megadetector 5.0.28__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +231 -224
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +340 -337
  65. megadetector/detection/pytorch_detector.py +304 -262
  66. megadetector/detection/run_detector.py +177 -164
  67. megadetector/detection/run_detector_batch.py +364 -363
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +256 -249
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +290 -282
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +415 -415
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +219 -146
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -499
  81. megadetector/postprocessing/load_api_results.py +23 -20
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +313 -298
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -66
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1018 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1457 -398
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +61 -61
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2526
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +401 -397
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +79 -73
  124. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/METADATA +135 -132
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  128. {megadetector-5.0.28.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
  129. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  130. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  131. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  132. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  133. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  134. megadetector/data_management/importers/awc_to_json.py +0 -191
  135. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  136. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  137. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  138. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  139. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  140. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  141. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  142. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  143. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  144. megadetector/data_management/importers/ena24_to_json.py +0 -276
  145. megadetector/data_management/importers/filenames_to_json.py +0 -386
  146. megadetector/data_management/importers/helena_to_cct.py +0 -283
  147. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  148. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  149. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  150. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  151. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  152. megadetector/data_management/importers/missouri_to_json.py +0 -490
  153. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  154. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  155. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  156. megadetector/data_management/importers/pc_to_json.py +0 -365
  157. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  158. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  159. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  160. megadetector/data_management/importers/rspb_to_json.py +0 -356
  161. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  162. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  163. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  164. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  165. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  166. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  167. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  168. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  169. megadetector/data_management/importers/ubc_to_json.py +0 -399
  170. megadetector/data_management/importers/umn_to_json.py +0 -507
  171. megadetector/data_management/importers/wellington_to_json.py +0 -263
  172. megadetector/data_management/importers/wi_to_json.py +0 -442
  173. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  174. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  175. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  176. megadetector-5.0.28.dist-info/RECORD +0 -209
@@ -1,150 +0,0 @@
1
- """
2
-
3
- jb_csv_to_json.py
4
-
5
- Convert a particular .csv file to CCT format. Images were not available at
6
- the time I wrote this script, so this is much shorter than other scripts
7
- in this folder.
8
-
9
- """
10
-
11
- #%% Constants and environment
12
-
13
- import pandas as pd
14
- import uuid
15
- import json
16
-
17
- input_metadata_file = r'd:\temp\pre_bounding_box.csv'
18
- output_file = r'd:\temp\pre_bounding_box.json'
19
- filename_col = 'filename'
20
- label_col = 'category'
21
-
22
-
23
- #%% Read source data
24
-
25
- input_metadata = pd.read_csv(input_metadata_file)
26
-
27
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
28
- len(input_metadata)))
29
-
30
-
31
- #%% Confirm filename uniqueness (this data set has one label per image)
32
-
33
- imageFilenames = input_metadata[filename_col]
34
-
35
- duplicateRows = []
36
- filenamesToRows = {}
37
-
38
- # Build up a map from filenames to a list of rows, checking image existence as we go
39
- for iFile,fn in enumerate(imageFilenames):
40
-
41
- if (fn in filenamesToRows):
42
- duplicateRows.append(iFile)
43
- filenamesToRows[fn].append(iFile)
44
- else:
45
- filenamesToRows[fn] = [iFile]
46
-
47
- assert(len(duplicateRows) == 0)
48
-
49
-
50
- #%% Create CCT dictionaries
51
-
52
- images = []
53
- annotations = []
54
-
55
- # Map categories to integer IDs (that's what COCO likes)
56
- nextCategoryID = 1
57
- categories = []
58
- categoryNamesToCategories = {}
59
-
60
- cat = {}
61
- cat['name'] = 'empty'
62
- cat['id'] = 0
63
- categories.append(cat)
64
- categoryNamesToCategories['empty'] = cat
65
-
66
- # For each image
67
- #
68
- # Because in practice images are 1:1 with annotations in this data set,
69
- # this is also a loop over annotations.
70
-
71
- # imageName = imageFilenames[0]
72
- for imageName in imageFilenames:
73
-
74
- rows = filenamesToRows[imageName]
75
-
76
- # As per above, this is convenient and appears to be true; asserting to be safe
77
- assert(len(rows) == 1)
78
- iRow = rows[0]
79
-
80
- row = input_metadata.iloc[iRow]
81
-
82
- im = {}
83
- # Filenames look like "290716114012001a1116.jpg"
84
- im['id'] = imageName.split('.')[0]
85
- im['file_name'] = imageName
86
- im['seq_id'] = '-1'
87
-
88
- images.append(im)
89
-
90
- categoryName = row[label_col].lower()
91
-
92
- # Have we seen this category before?
93
- if categoryName in categoryNamesToCategories:
94
- categoryID = categoryNamesToCategories[categoryName]['id']
95
- else:
96
- cat = {}
97
- categoryID = nextCategoryID
98
- cat['name'] = categoryName
99
- cat['id'] = nextCategoryID
100
- categories.append(cat)
101
- categoryNamesToCategories[categoryName] = cat
102
- nextCategoryID += 1
103
-
104
- # Create an annotation
105
- ann = {}
106
-
107
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
108
- # beyond the sheer improbability of collisions.
109
- ann['id'] = str(uuid.uuid1())
110
- ann['image_id'] = im['id']
111
- ann['category_id'] = categoryID
112
-
113
- annotations.append(ann)
114
-
115
- # ...for each image
116
-
117
- print('Finished creating dictionaries')
118
-
119
-
120
- #%% Create info struct
121
-
122
- info = {}
123
- info['year'] = 2019
124
- info['version'] = 1
125
- info['description'] = 'COCO style database'
126
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
127
- info['contributor'] = ''
128
-
129
-
130
- #%% Write output
131
-
132
- json_data = {}
133
- json_data['images'] = images
134
- json_data['annotations'] = annotations
135
- json_data['categories'] = categories
136
- json_data['info'] = info
137
- json.dump(json_data, open(output_file,'w'), indent=4)
138
-
139
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
140
- len(images),len(annotations),len(categories)))
141
-
142
-
143
- #%% Validate
144
-
145
- from megadetector.data_management.databases import integrity_check_json_db
146
-
147
- options = integrity_check_json_db.IntegrityCheckOptions()
148
- sortedCategories,data = integrity_check_json_db.integrity_check_json_db(output_file, options)
149
-
150
-
@@ -1,250 +0,0 @@
1
- """
2
-
3
- mcgill_to_json.py
4
-
5
- Convert the .csv file provided for the McGill test data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import pandas as pd
13
- import os
14
- import glob
15
- import json
16
- import uuid
17
- import time
18
- import ntpath
19
- import humanfriendly
20
- import PIL
21
- import math
22
-
23
- baseDir = r'D:\wildlife_data\mcgill_test'
24
- input_metadata_file = os.path.join(baseDir, 'dan_500_photos_metadata.csv')
25
- output_file = os.path.join(baseDir, 'mcgill_test.json')
26
- image_directory = baseDir
27
-
28
- assert(os.path.isdir(image_directory))
29
- assert(os.path.isfile(input_metadata_file))
30
-
31
-
32
- #%% Read source data
33
-
34
- input_metadata = pd.read_csv(input_metadata_file)
35
-
36
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
37
- len(input_metadata)))
38
-
39
-
40
- #%% Map filenames to rows, verify image existence
41
-
42
- # Create an additional column for concatenated filenames
43
- input_metadata['relative_path'] = ''
44
- input_metadata['full_path'] = ''
45
-
46
- startTime = time.time()
47
-
48
- # Maps relative filenames to rows
49
- filenamesToRows = {}
50
-
51
- duplicateRows = []
52
-
53
- # Build up a map from filenames to a list of rows, checking image existence as we go
54
- # row = input_metadata.iloc[0]
55
- for iFile,row in input_metadata.iterrows():
56
-
57
- relativePath = os.path.join(row['site'],row['date_range'],str(row['camera']),
58
- str(row['folder']),row['filename'])
59
- fullPath = os.path.join(baseDir,relativePath)
60
-
61
- if (relativePath in filenamesToRows):
62
- duplicateRows.append(iFile)
63
- filenamesToRows[relativePath].append(iFile)
64
- else:
65
- filenamesToRows[relativePath] = [iFile]
66
- assert(os.path.isfile(fullPath))
67
-
68
- row['relative_path'] = relativePath
69
- row['full_path'] = fullPath
70
-
71
- input_metadata.iloc[iFile] = row
72
-
73
- elapsed = time.time() - startTime
74
- print('Finished verifying image existence in {}, found {} filenames with multiple labels'.format(
75
- humanfriendly.format_timespan(elapsed),len(duplicateRows)))
76
-
77
- # I didn't expect this to be true a priori, but it appears to be true, and
78
- # it saves us the trouble of checking consistency across multiple occurrences
79
- # of an image.
80
- assert(len(duplicateRows) == 0)
81
-
82
-
83
- #%% Check for images that aren't included in the metadata file
84
-
85
- # Enumerate all images
86
- imageFullPaths = glob.glob(os.path.join(image_directory,'**/*.JPG'), recursive=True)
87
-
88
- for iImage,imagePath in enumerate(imageFullPaths):
89
-
90
- imageRelPath = ntpath.relpath(imagePath, image_directory)
91
- assert(imageRelPath in filenamesToRows)
92
-
93
- print('Finished checking {} images to make sure they\'re in the metadata'.format(
94
- len(imageFullPaths)))
95
-
96
-
97
- #%% Create CCT dictionaries
98
-
99
- # Also gets image sizes, so this takes ~6 minutes
100
- #
101
- # Implicitly checks images for overt corruptness, i.e. by not crashing.
102
-
103
- images = []
104
- annotations = []
105
- categories = []
106
-
107
- emptyCategory = {}
108
- emptyCategory['id'] = 0
109
- emptyCategory['name'] = 'empty'
110
- emptyCategory['latin'] = 'empty'
111
- emptyCategory['count'] = 0
112
- categories.append(emptyCategory)
113
-
114
- # Map categories to integer IDs (that's what COCO likes)
115
- nextCategoryID = 1
116
- labelToCategory = {'empty':emptyCategory}
117
-
118
- # For each image
119
- #
120
- # Because in practice images are 1:1 with annotations in this data set,
121
- # this is also a loop over annotations.
122
-
123
- startTime = time.time()
124
-
125
- # row = input_metadata.iloc[0]
126
- for iFile,row in input_metadata.iterrows():
127
-
128
- relPath = row['relative_path'].replace('\\','/')
129
- im = {}
130
- # Filenames look like "290716114012001a1116.jpg"
131
- im['id'] = relPath.replace('/','_').replace(' ','_')
132
-
133
- im['file_name'] = relPath
134
-
135
- im['seq_id'] = -1
136
- im['frame_num'] = -1
137
-
138
- # In the form "001a"
139
- im['site']= row['site']
140
-
141
- # Can be in the form '111' or 's46'
142
- im['camera'] = row['camera']
143
-
144
- # In the form "7/29/2016 11:40"
145
- im['datetime'] = row['timestamp']
146
-
147
- otherFields = ['motion','temp_F','n_present','n_waterhole','n_contact','notes']
148
-
149
- for s in otherFields:
150
- im[s] = row[s]
151
-
152
- # Check image height and width
153
- fullPath = row['full_path']
154
- assert(os.path.isfile(fullPath))
155
- pilImage = PIL.Image.open(fullPath)
156
- width, height = pilImage.size
157
- im['width'] = width
158
- im['height'] = height
159
-
160
- images.append(im)
161
-
162
- label = row['species']
163
- if not isinstance(label,str):
164
- # NaN is the only thing we should see that's not a string
165
- assert math.isnan(label)
166
- label = 'empty'
167
- else:
168
- label = label.lower()
169
-
170
- latin = row['binomial']
171
- if not isinstance(latin,str):
172
- # NaN is the only thing we should see that's not a string
173
- assert math.isnan(latin)
174
- latin = 'empty'
175
- else:
176
- latin = latin.lower()
177
-
178
- if label == 'empty':
179
- if latin != 'empty':
180
- latin = 'empty'
181
-
182
- if label == 'unknown':
183
- if latin != 'unknown':
184
- latin = 'unknown'
185
-
186
- if label not in labelToCategory:
187
- print('Adding category {} ({})'.format(label,latin))
188
- category = {}
189
- categoryID = nextCategoryID
190
- category['id'] = categoryID
191
- nextCategoryID += 1
192
- category['name'] = label
193
- category['latin'] = latin
194
- category['count'] = 1
195
- labelToCategory[label] = category
196
- categories.append(category)
197
- else:
198
- category = labelToCategory[label]
199
- category['count'] = category['count'] + 1
200
- categoryID = category['id']
201
-
202
- # Create an annotation
203
- ann = {}
204
-
205
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
206
- # beyond the sheer improbability of collisions.
207
- ann['id'] = str(uuid.uuid1())
208
- ann['image_id'] = im['id']
209
- ann['category_id'] = categoryID
210
-
211
- annotations.append(ann)
212
-
213
- # ...for each image
214
-
215
- # Convert categories to a CCT-style dictionary
216
-
217
-
218
- for category in categories:
219
- print('Category {}, count {}'.format(category['name'],category['count']))
220
-
221
- elapsed = time.time() - startTime
222
- print('Finished creating CCT dictionaries in {}'.format(
223
- humanfriendly.format_timespan(elapsed)))
224
-
225
-
226
- #%% Create info struct
227
-
228
- info = {}
229
- info['year'] = 2019
230
- info['version'] = 1
231
- info['description'] = 'COCO style database'
232
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
233
- info['contributor'] = 'McGill University'
234
-
235
-
236
- #%% Write output
237
-
238
- json_data = {}
239
- json_data['images'] = images
240
- json_data['annotations'] = annotations
241
- json_data['categories'] = categories
242
- json_data['info'] = info
243
- json.dump(json_data, open(output_file,'w'), indent=4)
244
-
245
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
246
- len(images),len(annotations),len(categories)))
247
-
248
-
249
-
250
-