google-cloud-pipeline-components 2.20.0__py3-none-any.whl → 2.21.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (61) hide show
  1. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
  2. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
  3. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
  4. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
  5. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
  6. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
  7. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
  8. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
  9. google_cloud_pipeline_components/container/v1/aiplatform/remote_runner.py +1 -1
  10. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  12. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
  14. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
  15. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
  16. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
  17. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  18. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  19. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  20. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  23. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  31. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  32. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  33. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  34. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +0 -7
  35. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  36. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  38. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  39. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  40. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  41. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  42. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  43. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  45. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  46. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  50. google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
  51. google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
  52. google_cloud_pipeline_components/version.py +1 -1
  53. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +22 -19
  54. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +57 -61
  55. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
  56. google_cloud_pipeline_components/proto/README.md +0 -49
  57. google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
  58. google_cloud_pipeline_components/proto/task_error.proto +0 -11
  59. google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
  60. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
  61. {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
@@ -9452,9 +9452,9 @@ deploymentSpec:
9452
9452
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9453
9453
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9454
9454
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9455
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9455
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9456
9456
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9457
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
9457
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
9458
9458
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
9459
9459
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
9460
9460
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -9495,9 +9495,9 @@ deploymentSpec:
9495
9495
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9496
9496
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9497
9497
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9498
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9498
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9499
9499
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9500
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
9500
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
9501
9501
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
9502
9502
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
9503
9503
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -9538,7 +9538,7 @@ deploymentSpec:
9538
9538
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9539
9539
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9540
9540
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
9541
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9541
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9542
9542
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9543
9543
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
9544
9544
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -9550,7 +9550,7 @@ deploymentSpec:
9550
9550
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
9551
9551
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
9552
9552
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
9553
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
9553
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
9554
9554
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
9555
9555
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
9556
9556
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -9579,7 +9579,7 @@ deploymentSpec:
9579
9579
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9580
9580
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9581
9581
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
9582
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9582
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9583
9583
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9584
9584
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
9585
9585
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -9591,7 +9591,7 @@ deploymentSpec:
9591
9591
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
9592
9592
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
9593
9593
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
9594
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
9594
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
9595
9595
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
9596
9596
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
9597
9597
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -9620,7 +9620,7 @@ deploymentSpec:
9620
9620
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9621
9621
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9622
9622
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
9623
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9623
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9624
9624
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9625
9625
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
9626
9626
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -9632,7 +9632,7 @@ deploymentSpec:
9632
9632
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
9633
9633
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
9634
9634
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
9635
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
9635
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
9636
9636
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
9637
9637
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
9638
9638
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -9661,7 +9661,7 @@ deploymentSpec:
9661
9661
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9662
9662
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9663
9663
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9664
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9664
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9665
9665
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
9666
9666
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
9667
9667
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -9676,7 +9676,7 @@ deploymentSpec:
9676
9676
  args:
9677
9677
  - --executor_input
9678
9678
  - '{{$}}'
9679
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
9679
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
9680
9680
  resources:
9681
9681
  cpuLimit: 8.0
9682
9682
  memoryLimit: 52.0
@@ -9685,7 +9685,7 @@ deploymentSpec:
9685
9685
  args:
9686
9686
  - --executor_input
9687
9687
  - '{{$}}'
9688
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
9688
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
9689
9689
  resources:
9690
9690
  cpuLimit: 8.0
9691
9691
  memoryLimit: 52.0
@@ -9694,7 +9694,7 @@ deploymentSpec:
9694
9694
  args:
9695
9695
  - --executor_input
9696
9696
  - '{{$}}'
9697
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
9697
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
9698
9698
  resources:
9699
9699
  cpuLimit: 8.0
9700
9700
  memoryLimit: 52.0
@@ -9714,9 +9714,9 @@ deploymentSpec:
9714
9714
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9715
9715
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9716
9716
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9717
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9717
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9718
9718
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9719
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
9719
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
9720
9720
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
9721
9721
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
9722
9722
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -9761,9 +9761,9 @@ deploymentSpec:
9761
9761
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9762
9762
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9763
9763
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9764
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9764
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
9765
9765
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
9766
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
9766
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525",
9767
9767
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
9768
9768
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
9769
9769
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -9813,7 +9813,7 @@ deploymentSpec:
9813
9813
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9814
9814
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9815
9815
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9816
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9816
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
9817
9817
  exec-bool-identity-2:
9818
9818
  container:
9819
9819
  args:
@@ -9835,7 +9835,7 @@ deploymentSpec:
9835
9835
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9836
9836
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9837
9837
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9838
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9838
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
9839
9839
  exec-bool-identity-3:
9840
9840
  container:
9841
9841
  args:
@@ -9857,7 +9857,7 @@ deploymentSpec:
9857
9857
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9858
9858
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9859
9859
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9860
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9860
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
9861
9861
  exec-calculate-training-parameters:
9862
9862
  container:
9863
9863
  args:
@@ -9949,7 +9949,7 @@ deploymentSpec:
9949
9949
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
9950
9950
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
9951
9951
  \ reduce_search_space_mode,\n )\n\n"
9952
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9952
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
9953
9953
  exec-calculate-training-parameters-2:
9954
9954
  container:
9955
9955
  args:
@@ -10041,7 +10041,7 @@ deploymentSpec:
10041
10041
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
10042
10042
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
10043
10043
  \ reduce_search_space_mode,\n )\n\n"
10044
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10044
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10045
10045
  exec-distillation-stage-feature-transform-engine:
10046
10046
  container:
10047
10047
  args:
@@ -10075,14 +10075,14 @@ deploymentSpec:
10075
10075
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
10076
10076
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
10077
10077
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
10078
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
10078
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
10079
10079
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
10080
10080
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
10081
10081
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
10082
10082
  - '{"Concat": ["--dataflow_service_account=", "{{$.inputs.parameters[''dataflow_service_account'']}}"]}'
10083
10083
  - '{"Concat": ["--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
10084
10084
  - '{"Concat": ["--gcp_resources_path=", "{{$.outputs.parameters[''gcp_resources''].output_file}}"]}'
10085
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
10085
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
10086
10086
  resources:
10087
10087
  cpuLimit: 8.0
10088
10088
  memoryLimit: 30.0
@@ -10329,8 +10329,8 @@ deploymentSpec:
10329
10329
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
10330
10330
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
10331
10331
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
10332
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
10333
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
10332
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
10333
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
10334
10334
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
10335
10335
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
10336
10336
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -10347,7 +10347,7 @@ deploymentSpec:
10347
10347
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
10348
10348
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
10349
10349
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
10350
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
10350
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
10351
10351
  resources:
10352
10352
  cpuLimit: 8.0
10353
10353
  memoryLimit: 30.0
@@ -10382,7 +10382,7 @@ deploymentSpec:
10382
10382
  \ collections.namedtuple(\n 'Outputs',\n [\n 'bigquery_destination_output_uri',\n\
10383
10383
  \ ],\n )(\n f'{bigquery_staging_dataset_uri}.{table_prefix}{model_display_name}{curr_time}',\n\
10384
10384
  \ )\n\n"
10385
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10385
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10386
10386
  exec-get-bigquery-destination-output-uri-2:
10387
10387
  container:
10388
10388
  args:
@@ -10414,7 +10414,7 @@ deploymentSpec:
10414
10414
  \ collections.namedtuple(\n 'Outputs',\n [\n 'bigquery_destination_output_uri',\n\
10415
10415
  \ ],\n )(\n f'{bigquery_staging_dataset_uri}.{table_prefix}{model_display_name}{curr_time}',\n\
10416
10416
  \ )\n\n"
10417
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10417
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10418
10418
  exec-get-bp-bq-output-table:
10419
10419
  container:
10420
10420
  args:
@@ -10442,7 +10442,7 @@ deploymentSpec:
10442
10442
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
10443
10443
  \ 'bq_output_table_uri',\n ],\n )(\n f\"{bp_job.metadata['bigqueryOutputDataset']}.{bp_job.metadata['bigqueryOutputTable']}\"\
10444
10444
  ,\n )\n\n"
10445
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10445
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10446
10446
  exec-get-bp-bq-output-table-2:
10447
10447
  container:
10448
10448
  args:
@@ -10470,7 +10470,7 @@ deploymentSpec:
10470
10470
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
10471
10471
  \ 'bq_output_table_uri',\n ],\n )(\n f\"{bp_job.metadata['bigqueryOutputDataset']}.{bp_job.metadata['bigqueryOutputTable']}\"\
10472
10472
  ,\n )\n\n"
10473
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10473
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10474
10474
  exec-get-model-display-name:
10475
10475
  container:
10476
10476
  args:
@@ -10497,7 +10497,7 @@ deploymentSpec:
10497
10497
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
10498
10498
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
10499
10499
  \n"
10500
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10500
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10501
10501
  exec-get-transform-config-path:
10502
10502
  container:
10503
10503
  args:
@@ -10530,7 +10530,7 @@ deploymentSpec:
10530
10530
  \ )\n\n return collections.namedtuple(\n 'Outputs',\n [\n \
10531
10531
  \ 'transform_config_path',\n ],\n )(\n transform_config_path,\n\
10532
10532
  \ )\n\n"
10533
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10533
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10534
10534
  exec-importer:
10535
10535
  importer:
10536
10536
  artifactUri:
@@ -10564,7 +10564,7 @@ deploymentSpec:
10564
10564
  \ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
10565
10565
  \ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
10566
10566
  \ f.write(','.join([split_0_content, split_1_content]))\n\n"
10567
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10567
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
10568
10568
  exec-model-batch-explanation:
10569
10569
  container:
10570
10570
  args:
@@ -11409,7 +11409,7 @@ deploymentSpec:
11409
11409
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
11410
11410
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
11411
11411
  \ )\n\n"
11412
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
11412
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
11413
11413
  exec-split-materialized-data:
11414
11414
  container:
11415
11415
  args:
@@ -11455,7 +11455,7 @@ deploymentSpec:
11455
11455
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
11456
11456
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
11457
11457
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
11458
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
11458
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
11459
11459
  exec-split-materialized-data-2:
11460
11460
  container:
11461
11461
  args:
@@ -11501,7 +11501,7 @@ deploymentSpec:
11501
11501
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
11502
11502
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
11503
11503
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
11504
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
11504
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
11505
11505
  exec-string-not-empty:
11506
11506
  container:
11507
11507
  args:
@@ -11525,7 +11525,7 @@ deploymentSpec:
11525
11525
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
11526
11526
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
11527
11527
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
11528
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
11528
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
11529
11529
  exec-training-configurator-and-validator:
11530
11530
  container:
11531
11531
  args:
@@ -11570,7 +11570,7 @@ deploymentSpec:
11570
11570
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
11571
11571
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
11572
11572
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
11573
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
11573
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
11574
11574
  exec-training-configurator-and-validator-2:
11575
11575
  container:
11576
11576
  args:
@@ -11615,7 +11615,7 @@ deploymentSpec:
11615
11615
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
11616
11616
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
11617
11617
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
11618
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
11618
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
11619
11619
  pipelineInfo:
11620
11620
  description: The AutoML Tabular pipeline v2.
11621
11621
  name: automl-tabular-v2
@@ -77,7 +77,7 @@ def distillation_stage_feature_transform_engine(
77
77
  # fmt: on
78
78
 
79
79
  return dsl.ContainerSpec(
80
- image='us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625',
80
+ image='us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525',
81
81
  command=[],
82
82
  args=[
83
83
  'distillation_stage_feature_transform_engine',
@@ -185,7 +185,7 @@ def distillation_stage_feature_transform_engine(
185
185
  dataflow_machine_type,
186
186
  ]
187
187
  ),
188
- '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625',
188
+ '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525',
189
189
  dsl.ConcatPlaceholder(
190
190
  items=[
191
191
  '--dataflow_disk_size_gb=',
@@ -100,7 +100,7 @@ def tabular_feature_ranking_and_selection(
100
100
  ' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
101
101
  ' "container_spec": {"image_uri":"'
102
102
  ),
103
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625',
103
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525',
104
104
  '", "args": ["feature_selection", "--data_source=',
105
105
  data_source.uri,
106
106
  '", "--target_column=',
@@ -137,7 +137,7 @@ def tabular_feature_ranking_and_selection(
137
137
  ),
138
138
  dataflow_max_num_workers,
139
139
  '", "--dataflow_worker_container_image=',
140
- 'us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625',
140
+ 'us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525',
141
141
  '", "--dataflow_machine_type=',
142
142
  dataflow_machine_type,
143
143
  '", "--dataflow_disk_size_gb=',
@@ -983,8 +983,8 @@ deploymentSpec:
983
983
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
984
984
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
985
985
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
986
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
987
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
986
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
987
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
988
988
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
989
989
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
990
990
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -1001,7 +1001,7 @@ deploymentSpec:
1001
1001
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
1002
1002
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
1003
1003
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
1004
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
1004
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
1005
1005
  resources:
1006
1006
  cpuLimit: 8.0
1007
1007
  memoryLimit: 30.0
@@ -1049,7 +1049,7 @@ deploymentSpec:
1049
1049
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
1050
1050
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
1051
1051
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
1052
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
1052
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
1053
1053
  pipelineInfo:
1054
1054
  description: Defines pipeline for feature transform engine component.
1055
1055
  name: feature-selection
@@ -308,7 +308,7 @@ def feature_transform_engine(
308
308
  # fmt: on
309
309
 
310
310
  return dsl.ContainerSpec(
311
- image='us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625',
311
+ image='us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525',
312
312
  command=[],
313
313
  args=[
314
314
  'feature_transform_engine',
@@ -637,8 +637,8 @@ def feature_transform_engine(
637
637
  dsl.ConcatPlaceholder(
638
638
  items=['--dataflow_machine_type=', dataflow_machine_type]
639
639
  ),
640
- '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625',
641
- '--feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625',
640
+ '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525',
641
+ '--feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525',
642
642
  dsl.ConcatPlaceholder(
643
643
  items=['--dataflow_disk_size_gb=', dataflow_disk_size_gb]
644
644
  ),
@@ -158,7 +158,7 @@ def tabnet_hyperparameter_tuning_job(
158
158
  ', "disk_spec": ',
159
159
  training_disk_spec,
160
160
  ', "container_spec": {"image_uri":"',
161
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250129_0625',
161
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250827_0525',
162
162
  '", "args": ["--target_column=',
163
163
  target_column,
164
164
  '", "--weight_column=',
@@ -166,7 +166,7 @@ def tabnet_hyperparameter_tuning_job(
166
166
  '", "--model_type=',
167
167
  prediction_type,
168
168
  '", "--prediction_docker_uri=',
169
- 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625',
169
+ 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525',
170
170
  '", "--prediction_docker_uri_artifact_path=',
171
171
  prediction_docker_uri_output,
172
172
  '", "--baseline_path=',
@@ -2826,7 +2826,7 @@ deploymentSpec:
2826
2826
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2827
2827
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
2828
2828
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
2829
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
2829
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
2830
2830
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
2831
2831
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
2832
2832
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -2841,7 +2841,7 @@ deploymentSpec:
2841
2841
  args:
2842
2842
  - --executor_input
2843
2843
  - '{{$}}'
2844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
2844
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525
2845
2845
  resources:
2846
2846
  cpuLimit: 8.0
2847
2847
  memoryLimit: 52.0
@@ -2866,7 +2866,7 @@ deploymentSpec:
2866
2866
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
2867
2867
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
2868
2868
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
2869
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
2869
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
2870
2870
  exec-feature-transform-engine:
2871
2871
  container:
2872
2872
  args:
@@ -2951,8 +2951,8 @@ deploymentSpec:
2951
2951
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2952
2952
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2953
2953
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2954
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
2955
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2954
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
2955
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2956
2956
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2957
2957
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2958
2958
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2969,7 +2969,7 @@ deploymentSpec:
2969
2969
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2970
2970
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2971
2971
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2972
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
2972
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
2973
2973
  resources:
2974
2974
  cpuLimit: 8.0
2975
2975
  memoryLimit: 30.0
@@ -3037,7 +3037,7 @@ deploymentSpec:
3037
3037
  \ = {\n 'instanceSchemaUri': instance_schema_uri,\n 'predictionSchemaUri':\
3038
3038
  \ prediction_schema_uri,\n }\n unmanaged_container_model.uri = os.path.join(\n\
3039
3039
  \ trials_dir, 'trial_{}'.format(best_trial['id']), 'model'\n )\n\n"
3040
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3040
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3041
3041
  exec-get-model-display-name:
3042
3042
  container:
3043
3043
  args:
@@ -3064,7 +3064,7 @@ deploymentSpec:
3064
3064
  \n return collections.namedtuple(\n 'Outputs',\n [\n \
3065
3065
  \ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
3066
3066
  \n"
3067
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3067
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3068
3068
  exec-get-tabnet-study-spec-parameters:
3069
3069
  container:
3070
3070
  args:
@@ -3580,7 +3580,7 @@ deploymentSpec:
3580
3580
  \ = ', '.join(extra_overrides)\n warnings.warn(\n f'The overrides\
3581
3581
  \ {extra_override_str} were not found in the params and '\n 'will\
3582
3582
  \ be ignored.'\n )\n\n return study_spec_parameters\n\n"
3583
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3583
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3584
3584
  exec-model-batch-predict:
3585
3585
  container:
3586
3586
  args:
@@ -3821,7 +3821,7 @@ deploymentSpec:
3821
3821
  \ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
3822
3822
  \ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
3823
3823
  \ eval_machine_spec,\n eval_replica_count,\n )\n\n"
3824
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3824
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3825
3825
  exec-set-optional-inputs:
3826
3826
  container:
3827
3827
  args:
@@ -3869,7 +3869,7 @@ deploymentSpec:
3869
3869
  \ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
3870
3870
  \ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
3871
3871
  \ )\n\n"
3872
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
3872
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
3873
3873
  exec-split-materialized-data:
3874
3874
  container:
3875
3875
  args:
@@ -3915,7 +3915,7 @@ deploymentSpec:
3915
3915
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
3916
3916
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
3917
3917
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
3918
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
3918
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
3919
3919
  exec-tabnet-hyperparameter-tuning-job:
3920
3920
  container:
3921
3921
  args:
@@ -3943,11 +3943,11 @@ deploymentSpec:
3943
3943
  ", \"trial_job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"",
3944
3944
  "1", "\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
3945
3945
  ", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
3946
- ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250129_0625",
3946
+ ", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250827_0525",
3947
3947
  "\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
3948
3948
  "\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
3949
3949
  "\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
3950
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
3950
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525",
3951
3951
  "\", \"--prediction_docker_uri_artifact_path=", "{{$.outputs.parameters[''prediction_docker_uri_output''].output_file}}",
3952
3952
  "\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
3953
3953
  "\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
@@ -4016,7 +4016,7 @@ deploymentSpec:
4016
4016
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
4017
4017
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
4018
4018
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
4019
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
4019
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
4020
4020
  pipelineInfo:
4021
4021
  description: The TabNet built-in algorithm HyperparameterTuningJob pipeline.
4022
4022
  name: automl-tabular-tabnet-hyperparameter-tuning-job
@@ -165,7 +165,7 @@ def tabnet_trainer(
165
165
  ', "disk_spec": ',
166
166
  training_disk_spec,
167
167
  ', "container_spec": {"image_uri":"',
168
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250129_0625',
168
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20250827_0525',
169
169
  '", "args": ["--target_column=',
170
170
  target_column,
171
171
  '", "--weight_column=',
@@ -173,7 +173,7 @@ def tabnet_trainer(
173
173
  '", "--model_type=',
174
174
  prediction_type,
175
175
  '", "--prediction_docker_uri=',
176
- 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625',
176
+ 'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250827_0525',
177
177
  '", "--baseline_path=',
178
178
  instance_baseline.uri,
179
179
  '", "--metadata_path=',