evalscope 0.14.0__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +3 -3
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +9 -3
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/benchmark.py +4 -3
- evalscope/perf/main.py +4 -2
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +16 -8
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/METADATA +20 -3
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/RECORD +178 -66
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +20 -7
- tests/perf/test_perf.py +6 -3
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from torch import einsum, nn
|
|
4
|
+
from transformers import CLIPConfig
|
|
5
|
+
from transformers import CLIPModel as HFCLIPModel
|
|
6
|
+
from typing import Any, Optional, Tuple, Union
|
|
7
|
+
|
|
8
|
+
from .base_model import BaseModelConfig
|
|
9
|
+
from .cross_modeling import Cross_model
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class XCLIPModel(HFCLIPModel):
|
|
13
|
+
|
|
14
|
+
def __init__(self, config: CLIPConfig):
|
|
15
|
+
super().__init__(config)
|
|
16
|
+
|
|
17
|
+
def get_text_features(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: Optional[torch.Tensor] = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.Tensor] = None,
|
|
22
|
+
output_attentions: Optional[bool] = None,
|
|
23
|
+
output_hidden_states: Optional[bool] = None,
|
|
24
|
+
return_dict: Optional[bool] = None,
|
|
25
|
+
) -> torch.FloatTensor:
|
|
26
|
+
|
|
27
|
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
|
28
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
29
|
+
output_hidden_states = (
|
|
30
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
|
|
31
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
32
|
+
|
|
33
|
+
text_outputs = self.text_model(
|
|
34
|
+
input_ids=input_ids,
|
|
35
|
+
attention_mask=attention_mask,
|
|
36
|
+
position_ids=position_ids,
|
|
37
|
+
output_attentions=output_attentions,
|
|
38
|
+
output_hidden_states=output_hidden_states,
|
|
39
|
+
return_dict=return_dict,
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
# pooled_output = text_outputs[1]
|
|
43
|
+
# text_features = self.text_projection(pooled_output)
|
|
44
|
+
last_hidden_state = text_outputs[0]
|
|
45
|
+
text_features = self.text_projection(last_hidden_state)
|
|
46
|
+
|
|
47
|
+
pooled_output = text_outputs[1]
|
|
48
|
+
text_features_EOS = self.text_projection(pooled_output)
|
|
49
|
+
|
|
50
|
+
# del last_hidden_state, text_outputs
|
|
51
|
+
# gc.collect()
|
|
52
|
+
|
|
53
|
+
return text_features, text_features_EOS
|
|
54
|
+
|
|
55
|
+
def get_image_features(
|
|
56
|
+
self,
|
|
57
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
58
|
+
output_attentions: Optional[bool] = None,
|
|
59
|
+
output_hidden_states: Optional[bool] = None,
|
|
60
|
+
return_dict: Optional[bool] = None,
|
|
61
|
+
) -> torch.FloatTensor:
|
|
62
|
+
|
|
63
|
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
|
64
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
65
|
+
output_hidden_states = (
|
|
66
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
|
|
67
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
68
|
+
|
|
69
|
+
vision_outputs = self.vision_model(
|
|
70
|
+
pixel_values=pixel_values,
|
|
71
|
+
output_attentions=output_attentions,
|
|
72
|
+
output_hidden_states=output_hidden_states,
|
|
73
|
+
return_dict=return_dict,
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
# pooled_output = vision_outputs[1] # pooled_output
|
|
77
|
+
# image_features = self.visual_projection(pooled_output)
|
|
78
|
+
last_hidden_state = vision_outputs[0]
|
|
79
|
+
image_features = self.visual_projection(last_hidden_state)
|
|
80
|
+
|
|
81
|
+
return image_features
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
@dataclass
|
|
85
|
+
class ClipModelConfig(BaseModelConfig):
|
|
86
|
+
_target_: str = 'trainer.models.clip_model.CLIPModel'
|
|
87
|
+
pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32'
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class CLIPModel(nn.Module):
|
|
91
|
+
|
|
92
|
+
def __init__(self, config):
|
|
93
|
+
super().__init__()
|
|
94
|
+
self.model = XCLIPModel._from_config(config)
|
|
95
|
+
self.cross_model = Cross_model(dim=1024, layer_num=4, heads=16)
|
|
96
|
+
|
|
97
|
+
def get_text_features(self, *args, **kwargs):
|
|
98
|
+
return self.model.get_text_features(*args, **kwargs)
|
|
99
|
+
|
|
100
|
+
def get_image_features(self, *args, **kwargs):
|
|
101
|
+
return self.model.get_image_features(*args, **kwargs)
|
|
102
|
+
|
|
103
|
+
def forward(self, text_inputs=None, image_inputs=None, condition_inputs=None):
|
|
104
|
+
outputs = ()
|
|
105
|
+
|
|
106
|
+
text_f, text_EOS = self.model.get_text_features(text_inputs) # B*77*1024
|
|
107
|
+
outputs += text_EOS,
|
|
108
|
+
|
|
109
|
+
image_f = self.model.get_image_features(image_inputs.half()) # 2B*257*1024
|
|
110
|
+
condition_f, _ = self.model.get_text_features(condition_inputs) # B*5*1024
|
|
111
|
+
|
|
112
|
+
sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f)
|
|
113
|
+
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0]
|
|
114
|
+
sim_text_condition = sim_text_condition / sim_text_condition.max()
|
|
115
|
+
mask = torch.where(sim_text_condition > 0.01, 0, float('-inf')) # B*1*77
|
|
116
|
+
|
|
117
|
+
mask = mask.repeat(1, image_f.shape[1], 1) # B*257*77
|
|
118
|
+
bc = int(image_f.shape[0] / 2)
|
|
119
|
+
|
|
120
|
+
sim0 = self.cross_model(image_f[:bc, :, :], text_f, mask.half())
|
|
121
|
+
sim1 = self.cross_model(image_f[bc:, :, :], text_f, mask.half())
|
|
122
|
+
outputs += sim0[:, 0, :],
|
|
123
|
+
outputs += sim1[:, 0, :],
|
|
124
|
+
|
|
125
|
+
return outputs
|
|
126
|
+
|
|
127
|
+
@property
|
|
128
|
+
def logit_scale(self):
|
|
129
|
+
return self.model.logit_scale
|
|
130
|
+
|
|
131
|
+
def save(self, path):
|
|
132
|
+
self.model.save_pretrained(path)
|
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
from einops import rearrange, repeat
|
|
4
|
+
from torch import einsum, nn
|
|
5
|
+
|
|
6
|
+
# helper functions
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def exists(val):
|
|
10
|
+
return val is not None
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def default(val, d):
|
|
14
|
+
return val if exists(val) else d
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
# normalization
|
|
18
|
+
# they use layernorm without bias, something that pytorch does not offer
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class LayerNorm(nn.Module):
|
|
22
|
+
|
|
23
|
+
def __init__(self, dim):
|
|
24
|
+
super().__init__()
|
|
25
|
+
self.weight = nn.Parameter(torch.ones(dim))
|
|
26
|
+
self.register_buffer('bias', torch.zeros(dim))
|
|
27
|
+
|
|
28
|
+
def forward(self, x):
|
|
29
|
+
return F.layer_norm(x, x.shape[-1:], self.weight, self.bias)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
# residual
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class Residual(nn.Module):
|
|
36
|
+
|
|
37
|
+
def __init__(self, fn):
|
|
38
|
+
super().__init__()
|
|
39
|
+
self.fn = fn
|
|
40
|
+
|
|
41
|
+
def forward(self, x, *args, **kwargs):
|
|
42
|
+
return self.fn(x, *args, **kwargs) + x
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
# rotary positional embedding
|
|
46
|
+
# https://arxiv.org/abs/2104.09864
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class RotaryEmbedding(nn.Module):
|
|
50
|
+
|
|
51
|
+
def __init__(self, dim):
|
|
52
|
+
super().__init__()
|
|
53
|
+
inv_freq = 1.0 / (10000**(torch.arange(0, dim, 2).float() / dim))
|
|
54
|
+
self.register_buffer('inv_freq', inv_freq)
|
|
55
|
+
|
|
56
|
+
def forward(self, max_seq_len, *, device):
|
|
57
|
+
seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype)
|
|
58
|
+
freqs = einsum('i , j -> i j', seq, self.inv_freq)
|
|
59
|
+
return torch.cat((freqs, freqs), dim=-1)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def rotate_half(x):
|
|
63
|
+
x = rearrange(x, '... (j d) -> ... j d', j=2)
|
|
64
|
+
x1, x2 = x.unbind(dim=-2)
|
|
65
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def apply_rotary_pos_emb(pos, t):
|
|
69
|
+
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward
|
|
73
|
+
# https://arxiv.org/abs/2002.05202
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class SwiGLU(nn.Module):
|
|
77
|
+
|
|
78
|
+
def forward(self, x):
|
|
79
|
+
x, gate = x.chunk(2, dim=-1)
|
|
80
|
+
return F.silu(gate) * x
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
# parallel attention and feedforward with residual
|
|
84
|
+
# discovered by Wang et al + EleutherAI from GPT-J fame
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class ParallelTransformerBlock(nn.Module):
|
|
88
|
+
|
|
89
|
+
def __init__(self, dim, dim_head=64, heads=8, ff_mult=4):
|
|
90
|
+
super().__init__()
|
|
91
|
+
self.norm = LayerNorm(dim)
|
|
92
|
+
|
|
93
|
+
attn_inner_dim = dim_head * heads
|
|
94
|
+
ff_inner_dim = dim * ff_mult
|
|
95
|
+
self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2))
|
|
96
|
+
|
|
97
|
+
self.heads = heads
|
|
98
|
+
self.scale = dim_head**-0.5
|
|
99
|
+
self.rotary_emb = RotaryEmbedding(dim_head)
|
|
100
|
+
|
|
101
|
+
self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)
|
|
102
|
+
self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
|
|
103
|
+
|
|
104
|
+
self.ff_out = nn.Sequential(SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False))
|
|
105
|
+
|
|
106
|
+
self.register_buffer('pos_emb', None, persistent=False)
|
|
107
|
+
|
|
108
|
+
def get_rotary_embedding(self, n, device):
|
|
109
|
+
if self.pos_emb is not None and self.pos_emb.shape[-2] >= n:
|
|
110
|
+
return self.pos_emb[:n]
|
|
111
|
+
|
|
112
|
+
pos_emb = self.rotary_emb(n, device=device)
|
|
113
|
+
self.register_buffer('pos_emb', pos_emb, persistent=False)
|
|
114
|
+
return pos_emb
|
|
115
|
+
|
|
116
|
+
def forward(self, x, attn_mask=None):
|
|
117
|
+
"""
|
|
118
|
+
einstein notation
|
|
119
|
+
b - batch
|
|
120
|
+
h - heads
|
|
121
|
+
n, i, j - sequence length (base sequence length, source, target)
|
|
122
|
+
d - feature dimension
|
|
123
|
+
"""
|
|
124
|
+
|
|
125
|
+
n, device, h = x.shape[1], x.device, self.heads
|
|
126
|
+
|
|
127
|
+
# pre layernorm
|
|
128
|
+
|
|
129
|
+
x = self.norm(x)
|
|
130
|
+
|
|
131
|
+
# attention queries, keys, values, and feedforward inner
|
|
132
|
+
|
|
133
|
+
q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)
|
|
134
|
+
|
|
135
|
+
# split heads
|
|
136
|
+
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
|
|
137
|
+
# they found no performance loss past a certain scale, and more efficient decoding obviously
|
|
138
|
+
# https://arxiv.org/abs/1911.02150
|
|
139
|
+
|
|
140
|
+
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
|
|
141
|
+
|
|
142
|
+
# rotary embeddings
|
|
143
|
+
|
|
144
|
+
positions = self.get_rotary_embedding(n, device)
|
|
145
|
+
q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k))
|
|
146
|
+
|
|
147
|
+
# scale
|
|
148
|
+
|
|
149
|
+
q = q * self.scale
|
|
150
|
+
|
|
151
|
+
# similarity
|
|
152
|
+
|
|
153
|
+
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
|
154
|
+
|
|
155
|
+
# extra attention mask - for masking out attention from text CLS token to padding
|
|
156
|
+
|
|
157
|
+
if exists(attn_mask):
|
|
158
|
+
attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j')
|
|
159
|
+
sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max)
|
|
160
|
+
|
|
161
|
+
# attention
|
|
162
|
+
|
|
163
|
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
|
164
|
+
attn = sim.softmax(dim=-1)
|
|
165
|
+
|
|
166
|
+
# aggregate values
|
|
167
|
+
|
|
168
|
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
|
169
|
+
|
|
170
|
+
# merge heads
|
|
171
|
+
|
|
172
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
173
|
+
return self.attn_out(out) + self.ff_out(ff)
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
# cross attention - using multi-query + one-headed key / values as in PaLM w/ optional parallel feedforward
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class CrossAttention(nn.Module):
|
|
180
|
+
|
|
181
|
+
def __init__(self,
|
|
182
|
+
dim,
|
|
183
|
+
*,
|
|
184
|
+
context_dim=None,
|
|
185
|
+
dim_head=64,
|
|
186
|
+
heads=12,
|
|
187
|
+
parallel_ff=False,
|
|
188
|
+
ff_mult=4,
|
|
189
|
+
norm_context=False):
|
|
190
|
+
super().__init__()
|
|
191
|
+
self.heads = heads
|
|
192
|
+
self.scale = dim_head**-0.5
|
|
193
|
+
inner_dim = heads * dim_head
|
|
194
|
+
context_dim = default(context_dim, dim)
|
|
195
|
+
|
|
196
|
+
self.norm = LayerNorm(dim)
|
|
197
|
+
self.context_norm = LayerNorm(context_dim) if norm_context else nn.Identity()
|
|
198
|
+
|
|
199
|
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
|
200
|
+
self.to_kv = nn.Linear(context_dim, dim_head * 2, bias=False)
|
|
201
|
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
|
202
|
+
|
|
203
|
+
# whether to have parallel feedforward
|
|
204
|
+
|
|
205
|
+
ff_inner_dim = ff_mult * dim
|
|
206
|
+
|
|
207
|
+
self.ff = nn.Sequential(
|
|
208
|
+
nn.Linear(dim, ff_inner_dim
|
|
209
|
+
* 2, bias=False), SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False)) if parallel_ff else None
|
|
210
|
+
|
|
211
|
+
def forward(self, x, context, mask):
|
|
212
|
+
"""
|
|
213
|
+
einstein notation
|
|
214
|
+
b - batch
|
|
215
|
+
h - heads
|
|
216
|
+
n, i, j - sequence length (base sequence length, source, target)
|
|
217
|
+
d - feature dimension
|
|
218
|
+
"""
|
|
219
|
+
|
|
220
|
+
# pre-layernorm, for queries and context
|
|
221
|
+
|
|
222
|
+
x = self.norm(x)
|
|
223
|
+
context = self.context_norm(context)
|
|
224
|
+
|
|
225
|
+
# get queries
|
|
226
|
+
|
|
227
|
+
q = self.to_q(x)
|
|
228
|
+
q = rearrange(q, 'b n (h d) -> b h n d', h=self.heads)
|
|
229
|
+
|
|
230
|
+
# scale
|
|
231
|
+
|
|
232
|
+
q = q * self.scale
|
|
233
|
+
|
|
234
|
+
# get key / values
|
|
235
|
+
|
|
236
|
+
k, v = self.to_kv(context).chunk(2, dim=-1)
|
|
237
|
+
|
|
238
|
+
# query / key similarity
|
|
239
|
+
|
|
240
|
+
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
|
241
|
+
|
|
242
|
+
# attention
|
|
243
|
+
mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1)
|
|
244
|
+
sim = sim + mask # context mask
|
|
245
|
+
sim = sim - sim.amax(dim=-1, keepdim=True)
|
|
246
|
+
attn = sim.softmax(dim=-1)
|
|
247
|
+
|
|
248
|
+
# aggregate
|
|
249
|
+
|
|
250
|
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
|
251
|
+
|
|
252
|
+
# merge and combine heads
|
|
253
|
+
|
|
254
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
255
|
+
out = self.to_out(out)
|
|
256
|
+
|
|
257
|
+
# add parallel feedforward (for multimodal layers)
|
|
258
|
+
|
|
259
|
+
if exists(self.ff):
|
|
260
|
+
out = out + self.ff(x)
|
|
261
|
+
|
|
262
|
+
return out
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
class Cross_model(nn.Module):
|
|
266
|
+
|
|
267
|
+
def __init__(self, dim=512, layer_num=4, dim_head=64, heads=8, ff_mult=4):
|
|
268
|
+
super().__init__()
|
|
269
|
+
|
|
270
|
+
self.layers = nn.ModuleList([])
|
|
271
|
+
|
|
272
|
+
for ind in range(layer_num):
|
|
273
|
+
self.layers.append(
|
|
274
|
+
nn.ModuleList([
|
|
275
|
+
Residual(
|
|
276
|
+
CrossAttention(dim=dim, dim_head=dim_head, heads=heads, parallel_ff=True, ff_mult=ff_mult)),
|
|
277
|
+
Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult))
|
|
278
|
+
]))
|
|
279
|
+
|
|
280
|
+
def forward(self, query_tokens, context_tokens, mask):
|
|
281
|
+
|
|
282
|
+
for cross_attn, self_attn_ff in self.layers:
|
|
283
|
+
query_tokens = cross_attn(query_tokens, context_tokens, mask)
|
|
284
|
+
query_tokens = self_attn_ff(query_tokens)
|
|
285
|
+
|
|
286
|
+
return query_tokens
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import torch
|
|
3
|
+
from typing import List
|
|
4
|
+
|
|
5
|
+
from ...constants import CACHE_DIR
|
|
6
|
+
from ..model import ScoreModel
|
|
7
|
+
|
|
8
|
+
CLIP_MODELS = [
|
|
9
|
+
'openai:RN50', 'yfcc15m:RN50', 'cc12m:RN50', 'openai:RN101', 'yfcc15m:RN101', 'openai:RN50x4', 'openai:RN50x16',
|
|
10
|
+
'openai:RN50x64', 'openai:ViT-B-32', 'laion400m_e31:ViT-B-32', 'laion400m_e32:ViT-B-32', 'laion2b_e16:ViT-B-32',
|
|
11
|
+
'laion2b_s34b_b79k:ViT-B-32', 'datacomp_xl_s13b_b90k:ViT-B-32', 'datacomp_m_s128m_b4k:ViT-B-32',
|
|
12
|
+
'commonpool_m_clip_s128m_b4k:ViT-B-32', 'commonpool_m_laion_s128m_b4k:ViT-B-32',
|
|
13
|
+
'commonpool_m_image_s128m_b4k:ViT-B-32', 'commonpool_m_text_s128m_b4k:ViT-B-32',
|
|
14
|
+
'commonpool_m_basic_s128m_b4k:ViT-B-32', 'commonpool_m_s128m_b4k:ViT-B-32', 'datacomp_s_s13m_b4k:ViT-B-32',
|
|
15
|
+
'commonpool_s_clip_s13m_b4k:ViT-B-32', 'commonpool_s_laion_s13m_b4k:ViT-B-32',
|
|
16
|
+
'commonpool_s_image_s13m_b4k:ViT-B-32', 'commonpool_s_text_s13m_b4k:ViT-B-32',
|
|
17
|
+
'commonpool_s_basic_s13m_b4k:ViT-B-32', 'commonpool_s_s13m_b4k:ViT-B-32', 'metaclip_400m:ViT-B-32',
|
|
18
|
+
'metaclip_fullcc:ViT-B-32', 'datacomp_s34b_b86k:ViT-B-32-256', 'openai:ViT-B-16', 'laion400m_e31:ViT-B-16',
|
|
19
|
+
'laion400m_e32:ViT-B-16', 'laion2b_s34b_b88k:ViT-B-16', 'datacomp_xl_s13b_b90k:ViT-B-16',
|
|
20
|
+
'datacomp_l_s1b_b8k:ViT-B-16', 'commonpool_l_clip_s1b_b8k:ViT-B-16', 'commonpool_l_laion_s1b_b8k:ViT-B-16',
|
|
21
|
+
'commonpool_l_image_s1b_b8k:ViT-B-16', 'commonpool_l_text_s1b_b8k:ViT-B-16', 'commonpool_l_basic_s1b_b8k:ViT-B-16',
|
|
22
|
+
'commonpool_l_s1b_b8k:ViT-B-16', 'dfn2b:ViT-B-16', 'metaclip_400m:ViT-B-16', 'metaclip_fullcc:ViT-B-16',
|
|
23
|
+
'laion400m_e31:ViT-B-16-plus-240', 'laion400m_e32:ViT-B-16-plus-240', 'openai:ViT-L-14', 'laion400m_e31:ViT-L-14',
|
|
24
|
+
'laion400m_e32:ViT-L-14', 'laion2b_s32b_b82k:ViT-L-14', 'datacomp_xl_s13b_b90k:ViT-L-14',
|
|
25
|
+
'commonpool_xl_clip_s13b_b90k:ViT-L-14', 'commonpool_xl_laion_s13b_b90k:ViT-L-14',
|
|
26
|
+
'commonpool_xl_s13b_b90k:ViT-L-14', 'metaclip_400m:ViT-L-14', 'metaclip_fullcc:ViT-L-14', 'dfn2b:ViT-L-14',
|
|
27
|
+
'dfn2b_s39b:ViT-L-14', 'openai:ViT-L-14-336', 'laion2b_s32b_b79k:ViT-H-14', 'metaclip_fullcc:ViT-H-14',
|
|
28
|
+
'metaclip_altogether:ViT-H-14', 'dfn5b:ViT-H-14', 'dfn5b:ViT-H-14-378', 'laion2b_s12b_b42k:ViT-g-14',
|
|
29
|
+
'laion2b_s34b_b88k:ViT-g-14', 'laion2b_s39b_b160k:ViT-bigG-14', 'metaclip_fullcc:ViT-bigG-14',
|
|
30
|
+
'laion2b_s12b_b32k:roberta-ViT-B-32', 'laion5b_s13b_b90k:xlm-roberta-base-ViT-B-32',
|
|
31
|
+
'frozen_laion5b_s13b_b90k:xlm-roberta-large-ViT-H-14', 'laion400m_s13b_b51k:convnext_base',
|
|
32
|
+
'laion2b_s13b_b82k:convnext_base_w', 'laion2b_s13b_b82k_augreg:convnext_base_w',
|
|
33
|
+
'laion_aesthetic_s13b_b82k:convnext_base_w', 'laion_aesthetic_s13b_b82k:convnext_base_w_320',
|
|
34
|
+
'laion_aesthetic_s13b_b82k_augreg:convnext_base_w_320', 'laion2b_s26b_b102k_augreg:convnext_large_d',
|
|
35
|
+
'laion2b_s29b_b131k_ft:convnext_large_d_320', 'laion2b_s29b_b131k_ft_soup:convnext_large_d_320',
|
|
36
|
+
'laion2b_s34b_b82k_augreg:convnext_xxlarge', 'laion2b_s34b_b82k_augreg_rewind:convnext_xxlarge',
|
|
37
|
+
'laion2b_s34b_b82k_augreg_soup:convnext_xxlarge', 'laion2b_s13b_b90k:coca_ViT-B-32',
|
|
38
|
+
'mscoco_finetuned_laion2b_s13b_b90k:coca_ViT-B-32', 'laion2b_s13b_b90k:coca_ViT-L-14',
|
|
39
|
+
'mscoco_finetuned_laion2b_s13b_b90k:coca_ViT-L-14', 'laion400m_s11b_b41k:EVA01-g-14',
|
|
40
|
+
'merged2b_s11b_b114k:EVA01-g-14-plus', 'merged2b_s8b_b131k:EVA02-B-16', 'merged2b_s4b_b131k:EVA02-L-14',
|
|
41
|
+
'merged2b_s6b_b61k:EVA02-L-14-336', 'laion2b_s4b_b115k:EVA02-E-14', 'laion2b_s9b_b144k:EVA02-E-14-plus',
|
|
42
|
+
'webli:ViT-B-16-SigLIP', 'webli:ViT-B-16-SigLIP-256', 'webli:ViT-B-16-SigLIP-i18n-256', 'webli:ViT-B-16-SigLIP-384',
|
|
43
|
+
'webli:ViT-B-16-SigLIP-512', 'webli:ViT-L-16-SigLIP-256', 'webli:ViT-L-16-SigLIP-384', 'webli:ViT-SO400M-14-SigLIP',
|
|
44
|
+
'webli:ViT-SO400M-16-SigLIP-i18n-256', 'webli:ViT-SO400M-14-SigLIP-378', 'webli:ViT-SO400M-14-SigLIP-384',
|
|
45
|
+
'webli:ViT-B-32-SigLIP2-256', 'webli:ViT-B-16-SigLIP2', 'webli:ViT-B-16-SigLIP2-256', 'webli:ViT-B-16-SigLIP2-384',
|
|
46
|
+
'webli:ViT-B-16-SigLIP2-512', 'webli:ViT-L-16-SigLIP2-256', 'webli:ViT-L-16-SigLIP2-384',
|
|
47
|
+
'webli:ViT-L-16-SigLIP2-512', 'webli:ViT-SO400M-14-SigLIP2', 'webli:ViT-SO400M-14-SigLIP2-378',
|
|
48
|
+
'webli:ViT-SO400M-16-SigLIP2-256', 'webli:ViT-SO400M-16-SigLIP2-384', 'webli:ViT-SO400M-16-SigLIP2-512',
|
|
49
|
+
'webli:ViT-gopt-16-SigLIP2-256', 'webli:ViT-gopt-16-SigLIP2-384', 'datacomp1b:ViT-L-14-CLIPA',
|
|
50
|
+
'datacomp1b:ViT-L-14-CLIPA-336', 'datacomp1b:ViT-H-14-CLIPA', 'laion2b:ViT-H-14-CLIPA-336',
|
|
51
|
+
'datacomp1b:ViT-H-14-CLIPA-336', 'datacomp1b:ViT-bigG-14-CLIPA', 'datacomp1b:ViT-bigG-14-CLIPA-336',
|
|
52
|
+
'v1:nllb-clip-base', 'v1:nllb-clip-large', 'v1:nllb-clip-base-siglip', 'mrl:nllb-clip-base-siglip',
|
|
53
|
+
'v1:nllb-clip-large-siglip', 'mrl:nllb-clip-large-siglip', 'datacompdr:MobileCLIP-S1', 'datacompdr:MobileCLIP-S2',
|
|
54
|
+
'datacompdr:MobileCLIP-B', 'datacompdr_lt:MobileCLIP-B', 'datacomp1b:ViTamin-S', 'datacomp1b:ViTamin-S-LTT',
|
|
55
|
+
'datacomp1b:ViTamin-B', 'datacomp1b:ViTamin-B-LTT', 'datacomp1b:ViTamin-L', 'datacomp1b:ViTamin-L-256',
|
|
56
|
+
'datacomp1b:ViTamin-L-336', 'datacomp1b:ViTamin-L-384', 'datacomp1b:ViTamin-L2', 'datacomp1b:ViTamin-L2-256',
|
|
57
|
+
'datacomp1b:ViTamin-L2-336', 'datacomp1b:ViTamin-L2-384', 'datacomp1b:ViTamin-XL-256', 'datacomp1b:ViTamin-XL-336',
|
|
58
|
+
'datacomp1b:ViTamin-XL-384', 'openai:RN50-quickgelu', 'yfcc15m:RN50-quickgelu', 'cc12m:RN50-quickgelu',
|
|
59
|
+
'openai:RN101-quickgelu', 'yfcc15m:RN101-quickgelu', 'openai:RN50x4-quickgelu', 'openai:RN50x16-quickgelu',
|
|
60
|
+
'openai:RN50x64-quickgelu', 'openai:ViT-B-32-quickgelu', 'laion400m_e31:ViT-B-32-quickgelu',
|
|
61
|
+
'laion400m_e32:ViT-B-32-quickgelu', 'metaclip_400m:ViT-B-32-quickgelu', 'metaclip_fullcc:ViT-B-32-quickgelu',
|
|
62
|
+
'openai:ViT-B-16-quickgelu', 'dfn2b:ViT-B-16-quickgelu', 'metaclip_400m:ViT-B-16-quickgelu',
|
|
63
|
+
'metaclip_fullcc:ViT-B-16-quickgelu', 'openai:ViT-L-14-quickgelu', 'metaclip_400m:ViT-L-14-quickgelu',
|
|
64
|
+
'metaclip_fullcc:ViT-L-14-quickgelu', 'dfn2b:ViT-L-14-quickgelu', 'openai:ViT-L-14-336-quickgelu',
|
|
65
|
+
'metaclip_fullcc:ViT-H-14-quickgelu', 'dfn5b:ViT-H-14-quickgelu', 'dfn5b:ViT-H-14-378-quickgelu',
|
|
66
|
+
'metaclip_fullcc:ViT-bigG-14-quickgelu'
|
|
67
|
+
] # noqa: E501
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
class CLIPScoreModel(ScoreModel):
|
|
71
|
+
"A wrapper for OpenCLIP models (including openAI's CLIP, OpenCLIP, DatacompCLIP)"
|
|
72
|
+
|
|
73
|
+
def __init__(self, model_name='openai:ViT-L-14', device='cuda', cache_dir=CACHE_DIR):
|
|
74
|
+
assert model_name in CLIP_MODELS
|
|
75
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
76
|
+
|
|
77
|
+
def load_model(self):
|
|
78
|
+
"""Load the model, tokenizer, image transform
|
|
79
|
+
"""
|
|
80
|
+
import open_clip
|
|
81
|
+
|
|
82
|
+
from ..utils import download_open_clip_model
|
|
83
|
+
|
|
84
|
+
self.pretrained, self.arch = self.model_name.split(':')
|
|
85
|
+
# load model from modelscope
|
|
86
|
+
model_file_path = download_open_clip_model(self.arch, self.pretrained, self.cache_dir)
|
|
87
|
+
|
|
88
|
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
|
89
|
+
self.arch, pretrained=model_file_path, device=self.device)
|
|
90
|
+
self.tokenizer = open_clip.get_tokenizer(self.arch)
|
|
91
|
+
self.model.eval()
|
|
92
|
+
|
|
93
|
+
def load_images(self, image: List[str]) -> torch.Tensor:
|
|
94
|
+
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
|
|
95
|
+
"""
|
|
96
|
+
image = [self.image_loader(x) for x in image]
|
|
97
|
+
image = [self.preprocess(x) for x in image]
|
|
98
|
+
image = torch.stack(image, dim=0).to(self.device)
|
|
99
|
+
return image
|
|
100
|
+
|
|
101
|
+
@torch.no_grad()
|
|
102
|
+
def forward(self, images: List[str], texts: List[str]) -> torch.Tensor:
|
|
103
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
104
|
+
"""
|
|
105
|
+
assert len(images) == len(texts)
|
|
106
|
+
image = self.load_images(images)
|
|
107
|
+
text = self.tokenizer(texts).to(self.device)
|
|
108
|
+
image_features = self.model.encode_image(image)
|
|
109
|
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
110
|
+
text_features = self.model.encode_text(text)
|
|
111
|
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
112
|
+
|
|
113
|
+
# return cosine similarity as scores
|
|
114
|
+
return (image_features * text_features).sum(dim=-1)
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from typing import List
|
|
3
|
+
|
|
4
|
+
from ...constants import CACHE_DIR
|
|
5
|
+
from ..model import ScoreModel
|
|
6
|
+
|
|
7
|
+
HPSV2_MODELS = ['hpsv2', 'hpsv2.1']
|
|
8
|
+
HPS_VERSION_MAP = {
|
|
9
|
+
'hpsv2': 'HPS_v2_compressed.pt',
|
|
10
|
+
'hpsv2.1': 'HPS_v2.1_compressed.pt',
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class HPSV2ScoreModel(ScoreModel):
|
|
15
|
+
'A wrapper for HPSv2 models '
|
|
16
|
+
|
|
17
|
+
def __init__(self, model_name='openai:ViT-L-14', device='cuda', cache_dir=CACHE_DIR):
|
|
18
|
+
assert model_name in HPSV2_MODELS
|
|
19
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
20
|
+
|
|
21
|
+
def load_model(self):
|
|
22
|
+
"""Load the model, tokenizer, image transform
|
|
23
|
+
"""
|
|
24
|
+
import open_clip
|
|
25
|
+
|
|
26
|
+
from ..utils import download_file, download_open_clip_model
|
|
27
|
+
|
|
28
|
+
self.pretrained, self.arch = 'laion2B-s32B-b79K:ViT-H-14'.split(':')
|
|
29
|
+
# load model from modelscope
|
|
30
|
+
model_file_path = download_open_clip_model(self.arch, self.pretrained, self.cache_dir)
|
|
31
|
+
|
|
32
|
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
|
33
|
+
self.arch,
|
|
34
|
+
pretrained=model_file_path,
|
|
35
|
+
precision='amp',
|
|
36
|
+
device=self.device,
|
|
37
|
+
jit=False,
|
|
38
|
+
force_quick_gelu=False,
|
|
39
|
+
force_custom_text=False,
|
|
40
|
+
force_patch_dropout=False,
|
|
41
|
+
force_image_size=None,
|
|
42
|
+
pretrained_image=False,
|
|
43
|
+
image_mean=None,
|
|
44
|
+
image_std=None,
|
|
45
|
+
image_resize_mode='longest',
|
|
46
|
+
aug_cfg={},
|
|
47
|
+
output_dict=True)
|
|
48
|
+
|
|
49
|
+
# update weight
|
|
50
|
+
model_weight_path = download_file('AI-ModelScope/HPSv2', HPS_VERSION_MAP[self.model_name], self.cache_dir)
|
|
51
|
+
checkpoint = torch.load(model_weight_path, map_location=self.device)
|
|
52
|
+
self.model.load_state_dict(checkpoint['state_dict'])
|
|
53
|
+
self.tokenizer = open_clip.get_tokenizer(self.arch)
|
|
54
|
+
self.model.eval()
|
|
55
|
+
|
|
56
|
+
def load_images(self, image: List[str]):
|
|
57
|
+
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
|
|
58
|
+
"""
|
|
59
|
+
images = [self.image_loader(x) for x in image]
|
|
60
|
+
return images
|
|
61
|
+
|
|
62
|
+
@torch.no_grad()
|
|
63
|
+
def forward(self, images: List[str], texts: List[str]) -> torch.Tensor:
|
|
64
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
65
|
+
"""
|
|
66
|
+
assert len(images) == len(texts)
|
|
67
|
+
images = self.load_images(images)
|
|
68
|
+
scores = torch.zeros(len(images), dtype=torch.float16).to(self.device)
|
|
69
|
+
for i in range(len(images)):
|
|
70
|
+
caption = texts[i]
|
|
71
|
+
image = images[i]
|
|
72
|
+
# Process the image
|
|
73
|
+
image = self.preprocess(image).unsqueeze(0).to(device=self.device, non_blocking=True)
|
|
74
|
+
# Process the prompt
|
|
75
|
+
text = self.tokenizer([caption]).to(device=self.device, non_blocking=True) # Updated to use texts[i]
|
|
76
|
+
# Calculate the HPS
|
|
77
|
+
with torch.amp.autocast(device_type=self.device):
|
|
78
|
+
outputs = self.model(image, text)
|
|
79
|
+
image_features, text_features = outputs['image_features'], outputs['text_features']
|
|
80
|
+
logits_per_image = image_features @ text_features.T
|
|
81
|
+
|
|
82
|
+
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
|
|
83
|
+
scores[i] = float(hps_score[0])
|
|
84
|
+
|
|
85
|
+
# return cosine similarity as scores
|
|
86
|
+
return scores
|