google-cloud-pipeline-components 2.20.0__py3-none-any.whl → 2.21.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
- google_cloud_pipeline_components/container/v1/aiplatform/remote_runner.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +0 -7
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
- google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +22 -19
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +57 -61
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/proto/README.md +0 -49
- google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
- google_cloud_pipeline_components/proto/task_error.proto +0 -11
- google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py
CHANGED
|
@@ -18,7 +18,9 @@ from typing import NamedTuple
|
|
|
18
18
|
from kfp import dsl
|
|
19
19
|
|
|
20
20
|
|
|
21
|
-
@dsl.component(
|
|
21
|
+
@dsl.component(
|
|
22
|
+
base_image='python:3.9', packages_to_install=['tensorflow==2.16.1']
|
|
23
|
+
)
|
|
22
24
|
def get_training_artifacts(
|
|
23
25
|
docker_region: str,
|
|
24
26
|
trainer_dir: dsl.InputPath(),
|
|
@@ -18,7 +18,9 @@ from typing import NamedTuple
|
|
|
18
18
|
from kfp import dsl
|
|
19
19
|
|
|
20
20
|
|
|
21
|
-
@dsl.component(
|
|
21
|
+
@dsl.component(
|
|
22
|
+
base_image='python:3.9', packages_to_install=['tensorflow==2.16.1']
|
|
23
|
+
)
|
|
22
24
|
def set_test_set(
|
|
23
25
|
dataprep_dir: dsl.InputPath(),
|
|
24
26
|
) -> NamedTuple('TestSetArtifact', uri=str, artifact=dsl.Artifact):
|
|
@@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
|
|
|
72
72
|
# fmt: on
|
|
73
73
|
job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
|
|
74
74
|
task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
|
|
75
|
-
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
75
|
+
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525'
|
|
76
76
|
display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'
|
|
77
77
|
|
|
78
78
|
error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
|
|
@@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
|
|
|
99
99
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
100
100
|
' "container_spec": {"image_uri":"'
|
|
101
101
|
),
|
|
102
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
102
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525',
|
|
103
103
|
'", "args": ["forecasting_mp_l2l_stage_1_tuner',
|
|
104
104
|
'", "--region=',
|
|
105
105
|
location,
|
|
106
106
|
'", "--transform_output_path=',
|
|
107
107
|
transform_output.uri,
|
|
108
108
|
'", "--training_docker_uri=',
|
|
109
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
109
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525',
|
|
110
110
|
'", "--reduce_search_space_mode=',
|
|
111
111
|
reduce_search_space_mode,
|
|
112
112
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
@@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
|
|
|
97
97
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
98
98
|
' "container_spec": {"image_uri":"'
|
|
99
99
|
),
|
|
100
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
100
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525',
|
|
101
101
|
'", "args": ["forecasting_mp_l2l_stage_2_tuner',
|
|
102
102
|
'", "--region=',
|
|
103
103
|
location,
|
|
104
104
|
'", "--transform_output_path=',
|
|
105
105
|
transform_output.uri,
|
|
106
106
|
'", "--training_docker_uri=',
|
|
107
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
107
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525',
|
|
108
108
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
109
109
|
'", "--training_base_dir=',
|
|
110
110
|
root_dir,
|
google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml
CHANGED
|
@@ -5577,7 +5577,7 @@ deploymentSpec:
|
|
|
5577
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5578
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5579
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5580
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5581
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5582
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5583
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5611,7 +5611,7 @@ deploymentSpec:
|
|
|
5611
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5612
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5613
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5614
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5615
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5616
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5617
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5646,11 +5646,11 @@ deploymentSpec:
|
|
|
5646
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5647
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5648
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5650
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5651
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5652
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5653
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5654
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5655
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5656
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5689,11 +5689,11 @@ deploymentSpec:
|
|
|
5689
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5690
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5691
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5693
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5694
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5695
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5696
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5697
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5698
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5699
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5732,7 +5732,7 @@ deploymentSpec:
|
|
|
5732
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5733
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5734
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5735
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
5736
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5737
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5738
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5797,7 +5797,7 @@ deploymentSpec:
|
|
|
5797
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5798
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5799
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5800
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5801
5801
|
exec-calculate-training-parameters-2:
|
|
5802
5802
|
container:
|
|
5803
5803
|
args:
|
|
@@ -5853,7 +5853,7 @@ deploymentSpec:
|
|
|
5853
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5854
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5855
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5856
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5857
5857
|
exec-feature-attribution:
|
|
5858
5858
|
container:
|
|
5859
5859
|
args:
|
|
@@ -6044,8 +6044,8 @@ deploymentSpec:
|
|
|
6044
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6045
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6047
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6048
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6049
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6050
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6051
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6062,7 +6062,7 @@ deploymentSpec:
|
|
|
6062
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6063
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6064
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6065
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6066
6066
|
resources:
|
|
6067
6067
|
cpuLimit: 8.0
|
|
6068
6068
|
memoryLimit: 30.0
|
|
@@ -6093,7 +6093,7 @@ deploymentSpec:
|
|
|
6093
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6094
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6095
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6096
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6097
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6098
6098
|
container:
|
|
6099
6099
|
args:
|
|
@@ -6121,7 +6121,7 @@ deploymentSpec:
|
|
|
6121
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6122
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6123
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6125
6125
|
exec-get-or-create-model-description:
|
|
6126
6126
|
container:
|
|
6127
6127
|
args:
|
|
@@ -6150,7 +6150,7 @@ deploymentSpec:
|
|
|
6150
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6154
6154
|
exec-get-or-create-model-description-2:
|
|
6155
6155
|
container:
|
|
6156
6156
|
args:
|
|
@@ -6179,7 +6179,7 @@ deploymentSpec:
|
|
|
6179
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6180
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6181
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6182
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6183
6183
|
exec-get-prediction-image-uri:
|
|
6184
6184
|
container:
|
|
6185
6185
|
args:
|
|
@@ -6202,14 +6202,14 @@ deploymentSpec:
|
|
|
6202
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6203
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6204
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6205
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6206
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6207
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6208
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6209
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6210
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6211
|
-
\ )\n return images[model_type]\n\n"
|
|
6212
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6206
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6207
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6208
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6209
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6210
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6211
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6213
6213
|
exec-get-prediction-image-uri-2:
|
|
6214
6214
|
container:
|
|
6215
6215
|
args:
|
|
@@ -6232,14 +6232,14 @@ deploymentSpec:
|
|
|
6232
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6233
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6234
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6235
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6236
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6237
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6238
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6239
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6240
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6241
|
-
\ )\n return images[model_type]\n\n"
|
|
6242
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6236
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6237
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6238
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6239
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6240
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6241
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6243
6243
|
exec-get-predictions-column:
|
|
6244
6244
|
container:
|
|
6245
6245
|
args:
|
|
@@ -6262,7 +6262,7 @@ deploymentSpec:
|
|
|
6262
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6263
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6264
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6265
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6266
6266
|
exec-get-predictions-column-2:
|
|
6267
6267
|
container:
|
|
6268
6268
|
args:
|
|
@@ -6285,7 +6285,7 @@ deploymentSpec:
|
|
|
6285
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6286
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6287
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6288
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6289
6289
|
exec-importer:
|
|
6290
6290
|
importer:
|
|
6291
6291
|
artifactUri:
|
|
@@ -6817,7 +6817,7 @@ deploymentSpec:
|
|
|
6817
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6818
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6819
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6820
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6821
6821
|
exec-split-materialized-data:
|
|
6822
6822
|
container:
|
|
6823
6823
|
args:
|
|
@@ -6863,7 +6863,7 @@ deploymentSpec:
|
|
|
6863
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6864
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6865
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6866
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6867
6867
|
exec-string-not-empty:
|
|
6868
6868
|
container:
|
|
6869
6869
|
args:
|
|
@@ -6887,7 +6887,7 @@ deploymentSpec:
|
|
|
6887
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6888
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6889
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6891
6891
|
exec-table-to-uri:
|
|
6892
6892
|
container:
|
|
6893
6893
|
args:
|
|
@@ -6917,7 +6917,7 @@ deploymentSpec:
|
|
|
6917
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6918
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6919
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6920
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6921
6921
|
exec-table-to-uri-2:
|
|
6922
6922
|
container:
|
|
6923
6923
|
args:
|
|
@@ -6947,7 +6947,7 @@ deploymentSpec:
|
|
|
6947
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6948
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6949
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6950
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6951
6951
|
exec-training-configurator-and-validator:
|
|
6952
6952
|
container:
|
|
6953
6953
|
args:
|
|
@@ -6992,7 +6992,7 @@ deploymentSpec:
|
|
|
6992
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6993
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6994
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6995
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6996
6996
|
pipelineInfo:
|
|
6997
6997
|
description: The AutoML Forecasting pipeline.
|
|
6998
6998
|
name: learn-to-learn-forecasting
|