evalscope 0.14.0__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +3 -3
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +9 -3
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/benchmark.py +4 -3
- evalscope/perf/main.py +4 -2
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +16 -8
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/METADATA +20 -3
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/RECORD +178 -66
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +20 -7
- tests/perf/test_perf.py +6 -3
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/top_level.txt +0 -0
evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py
ADDED
|
@@ -0,0 +1,371 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2022, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
from copy import deepcopy
|
|
11
|
+
from torch import nn
|
|
12
|
+
|
|
13
|
+
from ...common.registry import registry
|
|
14
|
+
from ..base_model import MomentumDistilationMixin, SharedQueueMixin
|
|
15
|
+
from ..med import XBertEncoder, XBertLMHeadDecoder
|
|
16
|
+
from ..vit import VisionTransformerEncoder
|
|
17
|
+
from . import tie_encoder_decoder_weights
|
|
18
|
+
from .blip import BlipBase
|
|
19
|
+
from .blip_outputs import BlipIntermediateOutput, BlipOutput, BlipSimilarity
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@registry.register_model('blip_pretrain')
|
|
23
|
+
class BlipPretrain(BlipBase, SharedQueueMixin, MomentumDistilationMixin):
|
|
24
|
+
"""
|
|
25
|
+
BLIP pretrain model.
|
|
26
|
+
|
|
27
|
+
Supported model types:
|
|
28
|
+
- base: BLIP base model before pretraining.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
32
|
+
'base': 'configs/models/blip_pretrain_base.yaml',
|
|
33
|
+
# "large": "configs/models/blip_pretrain_large.yaml",
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
def __init__(
|
|
37
|
+
self,
|
|
38
|
+
image_encoder,
|
|
39
|
+
text_encoder,
|
|
40
|
+
text_decoder,
|
|
41
|
+
queue_size,
|
|
42
|
+
alpha=0.4,
|
|
43
|
+
embed_dim=256,
|
|
44
|
+
momentum=0.995,
|
|
45
|
+
tie_enc_dec_weights=True,
|
|
46
|
+
max_txt_len=30,
|
|
47
|
+
):
|
|
48
|
+
super().__init__()
|
|
49
|
+
|
|
50
|
+
self.tokenizer = self.init_tokenizer()
|
|
51
|
+
|
|
52
|
+
text_encoder.resize_token_embeddings(len(self.tokenizer))
|
|
53
|
+
text_decoder.resize_token_embeddings(len(self.tokenizer))
|
|
54
|
+
|
|
55
|
+
if tie_enc_dec_weights:
|
|
56
|
+
tie_encoder_decoder_weights(
|
|
57
|
+
encoder=text_encoder,
|
|
58
|
+
decoder=text_decoder.bert,
|
|
59
|
+
base_model_prefix='',
|
|
60
|
+
skip_key='/attention',
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
self.visual_encoder = image_encoder
|
|
64
|
+
|
|
65
|
+
self.text_encoder = text_encoder
|
|
66
|
+
self.text_decoder = text_decoder
|
|
67
|
+
|
|
68
|
+
# creating projection layers for ITC
|
|
69
|
+
text_width = text_encoder.config.hidden_size
|
|
70
|
+
vision_width = image_encoder.vision_width
|
|
71
|
+
|
|
72
|
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
|
73
|
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
|
74
|
+
|
|
75
|
+
self.itm_head = nn.Linear(text_width, 2)
|
|
76
|
+
|
|
77
|
+
# create the momentum encoder
|
|
78
|
+
self.visual_encoder_m = deepcopy(self.visual_encoder)
|
|
79
|
+
self.text_encoder_m = deepcopy(self.text_encoder)
|
|
80
|
+
|
|
81
|
+
self.vision_proj_m = deepcopy(self.vision_proj)
|
|
82
|
+
self.text_proj_m = deepcopy(self.text_proj)
|
|
83
|
+
|
|
84
|
+
self.model_pairs = [
|
|
85
|
+
[self.visual_encoder, self.visual_encoder_m],
|
|
86
|
+
[self.text_encoder, self.text_encoder_m],
|
|
87
|
+
[self.vision_proj, self.vision_proj_m],
|
|
88
|
+
[self.text_proj, self.text_proj_m],
|
|
89
|
+
]
|
|
90
|
+
self.copy_params()
|
|
91
|
+
|
|
92
|
+
# create the queue
|
|
93
|
+
self.register_buffer('image_queue', torch.randn(embed_dim, queue_size))
|
|
94
|
+
self.register_buffer('text_queue', torch.randn(embed_dim, queue_size))
|
|
95
|
+
self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long))
|
|
96
|
+
|
|
97
|
+
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
|
98
|
+
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
|
99
|
+
|
|
100
|
+
self.queue_size = queue_size
|
|
101
|
+
self.momentum = momentum
|
|
102
|
+
self.temp = nn.Parameter(0.07 * torch.ones([]))
|
|
103
|
+
|
|
104
|
+
self.alpha = alpha
|
|
105
|
+
self.max_txt_len = max_txt_len
|
|
106
|
+
|
|
107
|
+
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
|
|
108
|
+
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
|
|
109
|
+
|
|
110
|
+
def forward(self, samples):
|
|
111
|
+
"""
|
|
112
|
+
Args:
|
|
113
|
+
samples (dict): A dictionary containing the following keys:
|
|
114
|
+
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224.
|
|
115
|
+
- text_input (list): A list of length batch_size, each element is a string of text/caption.
|
|
116
|
+
- epoch (int): The current epoch.
|
|
117
|
+
- iters (int): The current iteration.
|
|
118
|
+
- num_iters_per_epoch (int): The number of iterations per epoch.
|
|
119
|
+
|
|
120
|
+
Returns:
|
|
121
|
+
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
|
|
122
|
+
|
|
123
|
+
Examples:
|
|
124
|
+
>>> import torch
|
|
125
|
+
>>> from lavis.models import load_model
|
|
126
|
+
>>> model = load_model("blip_pretrain", "base")
|
|
127
|
+
>>> images = torch.randn(4, 3, 224, 224)
|
|
128
|
+
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
|
|
129
|
+
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
|
|
130
|
+
>>> output = model(samples)
|
|
131
|
+
>>> output.keys()
|
|
132
|
+
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_lm'])
|
|
133
|
+
|
|
134
|
+
>>> output.intermediate_output.keys()
|
|
135
|
+
odict_keys(['image_embeds', 'text_embeds', 'image_embeds_m', 'text_embeds_m', 'encoder_output', 'encoder_output_neg', 'itm_logits', 'itm_labels', 'decoder_output', 'decoder_labels'])
|
|
136
|
+
>>> output.intermediate_output.image_embeds.shape
|
|
137
|
+
>>> # shape: (batch_size, num_patches, embed_dim)
|
|
138
|
+
torch.Size([4, 197, 768])
|
|
139
|
+
>>> output.intermediate_output.text_embeds.shape
|
|
140
|
+
>>> # shape: (batch_size, max_txt_len, embed_dim)
|
|
141
|
+
torch.Size([4, 30, 768])
|
|
142
|
+
>>> output.intermediate_output.image_embeds_m.shape
|
|
143
|
+
>>> # shape: (batch_size, num_patches, embed_dim)
|
|
144
|
+
torch.Size([4, 197, 768])
|
|
145
|
+
>>> output.intermediate_output.text_embeds_m.shape
|
|
146
|
+
>>> # shape: (batch_size, max_txt_len, embed_dim)
|
|
147
|
+
torch.Size([4, 30, 768])
|
|
148
|
+
>>> output.intermediate_output.itm_logits.shape
|
|
149
|
+
>>> # shape: (batch_size * 3, 2)
|
|
150
|
+
torch.Size([12, 2])
|
|
151
|
+
>>> output.intermediate_output.itm_labels.shape
|
|
152
|
+
>>> # shape: (batch_size * 3,)
|
|
153
|
+
torch.Size([12])
|
|
154
|
+
>>> output.intermediate_output.encoder_output.last_hidden_state.shape
|
|
155
|
+
>>> # shape: (batch_size, max_txt_len, embed_dim)
|
|
156
|
+
torch.Size([4, 30, 768])
|
|
157
|
+
>>> output.intermediate_output.encoder_output_m.last_hidden_state.shape
|
|
158
|
+
>>> # shape: (batch_size, max_txt_len, embed_dim)
|
|
159
|
+
torch.Size([4, 30, 768])
|
|
160
|
+
>>> output.intermediate_output.decoder_output.logits.shape
|
|
161
|
+
>>> # shape: (batch_size, max_txt_len, vocab_size)
|
|
162
|
+
torch.Size([4, 30, 30524])
|
|
163
|
+
>>> output.intermediate_output.decoder_labels.shape
|
|
164
|
+
>>> # shape: (batch_size, max_txt_len)
|
|
165
|
+
torch.Size([4, 30])
|
|
166
|
+
"""
|
|
167
|
+
|
|
168
|
+
image = samples['image']
|
|
169
|
+
caption = samples['text_input']
|
|
170
|
+
|
|
171
|
+
alpha = self.alpha * self._rampup_factor(
|
|
172
|
+
epoch=samples['epoch'],
|
|
173
|
+
iters=samples['iters'],
|
|
174
|
+
num_iters_per_epoch=samples['num_iters_per_epoch'],
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
with torch.no_grad():
|
|
178
|
+
self.temp.clamp_(0.001, 0.5)
|
|
179
|
+
|
|
180
|
+
# image embeddings and features
|
|
181
|
+
image_embeds = self.visual_encoder.forward_features(image)
|
|
182
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
183
|
+
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
|
|
184
|
+
|
|
185
|
+
text = self.tokenizer(
|
|
186
|
+
caption,
|
|
187
|
+
padding='max_length',
|
|
188
|
+
truncation=True,
|
|
189
|
+
max_length=self.max_txt_len,
|
|
190
|
+
return_tensors='pt',
|
|
191
|
+
).to(image.device)
|
|
192
|
+
|
|
193
|
+
# text embeddings and features
|
|
194
|
+
text_output = self.text_encoder.forward_text(text)
|
|
195
|
+
text_embeds = text_output.last_hidden_state
|
|
196
|
+
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
|
|
197
|
+
|
|
198
|
+
# get momentum features
|
|
199
|
+
with torch.no_grad():
|
|
200
|
+
self._momentum_update()
|
|
201
|
+
image_embeds_m = self.visual_encoder_m(image)
|
|
202
|
+
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1)
|
|
203
|
+
image_feat_all = torch.cat([image_feat_m.t(), self.image_queue.clone().detach()], dim=1)
|
|
204
|
+
|
|
205
|
+
text_output_m = self.text_encoder_m.forward_text(text)
|
|
206
|
+
text_embeds_m = text_output_m.last_hidden_state
|
|
207
|
+
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
|
|
208
|
+
text_feat_all = torch.cat([text_feat_m.t(), self.text_queue.clone().detach()], dim=1)
|
|
209
|
+
|
|
210
|
+
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
|
|
211
|
+
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
|
|
212
|
+
|
|
213
|
+
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
|
|
214
|
+
sim_targets.fill_diagonal_(1)
|
|
215
|
+
|
|
216
|
+
sim_i2t_targets = (alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets)
|
|
217
|
+
sim_t2i_targets = (alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets)
|
|
218
|
+
|
|
219
|
+
sim_i2t = image_feat @ text_feat_all / self.temp
|
|
220
|
+
sim_t2i = text_feat @ image_feat_all / self.temp
|
|
221
|
+
|
|
222
|
+
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1).mean()
|
|
223
|
+
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1).mean()
|
|
224
|
+
|
|
225
|
+
loss_itc = (loss_i2t + loss_t2i) / 2
|
|
226
|
+
|
|
227
|
+
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
|
|
228
|
+
|
|
229
|
+
# Image-text Matching
|
|
230
|
+
encoder_input_ids = text.input_ids.clone()
|
|
231
|
+
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
|
|
232
|
+
|
|
233
|
+
# forward the positve image-text pair
|
|
234
|
+
bs = image.size(0)
|
|
235
|
+
output_pos = self.text_encoder(
|
|
236
|
+
encoder_input_ids,
|
|
237
|
+
attention_mask=text.attention_mask,
|
|
238
|
+
encoder_hidden_states=image_embeds,
|
|
239
|
+
encoder_attention_mask=image_atts,
|
|
240
|
+
return_dict=True,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
with torch.no_grad():
|
|
244
|
+
weights_t2i = F.softmax(sim_t2i[:, :bs], dim=1) + 1e-4
|
|
245
|
+
weights_t2i.fill_diagonal_(0)
|
|
246
|
+
weights_i2t = F.softmax(sim_i2t[:, :bs], dim=1) + 1e-4
|
|
247
|
+
weights_i2t.fill_diagonal_(0)
|
|
248
|
+
|
|
249
|
+
# select a negative image for each text
|
|
250
|
+
image_embeds_neg = []
|
|
251
|
+
for b in range(bs):
|
|
252
|
+
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
|
253
|
+
image_embeds_neg.append(image_embeds[neg_idx])
|
|
254
|
+
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
|
|
255
|
+
|
|
256
|
+
# select a negative text for each image
|
|
257
|
+
text_ids_neg = []
|
|
258
|
+
text_atts_neg = []
|
|
259
|
+
for b in range(bs):
|
|
260
|
+
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
|
261
|
+
text_ids_neg.append(encoder_input_ids[neg_idx])
|
|
262
|
+
text_atts_neg.append(text.attention_mask[neg_idx])
|
|
263
|
+
|
|
264
|
+
text_ids_neg = torch.stack(text_ids_neg, dim=0)
|
|
265
|
+
text_atts_neg = torch.stack(text_atts_neg, dim=0)
|
|
266
|
+
|
|
267
|
+
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
|
|
268
|
+
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
|
|
269
|
+
|
|
270
|
+
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
|
|
271
|
+
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
|
|
272
|
+
|
|
273
|
+
output_neg = self.text_encoder(
|
|
274
|
+
text_ids_all,
|
|
275
|
+
attention_mask=text_atts_all,
|
|
276
|
+
encoder_hidden_states=image_embeds_all,
|
|
277
|
+
encoder_attention_mask=image_atts_all,
|
|
278
|
+
return_dict=True,
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
vl_embeddings = torch.cat(
|
|
282
|
+
[
|
|
283
|
+
output_pos.last_hidden_state[:, 0, :],
|
|
284
|
+
output_neg.last_hidden_state[:, 0, :],
|
|
285
|
+
],
|
|
286
|
+
dim=0,
|
|
287
|
+
)
|
|
288
|
+
itm_logits = self.itm_head(vl_embeddings)
|
|
289
|
+
|
|
290
|
+
itm_labels = torch.cat(
|
|
291
|
+
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
|
|
292
|
+
dim=0,
|
|
293
|
+
).to(image.device)
|
|
294
|
+
loss_itm = F.cross_entropy(itm_logits, itm_labels)
|
|
295
|
+
|
|
296
|
+
# LM
|
|
297
|
+
decoder_input_ids = text.input_ids.clone()
|
|
298
|
+
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
|
|
299
|
+
decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
|
|
300
|
+
|
|
301
|
+
decoder_output = self.text_decoder(
|
|
302
|
+
decoder_input_ids,
|
|
303
|
+
attention_mask=text.attention_mask,
|
|
304
|
+
encoder_hidden_states=image_embeds,
|
|
305
|
+
encoder_attention_mask=image_atts,
|
|
306
|
+
labels=decoder_targets,
|
|
307
|
+
return_dict=True,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
loss_lm = decoder_output.loss
|
|
311
|
+
|
|
312
|
+
return BlipOutput(
|
|
313
|
+
loss=loss_itc + loss_itm + loss_lm,
|
|
314
|
+
loss_itc=loss_itc,
|
|
315
|
+
loss_itm=loss_itm,
|
|
316
|
+
loss_lm=loss_lm,
|
|
317
|
+
sims=BlipSimilarity(
|
|
318
|
+
sim_i2t=sim_i2t,
|
|
319
|
+
sim_t2i=sim_t2i,
|
|
320
|
+
sim_i2t_m=sim_i2t_m,
|
|
321
|
+
sim_t2i_m=sim_t2i_m,
|
|
322
|
+
sim_i2t_targets=sim_i2t_targets,
|
|
323
|
+
sim_t2i_targets=sim_t2i_targets,
|
|
324
|
+
),
|
|
325
|
+
intermediate_output=BlipIntermediateOutput(
|
|
326
|
+
image_embeds=image_embeds,
|
|
327
|
+
text_embeds=text_embeds,
|
|
328
|
+
image_embeds_m=image_embeds_m,
|
|
329
|
+
text_embeds_m=text_embeds_m,
|
|
330
|
+
encoder_output=output_pos,
|
|
331
|
+
encoder_output_neg=output_neg,
|
|
332
|
+
itm_logits=itm_logits,
|
|
333
|
+
itm_labels=itm_labels,
|
|
334
|
+
decoder_output=decoder_output,
|
|
335
|
+
decoder_labels=decoder_targets,
|
|
336
|
+
),
|
|
337
|
+
)
|
|
338
|
+
|
|
339
|
+
def reset_queue_ptr(self):
|
|
340
|
+
self.queue_ptr = torch.zeros(1, dtype=torch.long)
|
|
341
|
+
|
|
342
|
+
@classmethod
|
|
343
|
+
def from_config(cls, cfg=None):
|
|
344
|
+
# set from_pretrained=True to load weights for 'bert-base-uncased'
|
|
345
|
+
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
|
|
346
|
+
text_encoder = XBertEncoder.from_config(cfg, from_pretrained=True)
|
|
347
|
+
text_decoder = XBertLMHeadDecoder.from_config(cfg, from_pretrained=True)
|
|
348
|
+
|
|
349
|
+
embed_dim = cfg.get('embed_dim', 256)
|
|
350
|
+
momentum = cfg.get('momentum', 0.995)
|
|
351
|
+
alpha = cfg.get('alpha', 0.4)
|
|
352
|
+
max_txt_len = cfg.get('max_txt_len', 30)
|
|
353
|
+
queue_size = cfg.get('queue_size', 57600)
|
|
354
|
+
|
|
355
|
+
model = cls(
|
|
356
|
+
image_encoder=image_encoder,
|
|
357
|
+
text_encoder=text_encoder,
|
|
358
|
+
text_decoder=text_decoder,
|
|
359
|
+
embed_dim=embed_dim,
|
|
360
|
+
queue_size=queue_size,
|
|
361
|
+
momentum=momentum,
|
|
362
|
+
alpha=alpha,
|
|
363
|
+
tie_enc_dec_weights=True,
|
|
364
|
+
max_txt_len=max_txt_len,
|
|
365
|
+
)
|
|
366
|
+
|
|
367
|
+
# [IMPORTANT] to reset queue pointer to 0.
|
|
368
|
+
# Otherwise when updating last batch in the queue, the batch size and remaining queue length may be un-equal.
|
|
369
|
+
model.reset_queue_ptr()
|
|
370
|
+
|
|
371
|
+
return model
|