google-cloud-pipeline-components 2.20.0__py3-none-any.whl → 2.21.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (61) hide show
  1. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
  2. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
  3. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
  4. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
  5. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
  6. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
  7. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
  8. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
  9. google_cloud_pipeline_components/container/v1/aiplatform/remote_runner.py +1 -1
  10. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  12. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
  14. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
  15. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
  16. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
  17. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  18. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  19. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  20. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  23. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  31. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  32. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  33. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  34. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +0 -7
  35. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  36. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  38. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  39. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  40. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  41. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  42. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  43. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  45. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  46. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  50. google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
  51. google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
  52. google_cloud_pipeline_components/version.py +1 -1
  53. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +22 -19
  54. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +57 -61
  55. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
  56. google_cloud_pipeline_components/proto/README.md +0 -49
  57. google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
  58. google_cloud_pipeline_components/proto/task_error.proto +0 -11
  59. google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
  60. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
  61. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
@@ -658,7 +658,7 @@ deploymentSpec:
658
658
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
659
659
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
660
660
  \ ref.project, ref.dataset_id)\n\n"
661
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
661
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
662
662
  exec-bigquery-create-dataset-2:
663
663
  container:
664
664
  args:
@@ -693,7 +693,7 @@ deploymentSpec:
693
693
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
694
694
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
695
695
  \ ref.project, ref.dataset_id)\n\n"
696
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
696
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
697
697
  exec-bigquery-delete-dataset-with-prefix:
698
698
  container:
699
699
  args:
@@ -727,7 +727,7 @@ deploymentSpec:
727
727
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
728
728
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
729
729
  \n"
730
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
730
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
731
731
  exec-bigquery-query-job:
732
732
  container:
733
733
  args:
@@ -788,7 +788,7 @@ deploymentSpec:
788
788
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
789
789
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
790
790
  \ return config\n\n"
791
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
791
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
792
792
  exec-get-first-valid:
793
793
  container:
794
794
  args:
@@ -812,7 +812,7 @@ deploymentSpec:
812
812
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
813
813
  \n for value in json.loads(values):\n if value:\n return value\n\
814
814
  \ raise ValueError('No valid values.')\n\n"
815
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
815
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
816
816
  exec-get-model-metadata:
817
817
  container:
818
818
  args:
@@ -851,7 +851,7 @@ deploymentSpec:
851
851
  \ 'forecast_horizon',\n ],\n )(\n options.time_series_timestamp_column,\n\
852
852
  \ options.time_series_id_column,\n options.time_series_data_column,\n\
853
853
  \ options.horizon,\n )\n\n"
854
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
854
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
855
855
  exec-get-table-location:
856
856
  container:
857
857
  args:
@@ -887,7 +887,7 @@ deploymentSpec:
887
887
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
888
888
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
889
889
  \ return client.get_table(table).location\n\n"
890
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
891
891
  exec-load-table-from-uri:
892
892
  container:
893
893
  args:
@@ -928,7 +928,7 @@ deploymentSpec:
928
928
  \ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
929
929
  \ destination=destination,\n project=project,\n location=location,\n\
930
930
  \ job_config=job_config).result()\n return destination\n\n"
931
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
931
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
932
932
  exec-maybe-replace-with-default:
933
933
  container:
934
934
  args:
@@ -950,7 +950,7 @@ deploymentSpec:
950
950
  \ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
951
951
  \ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
952
952
  \n return default if not value else value\n\n"
953
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
953
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
954
954
  exec-validate-inputs:
955
955
  container:
956
956
  args:
@@ -1046,7 +1046,7 @@ deploymentSpec:
1046
1046
  \ raise ValueError(\n 'Granularity unit should be one of the\
1047
1047
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
1048
1048
  \n"
1049
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1049
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1050
1050
  pipelineInfo:
1051
1051
  description: Forecasts using a BQML ARIMA_PLUS model.
1052
1052
  name: automl-tabular-bqml-arima-prediction
@@ -3399,7 +3399,7 @@ deploymentSpec:
3399
3399
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
3400
3400
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
3401
3401
  \ ref.project, ref.dataset_id)\n\n"
3402
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3402
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3403
3403
  exec-bigquery-create-dataset-2:
3404
3404
  container:
3405
3405
  args:
@@ -3434,7 +3434,7 @@ deploymentSpec:
3434
3434
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
3435
3435
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
3436
3436
  \ ref.project, ref.dataset_id)\n\n"
3437
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3437
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3438
3438
  exec-bigquery-create-model-job:
3439
3439
  container:
3440
3440
  args:
@@ -3494,7 +3494,7 @@ deploymentSpec:
3494
3494
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
3495
3495
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
3496
3496
  \n"
3497
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3497
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3498
3498
  exec-bigquery-list-rows:
3499
3499
  container:
3500
3500
  args:
@@ -3532,7 +3532,7 @@ deploymentSpec:
3532
3532
  \ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
3533
3533
  \ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
3534
3534
  \ return result\n\n"
3535
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3535
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3536
3536
  exec-bigquery-list-rows-2:
3537
3537
  container:
3538
3538
  args:
@@ -3570,7 +3570,7 @@ deploymentSpec:
3570
3570
  \ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
3571
3571
  \ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
3572
3572
  \ return result\n\n"
3573
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3573
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3574
3574
  exec-bigquery-query-job:
3575
3575
  container:
3576
3576
  args:
@@ -3739,7 +3739,7 @@ deploymentSpec:
3739
3739
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3740
3740
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3741
3741
  \ return config\n\n"
3742
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3742
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3743
3743
  exec-build-job-configuration-query-2:
3744
3744
  container:
3745
3745
  args:
@@ -3773,7 +3773,7 @@ deploymentSpec:
3773
3773
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3774
3774
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3775
3775
  \ return config\n\n"
3776
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3776
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3777
3777
  exec-build-job-configuration-query-3:
3778
3778
  container:
3779
3779
  args:
@@ -3807,7 +3807,7 @@ deploymentSpec:
3807
3807
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3808
3808
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3809
3809
  \ return config\n\n"
3810
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3810
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3811
3811
  exec-build-job-configuration-query-4:
3812
3812
  container:
3813
3813
  args:
@@ -3841,7 +3841,7 @@ deploymentSpec:
3841
3841
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3842
3842
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3843
3843
  \ return config\n\n"
3844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3844
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3845
3845
  exec-build-job-configuration-query-5:
3846
3846
  container:
3847
3847
  args:
@@ -3875,7 +3875,7 @@ deploymentSpec:
3875
3875
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3876
3876
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3877
3877
  \ return config\n\n"
3878
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3878
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3879
3879
  exec-build-job-configuration-query-6:
3880
3880
  container:
3881
3881
  args:
@@ -3909,7 +3909,7 @@ deploymentSpec:
3909
3909
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3910
3910
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3911
3911
  \ return config\n\n"
3912
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3912
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3913
3913
  exec-build-serialized-query-parameters:
3914
3914
  container:
3915
3915
  args:
@@ -3980,7 +3980,7 @@ deploymentSpec:
3980
3980
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
3981
3981
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
3982
3982
  \ },\n })\n return query_parameters\n\n"
3983
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3983
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3984
3984
  exec-build-serialized-query-parameters-2:
3985
3985
  container:
3986
3986
  args:
@@ -4051,7 +4051,7 @@ deploymentSpec:
4051
4051
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
4052
4052
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
4053
4053
  \ },\n })\n return query_parameters\n\n"
4054
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4054
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4055
4055
  exec-build-serialized-query-parameters-3:
4056
4056
  container:
4057
4057
  args:
@@ -4122,7 +4122,7 @@ deploymentSpec:
4122
4122
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
4123
4123
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
4124
4124
  \ },\n })\n return query_parameters\n\n"
4125
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4125
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4126
4126
  exec-cond:
4127
4127
  container:
4128
4128
  args:
@@ -4144,7 +4144,7 @@ deploymentSpec:
4144
4144
  \ *\n\ndef cond(predicate: bool, true_str: str, false_str: str) -> str:\n\
4145
4145
  \ \"\"\"Returns true_str if predicate is true, else false_str.\"\"\"\n\
4146
4146
  \ return true_str if predicate else false_str\n\n"
4147
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4147
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4148
4148
  exec-create-metrics-artifact:
4149
4149
  container:
4150
4150
  args:
@@ -4170,7 +4170,7 @@ deploymentSpec:
4170
4170
  \ 'MAPE': 'meanAbsolutePercentageError',\n }\n metrics = {metric_name_map[k]:\
4171
4171
  \ v for k, v in dict(metrics_rows[0]).items()}\n evaluation_metrics.metadata\
4172
4172
  \ = metrics\n\n"
4173
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4173
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4174
4174
  exec-feature-transform-engine:
4175
4175
  container:
4176
4176
  args:
@@ -4255,8 +4255,8 @@ deploymentSpec:
4255
4255
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
4256
4256
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
4257
4257
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
4258
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
4259
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
4258
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
4259
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
4260
4260
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
4261
4261
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
4262
4262
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -4273,7 +4273,7 @@ deploymentSpec:
4273
4273
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
4274
4274
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
4275
4275
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
4276
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
4276
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
4277
4277
  exec-get-fte-suffix:
4278
4278
  container:
4279
4279
  args:
@@ -4301,7 +4301,7 @@ deploymentSpec:
4301
4301
  \ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
4302
4302
  \ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
4303
4303
  \n"
4304
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4304
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4305
4305
  exec-get-table-location:
4306
4306
  container:
4307
4307
  args:
@@ -4337,7 +4337,7 @@ deploymentSpec:
4337
4337
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
4338
4338
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
4339
4339
  \ return client.get_table(table).location\n\n"
4340
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4340
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4341
4341
  exec-get-value:
4342
4342
  container:
4343
4343
  args:
@@ -4358,7 +4358,7 @@ deploymentSpec:
4358
4358
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
4359
4359
  \ *\n\ndef get_value(d: Dict[str, str], key: str) -> str:\n return d[key]\n\
4360
4360
  \n"
4361
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4361
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4362
4362
  exec-get-window-query-priority:
4363
4363
  container:
4364
4364
  args:
@@ -4382,7 +4382,7 @@ deploymentSpec:
4382
4382
  \ depending on the window number.\"\"\"\n if int(window['window_number'])\
4383
4383
  \ <= max_interactive:\n return 'INTERACTIVE'\n else:\n return 'BATCH'\n\
4384
4384
  \n"
4385
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4385
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4386
4386
  exec-maybe-replace-with-default:
4387
4387
  container:
4388
4388
  args:
@@ -4404,7 +4404,7 @@ deploymentSpec:
4404
4404
  \ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
4405
4405
  \ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
4406
4406
  \n return default if not value else value\n\n"
4407
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4407
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4408
4408
  exec-query-with-retry:
4409
4409
  container:
4410
4410
  args:
@@ -4458,7 +4458,7 @@ deploymentSpec:
4458
4458
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4459
4459
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4460
4460
  \n"
4461
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4461
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4462
4462
  exec-query-with-retry-2:
4463
4463
  container:
4464
4464
  args:
@@ -4512,7 +4512,7 @@ deploymentSpec:
4512
4512
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4513
4513
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4514
4514
  \n"
4515
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4515
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4516
4516
  exec-query-with-retry-3:
4517
4517
  container:
4518
4518
  args:
@@ -4566,7 +4566,7 @@ deploymentSpec:
4566
4566
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4567
4567
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4568
4568
  \n"
4569
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4569
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4570
4570
  exec-table-to-uri:
4571
4571
  container:
4572
4572
  args:
@@ -4596,7 +4596,7 @@ deploymentSpec:
4596
4596
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
4597
4597
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
4598
4598
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
4599
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4599
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4600
4600
  exec-table-to-uri-2:
4601
4601
  container:
4602
4602
  args:
@@ -4626,7 +4626,7 @@ deploymentSpec:
4626
4626
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
4627
4627
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
4628
4628
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
4629
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4629
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4630
4630
  exec-validate-inputs:
4631
4631
  container:
4632
4632
  args:
@@ -4722,7 +4722,7 @@ deploymentSpec:
4722
4722
  \ raise ValueError(\n 'Granularity unit should be one of the\
4723
4723
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
4724
4724
  \n"
4725
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4725
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4726
4726
  exec-wrapped-in-list:
4727
4727
  container:
4728
4728
  args:
@@ -4743,7 +4743,7 @@ deploymentSpec:
4743
4743
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
4744
4744
  \ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
4745
4745
  \ in a list.\"\"\"\n return [value]\n\n"
4746
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
4746
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
4747
4747
  pipelineInfo:
4748
4748
  description: Trains a BQML ARIMA_PLUS model.
4749
4749
  name: automl-tabular-bqml-arima-train
@@ -1461,7 +1461,7 @@ deploymentSpec:
1461
1461
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
1462
1462
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
1463
1463
  \ ref.project, ref.dataset_id)\n\n"
1464
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1464
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1465
1465
  exec-bigquery-delete-dataset-with-prefix:
1466
1466
  container:
1467
1467
  args:
@@ -1495,7 +1495,7 @@ deploymentSpec:
1495
1495
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
1496
1496
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
1497
1497
  \n"
1498
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1498
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1499
1499
  exec-bigquery-query-job:
1500
1500
  container:
1501
1501
  args:
@@ -1583,7 +1583,7 @@ deploymentSpec:
1583
1583
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
1584
1584
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
1585
1585
  \ return config\n\n"
1586
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1586
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1587
1587
  exec-build-job-configuration-query-2:
1588
1588
  container:
1589
1589
  args:
@@ -1617,7 +1617,7 @@ deploymentSpec:
1617
1617
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
1618
1618
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
1619
1619
  \ return config\n\n"
1620
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1620
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1621
1621
  exec-get-first-valid:
1622
1622
  container:
1623
1623
  args:
@@ -1641,7 +1641,7 @@ deploymentSpec:
1641
1641
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
1642
1642
  \n for value in json.loads(values):\n if value:\n return value\n\
1643
1643
  \ raise ValueError('No valid values.')\n\n"
1644
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1644
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1645
1645
  exec-get-table-location:
1646
1646
  container:
1647
1647
  args:
@@ -1677,7 +1677,7 @@ deploymentSpec:
1677
1677
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
1678
1678
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
1679
1679
  \ return client.get_table(table).location\n\n"
1680
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1680
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1681
1681
  exec-get-table-location-2:
1682
1682
  container:
1683
1683
  args:
@@ -1713,7 +1713,7 @@ deploymentSpec:
1713
1713
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
1714
1714
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
1715
1715
  \ return client.get_table(table).location\n\n"
1716
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1716
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1717
1717
  exec-load-table-from-uri:
1718
1718
  container:
1719
1719
  args:
@@ -1754,7 +1754,7 @@ deploymentSpec:
1754
1754
  \ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
1755
1755
  \ destination=destination,\n project=project,\n location=location,\n\
1756
1756
  \ job_config=job_config).result()\n return destination\n\n"
1757
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1757
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1758
1758
  exec-make-vertex-model-artifact:
1759
1759
  container:
1760
1760
  args:
@@ -1778,7 +1778,7 @@ deploymentSpec:
1778
1778
  Creates a google.VertexModel artifact.\"\"\"\n vertex_model.metadata =\
1779
1779
  \ {'resourceName': model_resource_name}\n vertex_model.uri = (f'https://{location}-aiplatform.googleapis.com'\n\
1780
1780
  \ f'/v1/{model_resource_name}')\n\n"
1781
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1781
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1782
1782
  exec-maybe-replace-with-default:
1783
1783
  container:
1784
1784
  args:
@@ -1800,7 +1800,7 @@ deploymentSpec:
1800
1800
  \ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
1801
1801
  \ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
1802
1802
  \n return default if not value else value\n\n"
1803
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1803
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1804
1804
  exec-model-batch-predict:
1805
1805
  container:
1806
1806
  args:
@@ -1879,7 +1879,7 @@ deploymentSpec:
1879
1879
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
1880
1880
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
1881
1881
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
1882
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1882
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1883
1883
  exec-table-to-uri-2:
1884
1884
  container:
1885
1885
  args:
@@ -1909,7 +1909,7 @@ deploymentSpec:
1909
1909
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
1910
1910
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
1911
1911
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
1912
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
1912
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
1913
1913
  exec-validate-inputs:
1914
1914
  container:
1915
1915
  args:
@@ -2005,7 +2005,7 @@ deploymentSpec:
2005
2005
  \ raise ValueError(\n 'Granularity unit should be one of the\
2006
2006
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
2007
2007
  \n"
2008
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2008
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2009
2009
  pipelineInfo:
2010
2010
  description: Creates a batch prediction using a Prophet model.
2011
2011
  name: prophet-predict
@@ -108,17 +108,17 @@ def prophet_trainer(
108
108
  '"machine_spec": {"machine_type": "n1-standard-4"}, ',
109
109
  (
110
110
  '"container_spec":'
111
- ' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", '
111
+ ' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", '
112
112
  ),
113
113
  '"args": ["prophet_trainer", "',
114
114
  (
115
115
  f'--job_name=dataflow-{dsl.PIPELINE_JOB_NAME_PLACEHOLDER}", "'
116
116
  ),
117
117
  (
118
- '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625", "'
118
+ '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525", "'
119
119
  ),
120
120
  (
121
- '--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250129_0625", "'
121
+ '--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250827_0525", "'
122
122
  ),
123
123
  '--artifacts_dir=',
124
124
  root_dir,
@@ -2021,7 +2021,7 @@ deploymentSpec:
2021
2021
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
2022
2022
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
2023
2023
  \ ref.project, ref.dataset_id)\n\n"
2024
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2024
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2025
2025
  exec-bigquery-delete-dataset-with-prefix:
2026
2026
  container:
2027
2027
  args:
@@ -2055,7 +2055,7 @@ deploymentSpec:
2055
2055
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
2056
2056
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
2057
2057
  \n"
2058
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2058
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2059
2059
  exec-bigquery-query-job:
2060
2060
  container:
2061
2061
  args:
@@ -2116,7 +2116,7 @@ deploymentSpec:
2116
2116
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
2117
2117
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
2118
2118
  \ return config\n\n"
2119
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2119
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2120
2120
  exec-feature-transform-engine:
2121
2121
  container:
2122
2122
  args:
@@ -2201,8 +2201,8 @@ deploymentSpec:
2201
2201
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2202
2202
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2203
2203
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2204
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2205
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2204
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2205
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2206
2206
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2207
2207
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2208
2208
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2219,7 +2219,7 @@ deploymentSpec:
2219
2219
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2220
2220
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2221
2221
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2222
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2222
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2223
2223
  exec-get-fte-suffix:
2224
2224
  container:
2225
2225
  args:
@@ -2247,7 +2247,7 @@ deploymentSpec:
2247
2247
  \ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
2248
2248
  \ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
2249
2249
  \n"
2250
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2250
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2251
2251
  exec-get-table-location:
2252
2252
  container:
2253
2253
  args:
@@ -2283,7 +2283,7 @@ deploymentSpec:
2283
2283
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
2284
2284
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
2285
2285
  \ return client.get_table(table).location\n\n"
2286
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2286
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2287
2287
  exec-model-evaluation-regression:
2288
2288
  container:
2289
2289
  args:
@@ -2394,10 +2394,10 @@ deploymentSpec:
2394
2394
  ", "\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2395
2395
  "\"}, ", "\"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"1\",
2396
2396
  ", "\"machine_spec\": {\"machine_type\": \"n1-standard-4\"}, ", "\"container_spec\":
2397
- {\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625\",
2397
+ {\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525\",
2398
2398
  ", "\"args\": [\"prophet_trainer\", \"", "--job_name=dataflow-{{$.pipeline_job_name}}\",
2399
- \"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625\",
2400
- \"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250129_0625\",
2399
+ \"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525\",
2400
+ \"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20250827_0525\",
2401
2401
  \"", "--artifacts_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/model/\",
2402
2402
  \"", "--evaluated_examples_dir=", "{{$.inputs.parameters[''root_dir'']}}",
2403
2403
  "/{{$.pipeline_job_uuid}}/eval/\", \"", "--region=", "{{$.inputs.parameters[''location'']}}",
@@ -2458,7 +2458,7 @@ deploymentSpec:
2458
2458
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
2459
2459
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
2460
2460
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
2461
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2461
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2462
2462
  exec-validate-inputs:
2463
2463
  container:
2464
2464
  args:
@@ -2554,7 +2554,7 @@ deploymentSpec:
2554
2554
  \ raise ValueError(\n 'Granularity unit should be one of the\
2555
2555
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
2556
2556
  \n"
2557
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2557
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2558
2558
  exec-wrapped-in-list:
2559
2559
  container:
2560
2560
  args:
@@ -2575,7 +2575,7 @@ deploymentSpec:
2575
2575
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
2576
2576
  \ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
2577
2577
  \ in a list.\"\"\"\n return [value]\n\n"
2578
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2578
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2579
2579
  pipelineInfo:
2580
2580
  description: Trains one Prophet model per time series.
2581
2581
  name: prophet-train