google-cloud-pipeline-components 2.20.0__py3-none-any.whl → 2.21.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +3 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +2 -1
- google_cloud_pipeline_components/container/v1/aiplatform/remote_runner.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +40 -40
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +0 -7
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +4 -1
- google_cloud_pipeline_components/v1/custom_job/utils.py +6 -1
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/METADATA +22 -19
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/RECORD +57 -61
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/proto/README.md +0 -49
- google_cloud_pipeline_components/proto/gcp_resources.proto +0 -25
- google_cloud_pipeline_components/proto/task_error.proto +0 -11
- google_cloud_pipeline_components/proto/template_metadata.proto +0 -323
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.20.0.dist-info → google_cloud_pipeline_components-2.21.0.dist-info}/top_level.txt +0 -0
|
@@ -5559,7 +5559,7 @@ deploymentSpec:
|
|
|
5559
5559
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5560
5560
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5561
5561
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5562
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5562
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5563
5563
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5564
5564
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5565
5565
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5593,7 +5593,7 @@ deploymentSpec:
|
|
|
5593
5593
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5594
5594
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5595
5595
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5596
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5596
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5597
5597
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5598
5598
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5599
5599
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5628,11 +5628,11 @@ deploymentSpec:
|
|
|
5628
5628
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5629
5629
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5630
5630
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5631
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5631
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5632
5632
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5633
5633
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5634
5634
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5635
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5635
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5636
5636
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5637
5637
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5638
5638
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5671,11 +5671,11 @@ deploymentSpec:
|
|
|
5671
5671
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5672
5672
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5673
5673
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5674
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5674
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5675
5675
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5676
5676
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5677
5677
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5678
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5678
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5679
5679
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5680
5680
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5681
5681
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5714,7 +5714,7 @@ deploymentSpec:
|
|
|
5714
5714
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5715
5715
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5716
5716
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5717
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5717
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
5718
5718
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5719
5719
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5720
5720
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5779,7 +5779,7 @@ deploymentSpec:
|
|
|
5779
5779
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5780
5780
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5781
5781
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5782
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5782
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5783
5783
|
exec-calculate-training-parameters-2:
|
|
5784
5784
|
container:
|
|
5785
5785
|
args:
|
|
@@ -5835,7 +5835,7 @@ deploymentSpec:
|
|
|
5835
5835
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5836
5836
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5837
5837
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5838
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5838
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5839
5839
|
exec-feature-attribution:
|
|
5840
5840
|
container:
|
|
5841
5841
|
args:
|
|
@@ -6026,8 +6026,8 @@ deploymentSpec:
|
|
|
6026
6026
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6027
6027
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6028
6028
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6029
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6030
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6029
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6030
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6031
6031
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6032
6032
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6033
6033
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6044,7 +6044,7 @@ deploymentSpec:
|
|
|
6044
6044
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6045
6045
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6046
6046
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6047
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6048
6048
|
resources:
|
|
6049
6049
|
cpuLimit: 8.0
|
|
6050
6050
|
memoryLimit: 30.0
|
|
@@ -6075,7 +6075,7 @@ deploymentSpec:
|
|
|
6075
6075
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6076
6076
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6077
6077
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6078
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6078
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6079
6079
|
exec-finalize-eval-quantile-parameters-2:
|
|
6080
6080
|
container:
|
|
6081
6081
|
args:
|
|
@@ -6103,7 +6103,7 @@ deploymentSpec:
|
|
|
6103
6103
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6104
6104
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6105
6105
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6106
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6106
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6107
6107
|
exec-get-or-create-model-description:
|
|
6108
6108
|
container:
|
|
6109
6109
|
args:
|
|
@@ -6132,7 +6132,7 @@ deploymentSpec:
|
|
|
6132
6132
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6133
6133
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6134
6134
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6135
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6135
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6136
6136
|
exec-get-or-create-model-description-2:
|
|
6137
6137
|
container:
|
|
6138
6138
|
args:
|
|
@@ -6161,7 +6161,7 @@ deploymentSpec:
|
|
|
6161
6161
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6162
6162
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6163
6163
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6164
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6164
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6165
6165
|
exec-get-prediction-image-uri:
|
|
6166
6166
|
container:
|
|
6167
6167
|
args:
|
|
@@ -6184,14 +6184,14 @@ deploymentSpec:
|
|
|
6184
6184
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6185
6185
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6186
6186
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6187
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6188
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6189
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6190
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6191
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6192
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6193
|
-
\ )\n return images[model_type]\n\n"
|
|
6194
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6187
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6188
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6189
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6190
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6191
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6192
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6193
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6194
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6195
6195
|
exec-get-prediction-image-uri-2:
|
|
6196
6196
|
container:
|
|
6197
6197
|
args:
|
|
@@ -6214,14 +6214,14 @@ deploymentSpec:
|
|
|
6214
6214
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6215
6215
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6216
6216
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6217
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6218
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6219
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6220
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6221
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6222
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6223
|
-
\ )\n return images[model_type]\n\n"
|
|
6224
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6217
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6218
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6219
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6220
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6221
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6222
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6223
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6224
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6225
6225
|
exec-get-predictions-column:
|
|
6226
6226
|
container:
|
|
6227
6227
|
args:
|
|
@@ -6244,7 +6244,7 @@ deploymentSpec:
|
|
|
6244
6244
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6245
6245
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6246
6246
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6247
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6247
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6248
6248
|
exec-get-predictions-column-2:
|
|
6249
6249
|
container:
|
|
6250
6250
|
args:
|
|
@@ -6267,7 +6267,7 @@ deploymentSpec:
|
|
|
6267
6267
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6268
6268
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6269
6269
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6270
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6270
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6271
6271
|
exec-importer:
|
|
6272
6272
|
importer:
|
|
6273
6273
|
artifactUri:
|
|
@@ -6799,7 +6799,7 @@ deploymentSpec:
|
|
|
6799
6799
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6800
6800
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6801
6801
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6802
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6802
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6803
6803
|
exec-split-materialized-data:
|
|
6804
6804
|
container:
|
|
6805
6805
|
args:
|
|
@@ -6845,7 +6845,7 @@ deploymentSpec:
|
|
|
6845
6845
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6846
6846
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6847
6847
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6848
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6848
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6849
6849
|
exec-string-not-empty:
|
|
6850
6850
|
container:
|
|
6851
6851
|
args:
|
|
@@ -6869,7 +6869,7 @@ deploymentSpec:
|
|
|
6869
6869
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6870
6870
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6871
6871
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6872
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6872
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6873
6873
|
exec-table-to-uri:
|
|
6874
6874
|
container:
|
|
6875
6875
|
args:
|
|
@@ -6899,7 +6899,7 @@ deploymentSpec:
|
|
|
6899
6899
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6900
6900
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6901
6901
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6902
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6902
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6903
6903
|
exec-table-to-uri-2:
|
|
6904
6904
|
container:
|
|
6905
6905
|
args:
|
|
@@ -6929,7 +6929,7 @@ deploymentSpec:
|
|
|
6929
6929
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6930
6930
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6931
6931
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6932
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6932
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6933
6933
|
exec-training-configurator-and-validator:
|
|
6934
6934
|
container:
|
|
6935
6935
|
args:
|
|
@@ -6974,7 +6974,7 @@ deploymentSpec:
|
|
|
6974
6974
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6975
6975
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6976
6976
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6977
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6977
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6978
6978
|
pipelineInfo:
|
|
6979
6979
|
description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
|
|
6980
6980
|
name: sequence-to-sequence-forecasting
|
|
@@ -5552,7 +5552,7 @@ deploymentSpec:
|
|
|
5552
5552
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5553
5553
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5554
5554
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5555
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5555
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5556
5556
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5557
5557
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5558
5558
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5586,7 +5586,7 @@ deploymentSpec:
|
|
|
5586
5586
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5587
5587
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5588
5588
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5589
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5589
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5590
5590
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5591
5591
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5592
5592
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5621,11 +5621,11 @@ deploymentSpec:
|
|
|
5621
5621
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5622
5622
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5623
5623
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5624
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5624
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5625
5625
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5626
5626
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5627
5627
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5628
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5628
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5629
5629
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5630
5630
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5631
5631
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5664,11 +5664,11 @@ deploymentSpec:
|
|
|
5664
5664
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5665
5665
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5666
5666
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5667
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5667
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5668
5668
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5669
5669
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5670
5670
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5671
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5671
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250827_0525",
|
|
5672
5672
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5673
5673
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5674
5674
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5707,7 +5707,7 @@ deploymentSpec:
|
|
|
5707
5707
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5708
5708
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5709
5709
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5710
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5710
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250827_0525", "\",
|
|
5711
5711
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5712
5712
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5713
5713
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5772,7 +5772,7 @@ deploymentSpec:
|
|
|
5772
5772
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5773
5773
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5774
5774
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5775
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5775
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5776
5776
|
exec-calculate-training-parameters-2:
|
|
5777
5777
|
container:
|
|
5778
5778
|
args:
|
|
@@ -5828,7 +5828,7 @@ deploymentSpec:
|
|
|
5828
5828
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5829
5829
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5830
5830
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5831
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5831
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
5832
5832
|
exec-feature-attribution:
|
|
5833
5833
|
container:
|
|
5834
5834
|
args:
|
|
@@ -6019,8 +6019,8 @@ deploymentSpec:
|
|
|
6019
6019
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6020
6020
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6021
6021
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6022
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6023
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6022
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6023
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6024
6024
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6025
6025
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6026
6026
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6037,7 +6037,7 @@ deploymentSpec:
|
|
|
6037
6037
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6038
6038
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6039
6039
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6040
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6040
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6041
6041
|
resources:
|
|
6042
6042
|
cpuLimit: 8.0
|
|
6043
6043
|
memoryLimit: 30.0
|
|
@@ -6068,7 +6068,7 @@ deploymentSpec:
|
|
|
6068
6068
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6069
6069
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6070
6070
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6071
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6071
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6072
6072
|
exec-finalize-eval-quantile-parameters-2:
|
|
6073
6073
|
container:
|
|
6074
6074
|
args:
|
|
@@ -6096,7 +6096,7 @@ deploymentSpec:
|
|
|
6096
6096
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6097
6097
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6098
6098
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6099
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6099
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6100
6100
|
exec-get-or-create-model-description:
|
|
6101
6101
|
container:
|
|
6102
6102
|
args:
|
|
@@ -6125,7 +6125,7 @@ deploymentSpec:
|
|
|
6125
6125
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6126
6126
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6127
6127
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6128
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6128
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6129
6129
|
exec-get-or-create-model-description-2:
|
|
6130
6130
|
container:
|
|
6131
6131
|
args:
|
|
@@ -6154,7 +6154,7 @@ deploymentSpec:
|
|
|
6154
6154
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6155
6155
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6156
6156
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6157
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6157
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6158
6158
|
exec-get-prediction-image-uri:
|
|
6159
6159
|
container:
|
|
6160
6160
|
args:
|
|
@@ -6177,14 +6177,14 @@ deploymentSpec:
|
|
|
6177
6177
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6178
6178
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6179
6179
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6180
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6181
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6182
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6183
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6184
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6185
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6186
|
-
\ )\n return images[model_type]\n\n"
|
|
6187
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6180
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6181
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6182
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6183
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6184
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6185
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6186
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6187
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6188
6188
|
exec-get-prediction-image-uri-2:
|
|
6189
6189
|
container:
|
|
6190
6190
|
args:
|
|
@@ -6207,14 +6207,14 @@ deploymentSpec:
|
|
|
6207
6207
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6208
6208
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6209
6209
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6210
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6211
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6212
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6213
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-
|
|
6214
|
-
\ }\n if model_type not in images:\n raise ValueError(\n
|
|
6215
|
-
\ forecasting model type: {model_type}. Valid options are
|
|
6216
|
-
\ )\n return images[model_type]\n\n"
|
|
6217
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6210
|
+
\ will work correctly.\n images = {\n 'l2l': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6211
|
+
\ ),\n 'seq2seq': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6212
|
+
\ ),\n 'tft': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6213
|
+
\ ),\n 'tide': (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250827_0525'\n\
|
|
6214
|
+
\ ),\n }\n if model_type not in images:\n raise ValueError(\n\
|
|
6215
|
+
\ f'Invalid forecasting model type: {model_type}. Valid options are:\
|
|
6216
|
+
\ '\n f'{images.keys()}.'\n )\n return images[model_type]\n\n"
|
|
6217
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6218
6218
|
exec-get-predictions-column:
|
|
6219
6219
|
container:
|
|
6220
6220
|
args:
|
|
@@ -6237,7 +6237,7 @@ deploymentSpec:
|
|
|
6237
6237
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6238
6238
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6239
6239
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6240
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6240
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6241
6241
|
exec-get-predictions-column-2:
|
|
6242
6242
|
container:
|
|
6243
6243
|
args:
|
|
@@ -6260,7 +6260,7 @@ deploymentSpec:
|
|
|
6260
6260
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6261
6261
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6262
6262
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6263
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6263
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6264
6264
|
exec-importer:
|
|
6265
6265
|
importer:
|
|
6266
6266
|
artifactUri:
|
|
@@ -6792,7 +6792,7 @@ deploymentSpec:
|
|
|
6792
6792
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6793
6793
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6794
6794
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6795
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6795
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6796
6796
|
exec-split-materialized-data:
|
|
6797
6797
|
container:
|
|
6798
6798
|
args:
|
|
@@ -6838,7 +6838,7 @@ deploymentSpec:
|
|
|
6838
6838
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6839
6839
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6840
6840
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6841
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6841
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250827_0525
|
|
6842
6842
|
exec-string-not-empty:
|
|
6843
6843
|
container:
|
|
6844
6844
|
args:
|
|
@@ -6862,7 +6862,7 @@ deploymentSpec:
|
|
|
6862
6862
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6863
6863
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6864
6864
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6865
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6865
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6866
6866
|
exec-table-to-uri:
|
|
6867
6867
|
container:
|
|
6868
6868
|
args:
|
|
@@ -6892,7 +6892,7 @@ deploymentSpec:
|
|
|
6892
6892
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6893
6893
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6894
6894
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6895
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6895
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6896
6896
|
exec-table-to-uri-2:
|
|
6897
6897
|
container:
|
|
6898
6898
|
args:
|
|
@@ -6922,7 +6922,7 @@ deploymentSpec:
|
|
|
6922
6922
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6923
6923
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6924
6924
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6925
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6925
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250827_0525
|
|
6926
6926
|
exec-training-configurator-and-validator:
|
|
6927
6927
|
container:
|
|
6928
6928
|
args:
|
|
@@ -6967,7 +6967,7 @@ deploymentSpec:
|
|
|
6967
6967
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6968
6968
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6969
6969
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6970
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6970
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250827_0525
|
|
6971
6971
|
pipelineInfo:
|
|
6972
6972
|
description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
|
|
6973
6973
|
name: temporal-fusion-transformer-forecasting
|