megadetector 5.0.28__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +231 -224
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +340 -337
  65. megadetector/detection/pytorch_detector.py +304 -262
  66. megadetector/detection/run_detector.py +177 -164
  67. megadetector/detection/run_detector_batch.py +364 -363
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +256 -249
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +290 -282
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +415 -415
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +219 -146
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -499
  81. megadetector/postprocessing/load_api_results.py +23 -20
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +313 -298
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -66
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1018 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1457 -398
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +61 -61
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2526
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +401 -397
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +79 -73
  124. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/METADATA +135 -132
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  128. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
  129. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  130. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  131. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  132. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  133. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  134. megadetector/data_management/importers/awc_to_json.py +0 -191
  135. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  136. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  137. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  138. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  139. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  140. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  141. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  142. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  143. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  144. megadetector/data_management/importers/ena24_to_json.py +0 -276
  145. megadetector/data_management/importers/filenames_to_json.py +0 -386
  146. megadetector/data_management/importers/helena_to_cct.py +0 -283
  147. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  148. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  149. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  150. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  151. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  152. megadetector/data_management/importers/missouri_to_json.py +0 -490
  153. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  154. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  155. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  156. megadetector/data_management/importers/pc_to_json.py +0 -365
  157. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  158. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  159. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  160. megadetector/data_management/importers/rspb_to_json.py +0 -356
  161. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  162. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  163. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  164. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  165. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  166. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  167. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  168. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  169. megadetector/data_management/importers/ubc_to_json.py +0 -399
  170. megadetector/data_management/importers/umn_to_json.py +0 -507
  171. megadetector/data_management/importers/wellington_to_json.py +0 -263
  172. megadetector/data_management/importers/wi_to_json.py +0 -442
  173. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  174. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  175. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  176. megadetector-5.0.28.dist-info/RECORD +0 -209
@@ -1,758 +0,0 @@
1
- """
2
-
3
- Import a Snapshot Safari project (one project, one season)
4
-
5
- Before running this script:
6
-
7
- * Mount the blob container where the images live, or copy the
8
- images to local storage
9
-
10
- What this script does:
11
-
12
- * Creates a .json file
13
- * Creates zip archives of the season without humans.
14
- * Copies animals and humans to separate folders
15
-
16
- After running this script:
17
-
18
- * Create or update LILA page
19
- * Push zipfile and unzipped images to LILA
20
- * Push unzipped humans to wildlifeblobssc
21
- * Delete images from UMN upload storage
22
-
23
- Snapshot Serengeti is handled specially, because we're dealing with bounding
24
- boxes too. See snapshot_serengeti_lila.py.
25
-
26
- """
27
-
28
- #%% Imports
29
-
30
- import pandas as pd
31
- import json
32
- import os
33
- import uuid
34
- import humanfriendly
35
- import time
36
- import pprint
37
- import numpy as np
38
- import shutil
39
-
40
- from PIL import Image
41
- from multiprocessing.pool import ThreadPool
42
- from tqdm import tqdm
43
- from zipfile import ZipFile
44
- import zipfile
45
-
46
- from megadetector.utils import path_utils
47
- from megadetector.visualization import visualize_db
48
-
49
-
50
- #%% Constants
51
-
52
- # project_name = 'XXX'; season_name = 'S1'; project_friendly_name = 'Snapshot Unknown'
53
- # project_name = 'SER'; season_name = 'S1-11'; project_friendly_name = 'Snapshot Serengeti'
54
- # project_name = 'KRU'; season_name = 'S1'; project_friendly_name = 'Snapshot Kruger'
55
- # project_name = 'CDB'; season_name = 'S1'; project_friendly_name = 'Snapshot Camdeboo'
56
- # project_name = 'MTZ'; season_name = 'S1'; project_friendly_name = 'Snapshot Mountain Zebra'
57
- # project_name = 'ENO'; season_name = 'S1'; project_friendly_name = 'Snapshot Enonkishu'
58
- # project_name = 'KAR'; season_name = 'S1'; project_friendly_name = 'Snapshot Karoo'
59
- # project_name = 'KGA'; season_name = 'S1'; project_friendly_name = 'Snapshot Kgalagadi'
60
- project_name = 'SER'; season_name = 'S1'; project_friendly_name = 'APN'
61
-
62
- json_version = '2.1'
63
-
64
- snapshot_safari_input_base = 'f:\\'
65
- snapshot_safari_output_base = r'g:\temp\snapshot-safari-out'
66
-
67
- category_mappings = {'blank':'empty'}
68
-
69
- process_images_n_threads = 20
70
-
71
- max_files_per_archive = None
72
-
73
- #%% Folder/file creation
74
-
75
- # E.g. KRU_S1
76
- project_season_name = project_name + '_' + season_name
77
-
78
- # E.g. Z:\KRU
79
- project_base = os.path.join(snapshot_safari_input_base,project_name)
80
- assert(os.path.isdir(project_base))
81
-
82
- # E.g. Z:\KRU\KRU_S1
83
- season_base = os.path.join(project_base,project_season_name)
84
- assert(os.path.isdir(season_base))
85
-
86
- # Contains annotations for each capture event (sequence)
87
- annotation_file = os.path.join(project_base,project_season_name + '_report_lila.csv')
88
-
89
- # Maps image IDs to filenames; each line looks like:
90
- #
91
- # KRU_S1#1#1#2,3,KRU_S1/1/1_R1/KRU_S1_1_R1_IMAG0004.JPG
92
- image_inventory_file = os.path.join(project_base,project_season_name + '_report_lila_image_inventory.csv')
93
-
94
- # Total number of each answer to each question, e.g. total number of times each species was identified
95
- #
96
- # Not used here
97
- response_overview_file = os.path.join(project_base,project_season_name + '_report_lila_overview.csv')
98
-
99
- assert(os.path.isfile(annotation_file))
100
- assert(os.path.isfile(image_inventory_file))
101
- assert(os.path.isfile(response_overview_file))
102
-
103
- # Create output folders
104
- assert(os.path.isdir(snapshot_safari_output_base))
105
-
106
- output_base = os.path.join(snapshot_safari_output_base,project_name)
107
-
108
- json_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
109
- + '_v' + json_version + '.json')
110
- species_list_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
111
- + '_v' + json_version + '.species_list.csv')
112
- summary_info_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
113
- + '_v' + json_version + '.summary_info.txt')
114
-
115
- # Images will be placed in a season-specific folder inside this (the source data includes
116
- # this in path names)
117
- output_public_folder = os.path.join(output_base,project_name + '_public')
118
-
119
- output_public_zipfile = os.path.join(output_base,project_season_name + '.lila.zip')
120
- output_private_folder = os.path.join(output_base,project_season_name + '_private')
121
- output_preview_folder = os.path.join(output_base,project_season_name + '_preview')
122
-
123
- os.makedirs(output_base,exist_ok=True)
124
- os.makedirs(output_public_folder,exist_ok=True)
125
- os.makedirs(output_private_folder,exist_ok=True)
126
- os.makedirs(output_preview_folder,exist_ok=True)
127
-
128
-
129
- #%% Load metadata files
130
-
131
- image_table = pd.read_csv(image_inventory_file)
132
- annotation_table = pd.read_csv(annotation_file)
133
-
134
- print('Finished loading {} image mappings and {} annotations'.format(len(image_table),len(annotation_table)))
135
-
136
-
137
- #%% Convert to dictionaries (prep)
138
-
139
- im_id_to_image = {}
140
- images = []
141
- seq_id_to_images = {}
142
- seq_id_to_annotations = {}
143
-
144
- annotations = []
145
- categories = []
146
-
147
- species_to_category = {}
148
-
149
- empty_category_id = 0
150
- empty_category_name = 'empty'
151
-
152
- empty_cat = {}
153
- empty_cat['id'] = empty_category_id
154
- empty_cat['name'] = empty_category_name
155
- empty_cat['count'] = 0
156
- species_to_category['empty'] = empty_cat
157
- categories.append(empty_cat)
158
-
159
- next_category_id = empty_category_id + 1
160
-
161
-
162
- #%% Convert to dictionaries (loops)
163
-
164
- # iterrows() is a terrible way to do this, but this is one of those days
165
- # where I want to get this done, not get better at Python.
166
-
167
- print('Processing image table')
168
-
169
- start_time = time.time()
170
-
171
- # irow = 0; row = image_table.iloc[0]
172
- for iRow,row in tqdm(image_table.iterrows(),total=len(image_table)):
173
-
174
- # Loaded as an int64, converting to int here
175
- frame_num = int(row['image_rank_in_capture'])
176
- assert frame_num > 0
177
- sequence_id = row['capture_id']
178
- frame_num = int(frame_num)
179
- filename = row['image_path_rel']
180
- tokens = filename.split('.')
181
- assert(len(tokens)==2)
182
- assert(tokens[1] == 'JPG')
183
- id = tokens[0]
184
- im = {}
185
- im['id'] = id
186
- im['file_name'] = filename
187
- im['frame_num'] = frame_num
188
- im['seq_id'] = sequence_id
189
-
190
- assert id not in im_id_to_image
191
- im_id_to_image[id] = im
192
- seq_id_to_images.setdefault(sequence_id,[]).append(im)
193
-
194
- images.append(im)
195
-
196
- # ...for each row in the image table
197
-
198
- # Make sure image IDs are what we think they are
199
- for im in tqdm(images):
200
- assert im['id'] == im['file_name'].replace('.JPG','')
201
-
202
- print('Processing annotation table')
203
-
204
- def is_float_and_nan(x):
205
- return isinstance(x,float) and np.isnan(x)
206
-
207
- n_invalid_dates = 0
208
-
209
- for iRow,row in tqdm(annotation_table.iterrows(),total=len(annotation_table)):
210
-
211
- sequence_id = row['capture_id']
212
-
213
- species = row['question__species'].lower()
214
- if species in category_mappings:
215
- species = category_mappings[species]
216
-
217
- category = None
218
-
219
- if species not in species_to_category:
220
- category = {}
221
- category['id'] = next_category_id
222
- next_category_id = next_category_id + 1
223
- category['name'] = species
224
- category['count'] = 1
225
- categories.append(category)
226
- species_to_category[species] = category
227
- else:
228
- category = species_to_category[species]
229
- category['count'] += 1
230
-
231
- ann = {}
232
- ann['sequence_level_annotation'] = True
233
- ann['id'] = str(uuid.uuid1())
234
- ann['category_id'] = category['id']
235
- ann['seq_id'] = sequence_id
236
-
237
- ann['season'] = row['season']
238
- ann['site'] = row['site']
239
- if is_float_and_nan(row['capture_date_local']) or is_float_and_nan(row['capture_time_local']):
240
- ann['datetime'] = ''
241
- n_invalid_dates += 1
242
- else:
243
- ann['datetime'] = row['capture_date_local'] + ' ' + row['capture_time_local']
244
- ann['subject_id'] = row['subject_id']
245
- ann['count'] = row['question__count_median']
246
- ann['standing'] = row['question__standing']
247
- ann['resting'] = row['question__resting']
248
- ann['moving'] = row['question__moving']
249
- ann['interacting'] = row['question__interacting']
250
- ann['young_present'] = row['question__young_present']
251
-
252
- seq_id_to_annotations.setdefault(sequence_id,[]).append(ann)
253
-
254
- annotations.append(ann)
255
-
256
- # ...for each row in the annotation table
257
-
258
- elapsed = time.time() - start_time
259
- print('Done converting tables to dictionaries in {}'.format(humanfriendly.format_timespan(elapsed)))
260
-
261
- print('Converted {} annotations, {} images, {} categories ({} invalid dates)'.format(
262
- len(annotations),len(images),len(categories),n_invalid_dates))
263
-
264
-
265
- #%% Take a look at categories
266
-
267
- assert(len(im_id_to_image)==len(images))
268
- print('Loaded metadata about {} images and {} sequences'.format(len(images),len(seq_id_to_annotations)))
269
-
270
- categories_by_species = sorted(categories, key = lambda i: i['name'])
271
- categories_by_count = sorted(categories, key = lambda i: i['count'])
272
-
273
- pp = pprint.PrettyPrinter(depth=6)
274
-
275
- # print('\nCategories by species:')
276
- # pp.pprint(categories_by_species)
277
- print('\nCategories by count:')
278
- pp.pprint(categories_by_count)
279
-
280
-
281
- #%% Fill in some image fields we didn't have when we created the image table
282
-
283
- # width, height, corrupt, seq_num_frames, location, datetime
284
-
285
- def process_image(im):
286
-
287
- im['width'] = -1
288
- im['height'] = -1
289
- im['corrupt'] = False
290
- im['location'] = 'unknown'
291
- im['seq_num_frames'] = -1
292
- im['datetime'] = 'unknown'
293
- im['status'] = ''
294
-
295
- if im['seq_id'] not in seq_id_to_annotations:
296
- im['status'] = 'no_annotation'
297
- return im
298
-
299
- seq_annotations = seq_id_to_annotations[im['seq_id']]
300
-
301
- # Every annotation in this list should have the same sequence ID
302
- assert all(ann['seq_id'] == im['seq_id'] for ann in seq_annotations) , 'Error on image {}'.format(im['id'])
303
-
304
- # Figure out "seq_num_frames", which really should be done in a separate lopp;
305
- # there's no reason to do this redundantly for every image
306
- images_in_sequence = seq_id_to_images[im['seq_id']]
307
-
308
- # Every image in this sequence should point back to the same equence
309
- assert all(seqim['seq_id'] == im['seq_id'] for seqim in images_in_sequence), 'Error on image {}'.format(im['id'])
310
-
311
- frame_nums = [seqim['frame_num'] for seqim in images_in_sequence]
312
- seq_num_frames = max(frame_nums)
313
- im['seq_num_frames'] = seq_num_frames
314
-
315
- im['location'] = str(seq_annotations[0]['site'])
316
-
317
- # Every annotation in this list should have the same location
318
- assert all(str(ann['site']) == im['location'] for ann in seq_annotations), 'Error on image {}'.format(im['id'])
319
-
320
- im['datetime'] = seq_annotations[0]['datetime']
321
-
322
- # Every annotation in this list should have the same datetime
323
- assert all(ann['datetime'] == im['datetime'] for ann in seq_annotations), 'Error on image {}'.format(im['id'])
324
-
325
- # Is this image on disk?
326
- fullpath = os.path.join(project_base,im['file_name'])
327
- if not os.path.isfile(fullpath):
328
- im['status'] = 'not_on_disk'
329
- return im
330
-
331
- try:
332
-
333
- pil_im = Image.open(fullpath)
334
- im['height'] = pil_im.height
335
- im['width'] = pil_im.width
336
-
337
- except:
338
-
339
- im['corrupt'] = True
340
-
341
- return im
342
-
343
-
344
- if process_images_n_threads <= 1:
345
-
346
- # iImage = 0; im = images[0]
347
- for iImage,im in tqdm(enumerate(images),total=len(images)):
348
- process_image(im)
349
- # ...for each image
350
-
351
- else:
352
-
353
- pool = ThreadPool(process_images_n_threads)
354
-
355
- # images_processed = pool.map(process_image, images)
356
- # images_processed = list(tqdm(pool.imap_unordered(process_image, images), total=len(images)))
357
- images_processed = list(tqdm(pool.imap(process_image, images), total=len(images)))
358
-
359
- print('Finished adding missing fields to {} images'.format(len(images_processed)))
360
-
361
-
362
- #%% Count missing/corrupted images
363
-
364
- n_missing = 0
365
- n_corrupt = 0
366
- n_no_annotation = 0
367
-
368
- corrupted_images = []
369
- missing_images = []
370
- no_annotation_images = []
371
-
372
- for im in tqdm(images):
373
-
374
- if im['corrupt']:
375
- n_corrupt += 1
376
- corrupted_images.append(im['file_name'])
377
- if im['status'] == '':
378
- continue
379
- elif im['status'] == 'not_on_disk':
380
- n_missing += 1
381
- missing_images.append(im['file_name'])
382
- elif im['status'] == 'no_annotation':
383
- n_no_annotation += 1
384
- no_annotation_images.append(im['file_name'])
385
- else:
386
- raise ValueError('Unrecognized status {}'.format(im['status']))
387
-
388
- print('\nOf {} images: {} missing, {} corrupt, {} no annotation'.format(len(images),
389
- n_missing, n_corrupt, n_no_annotation))
390
-
391
-
392
- #%% Print distribution of sequence lengths
393
-
394
- seq_id_to_sequence_length = {}
395
-
396
- for im in tqdm(images):
397
-
398
- seq_id = im['seq_id']
399
- seq_num_frames = im['seq_num_frames']
400
- if seq_id not in seq_id_to_sequence_length:
401
- seq_id_to_sequence_length[seq_id] = seq_num_frames
402
-
403
- sequence_lengths = list(seq_id_to_sequence_length.values())
404
-
405
- print('\nMean/min/max sequence length is {}/{}/{}'.format(np.mean(sequence_lengths),min(sequence_lengths),max(sequence_lengths)))
406
-
407
-
408
- #%% Replicate annotations across images
409
-
410
- annotations_replicated = []
411
-
412
- # iAnn = 0; ann = annotations[iAnn]
413
- for iAnn,ann in tqdm(enumerate(annotations), total=len(annotations)):
414
-
415
- associated_images = seq_id_to_images[ann['seq_id']]
416
- assert len(associated_images) > 0
417
- for associated_image in associated_images:
418
- new_ann = ann.copy()
419
- new_ann['image_id'] = associated_image['id']
420
- new_ann['id'] = str(uuid.uuid1())
421
- annotations_replicated.append(new_ann)
422
-
423
- print('\nCreated {} replicated annotations from {} original annotations'.format(len(annotations_replicated),
424
- len(annotations)))
425
-
426
- annotations = annotations_replicated
427
-
428
-
429
- #%% See what files are on disk but not annotated
430
-
431
- print('Listing images from disk...')
432
- start_time = time.time()
433
- image_files = path_utils.find_images(project_base,bRecursive=True)
434
- elapsed = time.time() - start_time
435
- print('Finished listing {} files in {}'.format(len(image_files),humanfriendly.format_timespan(elapsed)))
436
-
437
- files_not_in_db = []
438
-
439
- for fn in tqdm(image_files):
440
- id = os.path.relpath(fn,project_base).replace('\\','/').replace('.JPG','')
441
- if id not in im_id_to_image:
442
- files_not_in_db.append(fn)
443
-
444
- print('{} files not in the database (of {})'.format(len(files_not_in_db),len(image_files)))
445
- del fn
446
-
447
-
448
- #%% Validate image and annotation uniqueness
449
-
450
- tmp_img_ids = set()
451
- tmp_ann_ids = set()
452
-
453
- for im in tqdm(images):
454
- assert im['id'] not in tmp_img_ids
455
- tmp_img_ids.add(im['id'])
456
-
457
- for ann in tqdm(annotations):
458
- assert ann['id'] not in tmp_ann_ids
459
- tmp_ann_ids.add(ann['id'])
460
-
461
- print('Finished uniqueness check')
462
-
463
-
464
- #%% Minor updates to fields
465
-
466
- for ann in tqdm(annotations):
467
- ann['location'] = ann['site']
468
- del ann['site']
469
- try:
470
- icount = ann['count']
471
- except:
472
- icount = -1
473
- ann['count'] = icount
474
-
475
- for im in tqdm(images):
476
- del im['status']
477
-
478
- for c in categories:
479
- del c['count']
480
-
481
-
482
- #%% Write .json file
483
-
484
- info = {}
485
- info['version'] = json_version
486
- info['description'] = 'Camera trap data from the {} program'.format(project_friendly_name)
487
- info['date_created'] = '2019'
488
- info['contributor'] = 'Snapshot Safari'
489
-
490
- data = {}
491
- data['info'] = info
492
- data['categories'] = categories
493
- data['annotations'] = annotations
494
- data['images'] = images
495
-
496
- print('Writing data to {}'.format(json_filename))
497
-
498
- s = json.dumps(data,indent=1)
499
- with open(json_filename, "w+") as f:
500
- f.write(s)
501
-
502
-
503
- #%% Create a list of human files
504
-
505
- human_image_ids = set()
506
- human_id = species_to_category['human']['id']
507
-
508
- # ann = annotations[0]
509
- for ann in tqdm(annotations):
510
- if ann['category_id'] == human_id:
511
- human_image_ids.add(ann['image_id'])
512
-
513
- print('Found {} images with humans'.format(len(human_image_ids)))
514
-
515
-
516
- #%% Create public archive and public/private folders
517
-
518
- debug_max_files = -1
519
- n_dot = 1000
520
- n_print = 10000
521
-
522
- n_images_added = 0
523
- zipfilename = output_public_zipfile
524
- zip = ZipFile(zipfilename,'w')
525
-
526
- print('Creating archive {}'.format(output_public_zipfile))
527
-
528
- # im = images[0]
529
- for iImage,im in tqdm(enumerate(images),total=len(images)):
530
-
531
- # E.g. KRU_S1/1/1_R1/KRU_S1_1_R1_IMAG0001.JPG
532
- im_relative_path = im['file_name']
533
- im_absolute_path = os.path.join(project_base,im_relative_path)
534
- assert(os.path.isfile(im_absolute_path))
535
-
536
- image_is_private = (im['id'] in human_image_ids)
537
-
538
- if image_is_private:
539
-
540
- # Copy to private output folder
541
- output_file = os.path.join(output_private_folder,im_relative_path)
542
- os.makedirs(os.path.dirname(output_file),exist_ok=True)
543
- shutil.copyfile(src=im_absolute_path,dst=output_file)
544
- continue
545
-
546
- # Add to zipfile
547
- n_images_added += 1
548
-
549
- # Possibly start a new archive
550
- if (max_files_per_archive is not None) and (n_images_added >= max_files_per_archive):
551
- zip.close()
552
- zipfilename = zipfilename.replace('.zip','.{}.zip'.format(n_images_added))
553
- print('Starting new archive: {}'.format(zipfilename))
554
- zip = ZipFile(zipfilename,'w')
555
- n_images_added = 0
556
-
557
- if (n_images_added % n_dot)==0:
558
- print('.',end='')
559
- if (n_images_added % n_print)==0:
560
- print('{} images added to {}'.format(n_images_added,zipfilename))
561
- if debug_max_files > 0 and n_images_added > debug_max_files:
562
- break
563
-
564
- source_file = os.path.join(project_base,im_relative_path)
565
- dest_file = im['file_name']
566
- zip.write(source_file,dest_file,zipfile.ZIP_STORED)
567
-
568
- # Copy to public output folder
569
- output_file = os.path.join(output_public_folder,im_relative_path)
570
- os.makedirs(os.path.dirname(output_file),exist_ok=True)
571
- shutil.copyfile(src=im_absolute_path,dst=output_file)
572
-
573
- # ...for each image
574
-
575
- zip.close()
576
-
577
- print('\nFinished writing {}, added {} files'.format(zipfilename,n_images_added))
578
-
579
-
580
- #%% Consistency-check-check .json file
581
-
582
- from megadetector.data_management.databases import integrity_check_json_db
583
-
584
- options = integrity_check_json_db.IntegrityCheckOptions()
585
- options.baseDir = output_public_folder
586
- options.bCheckImageSizes = False
587
- options.bCheckImageExistence = True
588
- options.bFindUnusedImages = False
589
-
590
- sortedCategories, data, errorInfo = integrity_check_json_db.integrity_check_json_db(json_filename,options)
591
-
592
- # This will produce some validation errors, because this zipfile doesn't include humans
593
- assert(len(errorInfo['validationErrors']) == len(human_image_ids))
594
-
595
-
596
- #%% Zip up .json and .csv files
597
-
598
- def zip_single_file(fn,zipfilename=None):
599
- '''
600
- Zips a single file fn, by default to fn.zip
601
-
602
- Discards path information, only uses fn's base name.
603
- '''
604
- if zipfilename is None:
605
- zipfilename = fn + '.zip'
606
-
607
- print('Zipping {} to {}'.format(fn,zipfilename))
608
- with ZipFile(zipfilename,'w') as zip:
609
- source_file = fn
610
- dest_file = os.path.basename(fn)
611
- zip.write(source_file,dest_file,zipfile.ZIP_DEFLATED)
612
- return zipfilename
613
-
614
- def zip_files_to_flat(filenames,zipfilename):
615
- '''
616
- Remove path information from everything in [filenames] and
617
- zip to a flat file. Does not check uniqueness.
618
- '''
619
- with ZipFile(zipfilename,'w') as zip:
620
- for fn in filenames:
621
- source_file = fn
622
- dest_file = os.path.basename(fn)
623
- zip.write(source_file,dest_file,zipfile.ZIP_DEFLATED)
624
-
625
- zip_single_file(json_filename)
626
- zip_files_to_flat([annotation_file,image_inventory_file],os.path.join(output_base,project_season_name + '.csv.zip'))
627
-
628
- print('Finished zipping .csv and .json files')
629
-
630
-
631
- #%% When I skip to this part (using a pre-rendered .json file)
632
-
633
- if False:
634
-
635
- #%%
636
-
637
- species_to_category = {}
638
- for cat in categories:
639
- species_to_category[cat['name']] = cat
640
-
641
- #%%
642
-
643
- human_image_ids = set()
644
- human_id = species_to_category['human']['id']
645
-
646
- # ann = annotations[0]
647
- for ann in tqdm(annotations):
648
- if ann['category_id'] == human_id:
649
- human_image_ids.add(ann['image_id'])
650
-
651
- print('Found {} images with humans'.format(len(human_image_ids)))
652
-
653
-
654
- #%% Summary prep for LILA
655
-
656
- with open(json_filename,'r') as f:
657
- data = json.load(f)
658
-
659
- categories = data['categories']
660
- annotations = data['annotations']
661
- images = data['images']
662
-
663
- n_empty = 0
664
- n_species = len(categories)
665
- n_images = len(images)
666
-
667
- sequences = set()
668
- for im in tqdm(images):
669
- sequences.add(im['seq_id'])
670
-
671
- category_id_to_count = {}
672
- for ann in tqdm(annotations):
673
- if ann['category_id'] == 0:
674
- n_empty += 1
675
- if ann['category_id'] in category_id_to_count:
676
- category_id_to_count[ann['category_id']] += 1
677
- else:
678
- category_id_to_count[ann['category_id']] = 1
679
-
680
- empty_categories = []
681
- for c in categories:
682
- if c['id'] in category_id_to_count:
683
- c['count'] = category_id_to_count[c['id']]
684
- else:
685
- empty_categories.append(c)
686
- c['count'] = 0
687
-
688
- categories = [c for c in categories if c['count'] > 0]
689
- sorted_categories = sorted(categories, key=lambda k: k['count'], reverse=True)
690
-
691
- with open(species_list_filename,'w') as f:
692
- for c in sorted_categories:
693
- f.write(c['name'] + ',' + str(c['count']) + '\n')
694
-
695
- n_images = len(images) - len(human_image_ids)
696
- n_sequences = len(sequences)
697
- percent_empty = (100*n_empty)/len(images)
698
- n_categories = len(categories)
699
- top_categories = []
700
-
701
- for i_category in range(0,len(sorted_categories)):
702
- c = sorted_categories[i_category]
703
- cat_name = c['name']
704
- if cat_name != 'human' and cat_name != 'empty':
705
- top_categories.append(cat_name)
706
- if len(top_categories) == 3:
707
- break
708
-
709
- s = 'This data set contains {} sequences of camera trap images, totaling {} images, from the {} project. Labels are provided for {} categories, primarily at the species level (for example, the most common labels are {}, {}, and {}). Approximately {:.2f}% of images are labeled as empty. A full list of species and associated image counts is available <a href="{}">here</a>.'.format(
710
- n_sequences,n_images,project_friendly_name,n_categories,
711
- top_categories[0],top_categories[1],top_categories[2],
712
- percent_empty,
713
- 'https://lilawildlife.blob.core.windows.net/lila-wildlife/snapshot-safari/{}/{}_{}_v{}.species_list.csv'.format(
714
- project_name,project_friendly_name.replace(' ',''),season_name,json_version))
715
- print(s)
716
-
717
- with open(summary_info_filename,'w') as f:
718
- f.write(s)
719
-
720
-
721
- #%% Generate preview, integrity-check labels
722
-
723
- viz_options = visualize_db.DbVizOptions()
724
- viz_options.num_to_visualize = 5000
725
- viz_options.trim_to_images_with_bboxes = False
726
- viz_options.add_search_links = True
727
- viz_options.sort_by_filename = False
728
- viz_options.parallelize_rendering = True
729
- viz_options.classes_to_exclude = ['test','empty']
730
- # viz_options.classes_to_include = ['jackalblackbacked','bustardkori']
731
- html_output_file, image_db = visualize_db.visualize_db(db_path=json_filename,
732
- output_dir=output_preview_folder,
733
- image_base_dir=output_public_folder,
734
- options=viz_options)
735
- os.startfile(html_output_file)
736
-
737
-
738
- #%% Scrap
739
-
740
- if False:
741
-
742
- pass
743
-
744
- #%% Find annotations for a particular image
745
-
746
- fn = missing_images[1000]
747
- id = fn.replace('.JPG','')
748
- im = im_id_to_image[id]
749
- seq_id = im['seq_id']
750
- matching_annotations = [ann for ann in annotations if ann['seq_id'] == seq_id]
751
- print(matching_annotations)
752
-
753
- #%% Write a list of missing images
754
-
755
- with open(os.path.join(output_base,project_name + '_' + season_name + '_missing_images.txt'), 'w') as f:
756
- for fn in missing_images:
757
- f.write('{}\n'.format(fn))
758
-