google-cloud-pipeline-components 2.20.0__py3-none-any.whl → 2.21.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
- google_cloud_pipeline_components/container/v1/aiplatform/remote_runner.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +0 -7
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
- google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +22 -19
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +57 -61
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/proto/README.md +0 -49
- google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
- google_cloud_pipeline_components/proto/task_error.proto +0 -11
- google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
|
@@ -5577,7 +5577,7 @@ deploymentSpec:
|
|
|
5577
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5578
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5579
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5580
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5581
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5582
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5583
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5611,7 +5611,7 @@ deploymentSpec:
|
|
|
5611
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5612
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5613
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5614
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5615
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5616
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5617
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5646,11 +5646,11 @@ deploymentSpec:
|
|
|
5646
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5647
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5648
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5650
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5651
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5652
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5653
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5654
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5655
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5656
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5689,11 +5689,11 @@ deploymentSpec:
|
|
|
5689
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5690
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5691
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5693
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5694
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5695
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5696
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5697
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5698
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5699
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5732,7 +5732,7 @@ deploymentSpec:
|
|
|
5732
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5733
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5734
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5735
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
5736
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5737
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5738
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5797,7 +5797,7 @@ deploymentSpec:
|
|
|
5797
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5798
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5799
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5800
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5801
5801
|
exec-calculate-training-parameters-2:
|
|
5802
5802
|
container:
|
|
5803
5803
|
args:
|
|
@@ -5853,7 +5853,7 @@ deploymentSpec:
|
|
|
5853
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5854
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5855
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5856
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5857
5857
|
exec-feature-attribution:
|
|
5858
5858
|
container:
|
|
5859
5859
|
args:
|
|
@@ -6044,8 +6044,8 @@ deploymentSpec:
|
|
|
6044
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6045
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6047
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6048
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6049
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6050
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6051
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6062,7 +6062,7 @@ deploymentSpec:
|
|
|
6062
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6063
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6064
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6065
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6066
6066
|
resources:
|
|
6067
6067
|
cpuLimit: 8.0
|
|
6068
6068
|
memoryLimit: 30.0
|
|
@@ -6093,7 +6093,7 @@ deploymentSpec:
|
|
|
6093
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6094
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6095
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6096
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6097
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6098
6098
|
container:
|
|
6099
6099
|
args:
|
|
@@ -6121,7 +6121,7 @@ deploymentSpec:
|
|
|
6121
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6122
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6123
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6125
6125
|
exec-get-or-create-model-description:
|
|
6126
6126
|
container:
|
|
6127
6127
|
args:
|
|
@@ -6150,7 +6150,7 @@ deploymentSpec:
|
|
|
6150
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6154
6154
|
exec-get-or-create-model-description-2:
|
|
6155
6155
|
container:
|
|
6156
6156
|
args:
|
|
@@ -6179,7 +6179,7 @@ deploymentSpec:
|
|
|
6179
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6180
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6181
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6182
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6183
6183
|
exec-get-prediction-image-uri:
|
|
6184
6184
|
container:
|
|
6185
6185
|
args:
|
|
@@ -6202,14 +6202,14 @@ deploymentSpec:
|
|
|
6202
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6203
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6204
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6205
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6206
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6207
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6208
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6209
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6210
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6211
|
-
\ )\n return images[model_type]\n\n"
|
|
6212
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6206
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6207
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6208
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6209
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6210
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6211
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6213
6213
|
exec-get-prediction-image-uri-2:
|
|
6214
6214
|
container:
|
|
6215
6215
|
args:
|
|
@@ -6232,14 +6232,14 @@ deploymentSpec:
|
|
|
6232
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6233
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6234
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6235
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6236
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6237
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6238
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6239
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6240
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6241
|
-
\ )\n return images[model_type]\n\n"
|
|
6242
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6236
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6237
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6238
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6239
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6240
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6241
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6243
6243
|
exec-get-predictions-column:
|
|
6244
6244
|
container:
|
|
6245
6245
|
args:
|
|
@@ -6262,7 +6262,7 @@ deploymentSpec:
|
|
|
6262
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6263
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6264
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6265
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6266
6266
|
exec-get-predictions-column-2:
|
|
6267
6267
|
container:
|
|
6268
6268
|
args:
|
|
@@ -6285,7 +6285,7 @@ deploymentSpec:
|
|
|
6285
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6286
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6287
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6288
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6289
6289
|
exec-importer:
|
|
6290
6290
|
importer:
|
|
6291
6291
|
artifactUri:
|
|
@@ -6817,7 +6817,7 @@ deploymentSpec:
|
|
|
6817
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6818
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6819
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6820
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6821
6821
|
exec-split-materialized-data:
|
|
6822
6822
|
container:
|
|
6823
6823
|
args:
|
|
@@ -6863,7 +6863,7 @@ deploymentSpec:
|
|
|
6863
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6864
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6865
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6866
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6867
6867
|
exec-string-not-empty:
|
|
6868
6868
|
container:
|
|
6869
6869
|
args:
|
|
@@ -6887,7 +6887,7 @@ deploymentSpec:
|
|
|
6887
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6888
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6889
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6891
6891
|
exec-table-to-uri:
|
|
6892
6892
|
container:
|
|
6893
6893
|
args:
|
|
@@ -6917,7 +6917,7 @@ deploymentSpec:
|
|
|
6917
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6918
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6919
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6920
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6921
6921
|
exec-table-to-uri-2:
|
|
6922
6922
|
container:
|
|
6923
6923
|
args:
|
|
@@ -6947,7 +6947,7 @@ deploymentSpec:
|
|
|
6947
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6948
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6949
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6950
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6951
6951
|
exec-training-configurator-and-validator:
|
|
6952
6952
|
container:
|
|
6953
6953
|
args:
|
|
@@ -6992,7 +6992,7 @@ deploymentSpec:
|
|
|
6992
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6993
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6994
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6995
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6996
6996
|
pipelineInfo:
|
|
6997
6997
|
description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
|
|
6998
6998
|
name: time-series-dense-encoder-forecasting
|
|
@@ -65,7 +65,7 @@ def automated_feature_engineering(
|
|
|
65
65
|
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
|
|
66
66
|
' "container_spec": {"image_uri":"'
|
|
67
67
|
),
|
|
68
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
68
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525',
|
|
69
69
|
'", "args": ["feature_engineering", "--project=', project,
|
|
70
70
|
'", "--location=', location, '", "--data_source_bigquery_table_path=',
|
|
71
71
|
data_source_bigquery_table_path,
|
|
@@ -8622,9 +8622,9 @@ deploymentSpec:
|
|
|
8622
8622
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8623
8623
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8624
8624
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8625
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8625
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8626
8626
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8627
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8627
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
|
|
8628
8628
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8629
8629
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8630
8630
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8665,9 +8665,9 @@ deploymentSpec:
|
|
|
8665
8665
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8666
8666
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8667
8667
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8668
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8668
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8669
8669
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8670
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8670
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
|
|
8671
8671
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8672
8672
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8673
8673
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8708,7 +8708,7 @@ deploymentSpec:
|
|
|
8708
8708
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8709
8709
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8710
8710
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8711
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8711
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8712
8712
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8713
8713
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8714
8714
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8720,7 +8720,7 @@ deploymentSpec:
|
|
|
8720
8720
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8721
8721
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8722
8722
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8723
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8723
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
|
|
8724
8724
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8725
8725
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8726
8726
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8749,7 +8749,7 @@ deploymentSpec:
|
|
|
8749
8749
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8750
8750
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8751
8751
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8752
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8752
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8753
8753
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8754
8754
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8755
8755
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8761,7 +8761,7 @@ deploymentSpec:
|
|
|
8761
8761
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8762
8762
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8763
8763
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8764
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8764
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
|
|
8765
8765
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8766
8766
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8767
8767
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8790,7 +8790,7 @@ deploymentSpec:
|
|
|
8790
8790
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8791
8791
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8792
8792
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8793
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8793
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8794
8794
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8795
8795
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8796
8796
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8802,7 +8802,7 @@ deploymentSpec:
|
|
|
8802
8802
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8803
8803
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8804
8804
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8805
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8805
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
|
|
8806
8806
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8807
8807
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8808
8808
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8831,7 +8831,7 @@ deploymentSpec:
|
|
|
8831
8831
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8832
8832
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8833
8833
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8834
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8834
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8835
8835
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
8836
8836
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
8837
8837
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -8846,7 +8846,7 @@ deploymentSpec:
|
|
|
8846
8846
|
args:
|
|
8847
8847
|
- --executor_input
|
|
8848
8848
|
- '{{$}}'
|
|
8849
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8849
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
|
|
8850
8850
|
resources:
|
|
8851
8851
|
cpuLimit: 8.0
|
|
8852
8852
|
memoryLimit: 52.0
|
|
@@ -8855,7 +8855,7 @@ deploymentSpec:
|
|
|
8855
8855
|
args:
|
|
8856
8856
|
- --executor_input
|
|
8857
8857
|
- '{{$}}'
|
|
8858
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8858
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
|
|
8859
8859
|
resources:
|
|
8860
8860
|
cpuLimit: 8.0
|
|
8861
8861
|
memoryLimit: 52.0
|
|
@@ -8864,7 +8864,7 @@ deploymentSpec:
|
|
|
8864
8864
|
args:
|
|
8865
8865
|
- --executor_input
|
|
8866
8866
|
- '{{$}}'
|
|
8867
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8867
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
|
|
8868
8868
|
resources:
|
|
8869
8869
|
cpuLimit: 8.0
|
|
8870
8870
|
memoryLimit: 52.0
|
|
@@ -8884,9 +8884,9 @@ deploymentSpec:
|
|
|
8884
8884
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8885
8885
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8886
8886
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8887
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8887
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8888
8888
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8889
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8889
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
|
|
8890
8890
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8891
8891
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8892
8892
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8931,9 +8931,9 @@ deploymentSpec:
|
|
|
8931
8931
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8932
8932
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8933
8933
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8934
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8934
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8935
8935
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8936
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8936
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
|
|
8937
8937
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8938
8938
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8939
8939
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8978,7 +8978,7 @@ deploymentSpec:
|
|
|
8978
8978
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8979
8979
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8980
8980
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8981
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8981
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
8982
8982
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
8983
8983
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
8984
8984
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -8999,7 +8999,7 @@ deploymentSpec:
|
|
|
8999
8999
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
9000
9000
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
9001
9001
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
9002
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
9002
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525",
|
|
9003
9003
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
9004
9004
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
9005
9005
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -9030,7 +9030,7 @@ deploymentSpec:
|
|
|
9030
9030
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
9031
9031
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
9032
9032
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
9033
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
9033
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
9034
9034
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
9035
9035
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
9036
9036
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -9051,7 +9051,7 @@ deploymentSpec:
|
|
|
9051
9051
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
9052
9052
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
9053
9053
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
9054
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
9054
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525",
|
|
9055
9055
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
9056
9056
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
9057
9057
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -9087,7 +9087,7 @@ deploymentSpec:
|
|
|
9087
9087
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9088
9088
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9089
9089
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9090
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9090
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9091
9091
|
exec-bool-identity-2:
|
|
9092
9092
|
container:
|
|
9093
9093
|
args:
|
|
@@ -9109,7 +9109,7 @@ deploymentSpec:
|
|
|
9109
9109
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9110
9110
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9111
9111
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9112
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9112
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9113
9113
|
exec-bool-identity-3:
|
|
9114
9114
|
container:
|
|
9115
9115
|
args:
|
|
@@ -9131,7 +9131,7 @@ deploymentSpec:
|
|
|
9131
9131
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9132
9132
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9133
9133
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9134
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9134
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9135
9135
|
exec-calculate-training-parameters:
|
|
9136
9136
|
container:
|
|
9137
9137
|
args:
|
|
@@ -9223,7 +9223,7 @@ deploymentSpec:
|
|
|
9223
9223
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9224
9224
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9225
9225
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9226
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9226
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9227
9227
|
exec-calculate-training-parameters-2:
|
|
9228
9228
|
container:
|
|
9229
9229
|
args:
|
|
@@ -9315,7 +9315,7 @@ deploymentSpec:
|
|
|
9315
9315
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9316
9316
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9317
9317
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9318
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9318
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9319
9319
|
exec-check-if-binary-classification:
|
|
9320
9320
|
container:
|
|
9321
9321
|
args:
|
|
@@ -9343,7 +9343,7 @@ deploymentSpec:
|
|
|
9343
9343
|
\ with open(example_gen_metadata, 'r') as f:\n metadata_path = f.read()\n\
|
|
9344
9344
|
\ metadata = json.loads(metadata_path)\n return str(metadata['objective']\
|
|
9345
9345
|
\ == 'binary_classification').lower()\n\n"
|
|
9346
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9346
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9347
9347
|
exec-feature-attribution:
|
|
9348
9348
|
container:
|
|
9349
9349
|
args:
|
|
@@ -9536,7 +9536,7 @@ deploymentSpec:
|
|
|
9536
9536
|
\ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
|
|
9537
9537
|
\ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
|
|
9538
9538
|
\ f.write(','.join([split_0_content, split_1_content]))\n\n"
|
|
9539
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9539
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
9540
9540
|
exec-model-batch-explanation:
|
|
9541
9541
|
container:
|
|
9542
9542
|
args:
|
|
@@ -10383,7 +10383,7 @@ deploymentSpec:
|
|
|
10383
10383
|
\n train_spec['transformations'] = purged_transformation_list\n metadata['train_spec']\
|
|
10384
10384
|
\ = train_spec\n\n with open(output_metadata, 'w') as f:\n f.write(json.dumps(metadata))\n\
|
|
10385
10385
|
\n"
|
|
10386
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10386
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10387
10387
|
exec-read-input-uri:
|
|
10388
10388
|
container:
|
|
10389
10389
|
args:
|
|
@@ -10411,7 +10411,7 @@ deploymentSpec:
|
|
|
10411
10411
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10412
10412
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10413
10413
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10414
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10414
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10415
10415
|
exec-read-input-uri-2:
|
|
10416
10416
|
container:
|
|
10417
10417
|
args:
|
|
@@ -10439,7 +10439,7 @@ deploymentSpec:
|
|
|
10439
10439
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10440
10440
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10441
10441
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10442
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10442
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10443
10443
|
exec-string-not-empty:
|
|
10444
10444
|
container:
|
|
10445
10445
|
args:
|
|
@@ -10463,7 +10463,7 @@ deploymentSpec:
|
|
|
10463
10463
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
10464
10464
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
10465
10465
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
10466
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10466
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10467
10467
|
exec-tabular-feature-ranking-and-selection:
|
|
10468
10468
|
container:
|
|
10469
10469
|
args:
|
|
@@ -10480,7 +10480,7 @@ deploymentSpec:
|
|
|
10480
10480
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
10481
10481
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
10482
10482
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
10483
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
10483
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
10484
10484
|
\"args\": [\"feature_selection\", \"--data_source=", "{{$.inputs.artifacts[''data_source''].uri}}",
|
|
10485
10485
|
"\", \"--target_column=", "{{$.inputs.parameters[''target_column_name'']}}",
|
|
10486
10486
|
"\", \"--prediction_type=", "{{$.inputs.parameters[''prediction_type'']}}",
|
|
@@ -10493,7 +10493,7 @@ deploymentSpec:
|
|
|
10493
10493
|
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
|
|
10494
10494
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
10495
10495
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
10496
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
10496
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525",
|
|
10497
10497
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
10498
10498
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
10499
10499
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
@@ -10526,7 +10526,7 @@ deploymentSpec:
|
|
|
10526
10526
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
10527
10527
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
10528
10528
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
10529
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
10529
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
10530
10530
|
\"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
|
|
10531
10531
|
\\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
|
|
10532
10532
|
\\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
|
|
@@ -10559,7 +10559,7 @@ deploymentSpec:
|
|
|
10559
10559
|
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
|
|
10560
10560
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
10561
10561
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
10562
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
10562
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525",
|
|
10563
10563
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
10564
10564
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
10565
10565
|
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
@@ -10614,7 +10614,7 @@ deploymentSpec:
|
|
|
10614
10614
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10615
10615
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10616
10616
|
\n"
|
|
10617
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10617
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10618
10618
|
exec-write-bp-result-path-2:
|
|
10619
10619
|
container:
|
|
10620
10620
|
args:
|
|
@@ -10644,7 +10644,7 @@ deploymentSpec:
|
|
|
10644
10644
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10645
10645
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10646
10646
|
\n"
|
|
10647
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10647
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
10648
10648
|
pipelineInfo:
|
|
10649
10649
|
description: The AutoML Tabular pipeline.
|
|
10650
10650
|
name: automl-tabular-feature-selection-pipeline
|