti archive; it's no
8
- # longer used as of v2.0 (early 2020). See snapshot_serengeti_lila.py for the updated
9
- # Snapshot Safari preparation process.
10
- #
11
-
12
- #%% Imports and constants
13
-
14
- import csv
15
- import json
16
- import uuid
17
- import datetime
18
-
19
- output_file = '/datadrive/snapshotserengeti/databases/SnapshotSerengeti_multiple_classes.json'
20
- csv_file_name = '/datadrive/snapshotserengeti/databases/consensus_data.csv'
21
- all_image_file = '/datadrive/snapshotserengeti/databases/all_images.csv'
22
-
23
-
24
- #%% Read annotation .csv file, format into a dictionary mapping field names to data arrays
25
-
26
- data = []
27
- with open(csv_file_name,'r') as f:
28
- reader = csv.reader(f, dialect = 'excel')
29
- for row in reader:
30
- data.append(row)
31
-
32
- data_fields = data[0]
33
-
34
- data_dicts = {}
35
- for event in data[1:]:
36
- if event[0] not in data_dicts:
37
- data_dicts[event[0]] = []
38
- data_dicts[event[0]].append({data_fields[i]:event[i] for i in range(len(data_fields))})
39
-
40
- # Count the number of images with multiple species
41
- mult_species = 0
42
- for event in data_dicts:
43
- if len(data_dicts[event]) > 1:
44
- mult_species += 1
45
-
46
-
47
- #%% Read image .csv file, format into a dictionary mapping images to capture events
48
-
49
- with open(all_image_file,'r') as f:
50
- reader = csv.reader(f,dialect = 'excel')
51
- next(reader)
52
- im_name_to_cap_id = {row[1]:row[0] for row in reader}
53
-
54
- total_ims = len(im_name_to_cap_id)
55
- total_seqs = len(data_dicts)
56
- print('Percent seqs with mult species: ',float(mult_species)/float(total_seqs))
57
-
58
-
59
- #%% Create CCT-style .json
60
-
61
- images = []
62
- annotations = []
63
- categories = []
64
-
65
- capture_ims = {i:[] for i in im_name_to_cap_id.values()}
66
- for im_id in im_name_to_cap_id:
67
- capture_ims[im_name_to_cap_id[im_id]].append(im_id)
68
-
69
- im_to_seq_num = {im:None for im in im_name_to_cap_id}
70
- for event in capture_ims:
71
- capture_ims[event] = sorted(capture_ims[event])
72
- seq_count = 0
73
- for im in capture_ims[event]:
74
- im_to_seq_num[im] = seq_count
75
- seq_count += 1
76
-
77
- cat_to_id = {}
78
- cat_to_id['empty'] = 0
79
- cat_count = 1
80
- seasons = []
81
-
82
- for im_id in im_name_to_cap_id:
83
-
84
- im = {}
85
- im['id'] = im_id.split('.')[0]
86
- im['file_name'] = im_id
87
-
88
- im['location'] = im_id.split('/')[1]
89
- im['season'] = im_id.split('/')[0]
90
- if im['season'] not in seasons:
91
- seasons.append(im['season'])
92
- im['seq_id'] = im_name_to_cap_id[im_id]
93
- im['frame_num'] = im_to_seq_num[im_id]
94
- im['seq_num_frames'] = len(capture_ims[im['seq_id']])
95
-
96
- ann = {}
97
- ann['id'] = str(uuid.uuid1())
98
- ann['image_id'] = im['id']
99
-
100
- if im_name_to_cap_id[im_id] in data_dicts:
101
- im_data_per_ann = data_dicts[im_name_to_cap_id[im_id]]
102
- for im_data in im_data_per_ann:
103
- im['datetime'] = im_data['DateTime']
104
- if im_data['Species'] not in cat_to_id:
105
- cat_to_id[im_data['Species']] = cat_count
106
- cat_count += 1
107
- ann = {}
108
- ann['id'] = str(uuid.uuid1())
109
- ann['image_id'] = im['id']
110
- ann['category_id'] = cat_to_id[im_data['Species']]
111
- annotations.append(ann)
112
- else:
113
- ann = {}
114
- ann['id'] = str(uuid.uuid1())
115
- ann['image_id'] = im['id']
116
- ann['category_id'] = 0
117
- annotations.append(ann)
118
-
119
- # still need image width and height
120
- images.append(im)
121
-
122
- # ...for each image
123
-
124
- print(seasons)
125
-
126
- for cat in cat_to_id:
127
- new_cat = {}
128
- new_cat['id'] = cat_to_id[cat]
129
- new_cat['name'] = cat
130
- categories.append(new_cat)
131
-
132
-
133
- #%% Write output files
134
-
135
- json_data = {}
136
- json_data['images'] = images
137
- json_data['annotations'] = annotations
138
- json_data['categories'] = categories
139
- info = {}
140
- info['year'] = 2018
141
- info['version'] = 1
142
- info['description'] = 'COCO style Snapshot Serengeti database'
143
- info['contributor'] = 'SMB'
144
- info['date_created'] = str(datetime.date.today())
145
- json_data['info'] = info
146
- json.dump(json_data,open(output_file,'w'))
147
-
148
- print(images[0])
149
- print(annotations[0])
150
-
@@ -1,153 +0,0 @@
1
- #
2
- # make_per_season_SS_json.py
3
- #
4
- # Create a COCO-camera-traps .json file for each Snapshot Serengeti season from
5
- # the original .csv files provided on Dryad.
6
- #
7
- # This was used for "version 1.0" of the public Snapshot Serengeti archive; it's no
8
- # longer used as of v2.0 (early 2020). See snapshot_serengeti_lila.py for the updated
9
- # Snapshot Safari preparation process.
10
- #
11
-
12
- #%% Imports and constants
13
-
14
- import csv
15
- import json
16
- import uuid
17
- import datetime
18
-
19
- output_file_folder = 'C:/Users/t-sabeer/Documents/databases/'
20
- csv_file_name = 'D:/consensus_data.csv'
21
-
22
-
23
- #%% Read annotation .csv file, format into a dictionary mapping field names to data arrays
24
-
25
- data = []
26
- with open(csv_file_name,'r') as f:
27
- reader = csv.reader(f, dialect = 'excel')
28
- for row in reader:
29
- data.append(row)
30
-
31
- data_fields = data[0]
32
-
33
- data_dicts = {}
34
- for event in data[1:]:
35
- data_dicts[event[0]] = {data_fields[i]:event[i] for i in range(len(data_fields))}
36
-
37
-
38
- #%% Read image .csv file, format into a dictionary mapping images to capture events
39
-
40
- all_image_file = 'D:/all_images.csv'
41
- with open(all_image_file,'r') as f:
42
- reader = csv.reader(f,dialect = 'excel')
43
- next(reader)
44
- im_name_to_cap_id = {row[1]:row[0] for row in reader}
45
-
46
-
47
- #%% Create CCT-style .json
48
-
49
- images = []
50
- annotations = []
51
- categories = []
52
-
53
- capture_ims = {i:[] for i in im_name_to_cap_id.values()}
54
- for im_id in im_name_to_cap_id:
55
- capture_ims[im_name_to_cap_id[im_id]].append(im_id)
56
-
57
- im_to_seq_num = {im:None for im in im_name_to_cap_id}
58
- for event in capture_ims:
59
- capture_ims[event] = sorted(capture_ims[event])
60
- seq_count = 0
61
- for im in capture_ims[event]:
62
- im_to_seq_num[im] = seq_count
63
- seq_count += 1
64
-
65
- cat_to_id = {}
66
- cat_to_id['empty'] = 0
67
- cat_count = 1
68
- seasons = []
69
-
70
- for im_id in im_name_to_cap_id:
71
- im = {}
72
- im['id'] = im_id.split('.')[0]
73
- im['file_name'] = im_id
74
-
75
- im['location'] = im_id.split('/')[1]
76
- im['season'] = im_id.split('/')[0]
77
- im['seq_id'] = im_name_to_cap_id[im_id]
78
- im['frame_num'] = im_to_seq_num[im_id]
79
- im['seq_num_frames'] = len(capture_ims[im['seq_id']])
80
- if im['season'] not in seasons:
81
- seasons.append(im['season'])
82
-
83
- ann = {}
84
- ann['id'] = str(uuid.uuid1())
85
- ann['image_id'] = im['id']
86
-
87
- if im_name_to_cap_id[im_id] in data_dicts:
88
- im_data = data_dicts[im_name_to_cap_id[im_id]]
89
- im['datetime'] = im_data['DateTime']
90
- if im_data['Species'] not in cat_to_id:
91
- cat_to_id[im_data['Species']] = cat_count
92
- cat_count += 1
93
- ann['category_id'] = cat_to_id[im_data['Species']]
94
- else:
95
- ann['category_id'] = 0
96
-
97
- #still need image width and height
98
- images.append(im)
99
- annotations.append(ann)
100
-
101
- # ...for each image ID
102
-
103
- for cat in cat_to_id:
104
- new_cat = {}
105
- new_cat['id'] = cat_to_id[cat]
106
- new_cat['name'] = cat
107
- categories.append(new_cat)
108
-
109
-
110
- #%% Write output files
111
-
112
- output_file = output_file_folder + 'SnapshotSerengeti.json'
113
- json_data = {}
114
- json_data['images'] = images
115
- json_data['annotations'] = annotations
116
- json_data['categories'] = categories
117
- info = {}
118
- info['year'] = 2018
119
- info['version'] = 1
120
- info['description'] = 'COCO style Snapshot Serengeti database'
121
- info['contributor'] = 'SMB'
122
- info['date_created'] = str(datetime.date.today())
123
- json_data['info'] = info
124
- json.dump(json_data,open(output_file,'w'))
125
-
126
- for season in seasons:
127
-
128
- output_file = output_file_folder + season + '.json'
129
- inSeason = {im['id']:False for im in images}
130
- for im in images:
131
- if im['season'] == season:
132
- inSeason[im['id']] = True
133
- new_ims = [im for im in images if inSeason[im['id']]]
134
- new_anns = [ann for ann in annotations if inSeason[ann['image_id']]]
135
-
136
- json_data = {}
137
- json_data['images'] = new_ims
138
- json_data['annotations'] = new_anns
139
- json_data['categories'] = categories
140
- info = {}
141
- info['year'] = 2018
142
- info['version'] = 1
143
- info['description'] = 'COCO style Snapshot Serengeti database. season ' + season
144
- info['contributor'] = 'SMB'
145
- info['date_created'] = str(datetime.date.today())
146
- json_data['info'] = info
147
- json.dump(json_data,open(output_file,'w'))
148
-
149
- print('Season ' + season)
150
- print(str(len(new_ims)) + ' images')
151
- print(str(len(new_anns)) + ' annotations')
152
-
153
- # ...for each season
@@ -1,65 +0,0 @@
1
- """
2
-
3
- sulross_get_exif.py
4
-
5
- For the Sul Ross dataset, species informationw was stored in XMP metadata; pull
6
- all that metadata out to .json.
7
-
8
- """
9
-
10
- import os
11
- import json
12
- from tqdm import tqdm
13
-
14
- import exiftool
15
-
16
- image_ids_path = '/home/beaver/cameratraps/data/sulross/20190522_image_ids.json'
17
- data_dir = '/home/beaver/cameratraps/mnt/sulross'
18
-
19
-
20
- def get_metadata():
21
-
22
- image_ids = json.load(open(image_ids_path))
23
-
24
- image_id_to_metadata = {}
25
-
26
- # exiftool can process a batch of images at a time, but bottleneck is blobfuse reading the images
27
- batch_size = 20
28
-
29
- num_images_processed = 0
30
-
31
- with exiftool.ExifTool() as et:
32
- for i in tqdm(range(0, len(image_ids), batch_size)):
33
- batch_ids = image_ids[i: i + batch_size]
34
-
35
- batch_paths = [os.path.join(data_dir, i) for i in batch_ids]
36
-
37
- try:
38
- metadatas = et.get_metadata_batch(batch_paths)
39
-
40
- for id, metadata in zip(batch_ids, metadatas):
41
- image_id_to_metadata[id] = metadata['XMP:HierarchicalSubject']
42
- except Exception as e:
43
- print('Exception! {}'.format(e))
44
- continue
45
-
46
- num_images_processed += batch_size
47
- if num_images_processed % 1000 == 0:
48
- print('Finished processing {} images; image ID {}'.format(
49
- num_images_processed, image_ids[num_images_processed - 1]))
50
- print(image_id_to_metadata[id])
51
- print()
52
-
53
- # checkpoint
54
- if num_images_processed % 10000 == 0:
55
- print('Saving results so far...')
56
- with open('/home/beaver/cameratraps/data/sulross/20190522_metadata.json', 'w') as f:
57
- json.dump(image_id_to_metadata, f, indent=1)
58
-
59
- print('Length of meta data read: ', len(image_id_to_metadata))
60
- with open('/home/beaver/cameratraps/data/sulross/20190522_metadata.json', 'w') as f:
61
- json.dump(image_id_to_metadata, f, indent=1)
62
- print('Results saved. Done!')
63
-
64
- if __name__ == '__main__':
65
- get_metadata()