evalscope 0.14.0__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +3 -3
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +9 -3
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/benchmark.py +4 -3
- evalscope/perf/main.py +4 -2
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +16 -8
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/METADATA +20 -3
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/RECORD +178 -66
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +20 -7
- tests/perf/test_perf.py +6 -3
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/top_level.txt +0 -0
evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2023, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
import logging
|
|
8
|
+
import torch
|
|
9
|
+
import torch.distributed as dist
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
from torch.cuda.amp import autocast as autocast
|
|
12
|
+
from torch.nn import functional as F
|
|
13
|
+
|
|
14
|
+
from ...common.registry import registry
|
|
15
|
+
from ..base_model import all_gather_with_grad, concat_all_gather
|
|
16
|
+
from ..blip_models.blip_outputs import BlipOutput, BlipOutputFeatures
|
|
17
|
+
from .blip2 import Blip2Base, compute_sim_matrix, disabled_train
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@registry.register_model('blip2')
|
|
21
|
+
@registry.register_model('blip2_feature_extractor')
|
|
22
|
+
class Blip2Qformer(Blip2Base):
|
|
23
|
+
"""
|
|
24
|
+
BLIP2 stage-1 model with Q-former and ViT.
|
|
25
|
+
Supported model types:
|
|
26
|
+
- pretrained: pretrained model with vit-g
|
|
27
|
+
- pretrain_vitL: pretrained model with vit-large
|
|
28
|
+
- coco: fintuned model on coco
|
|
29
|
+
Usage:
|
|
30
|
+
>>> from lavis.models import load_model
|
|
31
|
+
>>> model = load_model("blip2", "pretrain")
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
35
|
+
'pretrain': 'configs/models/blip2/blip2_pretrain.yaml',
|
|
36
|
+
'pretrain_vitL': 'configs/models/blip2/blip2_pretrain_vitL.yaml',
|
|
37
|
+
'coco': 'configs/models/blip2/blip2_coco.yaml',
|
|
38
|
+
}
|
|
39
|
+
|
|
40
|
+
def __init__(
|
|
41
|
+
self,
|
|
42
|
+
vit_model='eva_clip_g',
|
|
43
|
+
img_size=224,
|
|
44
|
+
drop_path_rate=0,
|
|
45
|
+
use_grad_checkpoint=False,
|
|
46
|
+
vit_precision='fp16',
|
|
47
|
+
freeze_vit=True,
|
|
48
|
+
num_query_token=32,
|
|
49
|
+
cross_attention_freq=2,
|
|
50
|
+
embed_dim=256,
|
|
51
|
+
max_txt_len=32,
|
|
52
|
+
):
|
|
53
|
+
super().__init__()
|
|
54
|
+
|
|
55
|
+
self.tokenizer = self.init_tokenizer()
|
|
56
|
+
|
|
57
|
+
self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate,
|
|
58
|
+
use_grad_checkpoint, vit_precision)
|
|
59
|
+
if freeze_vit:
|
|
60
|
+
for name, param in self.visual_encoder.named_parameters():
|
|
61
|
+
param.requires_grad = False
|
|
62
|
+
self.visual_encoder = self.visual_encoder.eval()
|
|
63
|
+
self.visual_encoder.train = disabled_train
|
|
64
|
+
logging.info('freeze vision encoder')
|
|
65
|
+
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features,
|
|
66
|
+
cross_attention_freq)
|
|
67
|
+
self.Qformer.resize_token_embeddings(len(self.tokenizer))
|
|
68
|
+
state_dict = self.Qformer.state_dict()
|
|
69
|
+
for name, param in self.Qformer.named_parameters():
|
|
70
|
+
if '_query' in name:
|
|
71
|
+
key_orig = name.replace('_query', '')
|
|
72
|
+
param.data.copy_(state_dict[key_orig])
|
|
73
|
+
|
|
74
|
+
self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
|
|
75
|
+
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
|
|
76
|
+
|
|
77
|
+
self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
|
|
78
|
+
|
|
79
|
+
self.temp = nn.Parameter(0.07 * torch.ones([]))
|
|
80
|
+
|
|
81
|
+
self.max_txt_len = max_txt_len
|
|
82
|
+
|
|
83
|
+
def forward(self, samples):
|
|
84
|
+
image = samples['image']
|
|
85
|
+
text = samples['text_input']
|
|
86
|
+
|
|
87
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
88
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
89
|
+
|
|
90
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
91
|
+
|
|
92
|
+
query_output = self.Qformer.bert(
|
|
93
|
+
query_embeds=query_tokens,
|
|
94
|
+
encoder_hidden_states=image_embeds,
|
|
95
|
+
encoder_attention_mask=image_atts,
|
|
96
|
+
use_cache=True,
|
|
97
|
+
return_dict=True,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
image_feats = F.normalize(self.vision_proj(query_output.last_hidden_state), dim=-1)
|
|
101
|
+
|
|
102
|
+
text_tokens = self.tokenizer(
|
|
103
|
+
text,
|
|
104
|
+
padding='max_length',
|
|
105
|
+
truncation=True,
|
|
106
|
+
max_length=self.max_txt_len,
|
|
107
|
+
return_tensors='pt',
|
|
108
|
+
).to(image.device)
|
|
109
|
+
text_output = self.Qformer.bert(
|
|
110
|
+
text_tokens.input_ids,
|
|
111
|
+
attention_mask=text_tokens.attention_mask,
|
|
112
|
+
return_dict=True,
|
|
113
|
+
)
|
|
114
|
+
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1)
|
|
115
|
+
|
|
116
|
+
###============== Image-text Contrastive ===================###
|
|
117
|
+
image_feats_all = concat_all_gather(image_feats) # [batch_size*num_gpu, num_query_tokens, embed_dim]
|
|
118
|
+
text_feat_all = concat_all_gather(text_feat) # [batch_size*num_gpu, embed_dim]
|
|
119
|
+
|
|
120
|
+
sim_q2t = torch.matmul(image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)).squeeze()
|
|
121
|
+
# [batch_size, batch_size*num_gpu, num_query_tokens]
|
|
122
|
+
|
|
123
|
+
# image-text similarity: aggregate across all query tokens
|
|
124
|
+
sim_i2t, _ = sim_q2t.max(-1)
|
|
125
|
+
sim_i2t = sim_i2t / self.temp
|
|
126
|
+
|
|
127
|
+
# text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
|
|
128
|
+
sim_t2q = torch.matmul(text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)).squeeze()
|
|
129
|
+
|
|
130
|
+
# text-image similarity: aggregate across all query tokens
|
|
131
|
+
sim_t2i, _ = sim_t2q.max(-1)
|
|
132
|
+
sim_t2i = sim_t2i / self.temp # [batch_size, batch_size*num_gpu]
|
|
133
|
+
|
|
134
|
+
rank = dist.get_rank()
|
|
135
|
+
bs = image.size(0)
|
|
136
|
+
targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(image.device)
|
|
137
|
+
|
|
138
|
+
loss_itc = (F.cross_entropy(sim_i2t, targets, label_smoothing=0.1)
|
|
139
|
+
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)) / 2
|
|
140
|
+
|
|
141
|
+
###============== Image-text Matching ===================###
|
|
142
|
+
text_input_ids_world = concat_all_gather(text_tokens.input_ids)
|
|
143
|
+
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask)
|
|
144
|
+
image_embeds_world = all_gather_with_grad(image_embeds)
|
|
145
|
+
with torch.no_grad():
|
|
146
|
+
weights_t2i = F.softmax(sim_t2i, dim=1) + 1e-4
|
|
147
|
+
weights_t2i[:, rank * bs:rank * bs + bs].fill_diagonal_(0)
|
|
148
|
+
weights_i2t = F.softmax(sim_i2t, dim=1) + 1e-4
|
|
149
|
+
weights_i2t[:, rank * bs:rank * bs + bs].fill_diagonal_(0)
|
|
150
|
+
|
|
151
|
+
# select a negative image for each text
|
|
152
|
+
image_embeds_neg = []
|
|
153
|
+
for b in range(bs):
|
|
154
|
+
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
|
155
|
+
image_embeds_neg.append(image_embeds_world[neg_idx])
|
|
156
|
+
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
|
|
157
|
+
|
|
158
|
+
# select a negative text for each image
|
|
159
|
+
text_ids_neg = []
|
|
160
|
+
text_atts_neg = []
|
|
161
|
+
for b in range(bs):
|
|
162
|
+
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
|
163
|
+
text_ids_neg.append(text_input_ids_world[neg_idx])
|
|
164
|
+
text_atts_neg.append(text_attention_mask_world[neg_idx])
|
|
165
|
+
|
|
166
|
+
text_ids_neg = torch.stack(text_ids_neg, dim=0)
|
|
167
|
+
text_atts_neg = torch.stack(text_atts_neg, dim=0)
|
|
168
|
+
|
|
169
|
+
text_ids_all = torch.cat([text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0) # pos, pos, neg
|
|
170
|
+
text_atts_all = torch.cat(
|
|
171
|
+
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
|
|
172
|
+
dim=0,
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
|
|
176
|
+
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to(image.device)
|
|
177
|
+
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
|
|
178
|
+
|
|
179
|
+
image_embeds_all = torch.cat([image_embeds, image_embeds_neg, image_embeds], dim=0) # pos, neg, pos
|
|
180
|
+
image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to(image.device)
|
|
181
|
+
|
|
182
|
+
output_itm = self.Qformer.bert(
|
|
183
|
+
text_ids_all,
|
|
184
|
+
query_embeds=query_tokens_itm,
|
|
185
|
+
attention_mask=attention_mask_all,
|
|
186
|
+
encoder_hidden_states=image_embeds_all,
|
|
187
|
+
encoder_attention_mask=image_atts_all,
|
|
188
|
+
return_dict=True,
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
vl_embeddings = output_itm.last_hidden_state[:, :query_tokens_itm.size(1), :]
|
|
192
|
+
vl_output = self.itm_head(vl_embeddings)
|
|
193
|
+
logits = vl_output.mean(dim=1)
|
|
194
|
+
|
|
195
|
+
itm_labels = torch.cat(
|
|
196
|
+
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
|
|
197
|
+
dim=0,
|
|
198
|
+
).to(image.device)
|
|
199
|
+
loss_itm = F.cross_entropy(logits, itm_labels)
|
|
200
|
+
|
|
201
|
+
##================= Image Captioning ========================##
|
|
202
|
+
decoder_input_ids = text_tokens.input_ids.clone()
|
|
203
|
+
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
|
|
204
|
+
labels = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
|
|
205
|
+
|
|
206
|
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
207
|
+
attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1)
|
|
208
|
+
lm_output = self.Qformer(
|
|
209
|
+
decoder_input_ids,
|
|
210
|
+
attention_mask=attention_mask,
|
|
211
|
+
past_key_values=query_output.past_key_values,
|
|
212
|
+
return_dict=True,
|
|
213
|
+
labels=labels,
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
loss_lm = lm_output.loss
|
|
217
|
+
|
|
218
|
+
return BlipOutput(
|
|
219
|
+
loss=loss_itc + loss_itm + loss_lm,
|
|
220
|
+
loss_itc=loss_itc,
|
|
221
|
+
loss_itm=loss_itm,
|
|
222
|
+
loss_lm=loss_lm,
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
@torch.no_grad()
|
|
226
|
+
def generate(
|
|
227
|
+
self,
|
|
228
|
+
samples,
|
|
229
|
+
use_nucleus_sampling=False,
|
|
230
|
+
num_beams=3,
|
|
231
|
+
max_length=30,
|
|
232
|
+
min_length=10,
|
|
233
|
+
top_p=0.9,
|
|
234
|
+
repetition_penalty=1.0,
|
|
235
|
+
):
|
|
236
|
+
"""
|
|
237
|
+
Args:
|
|
238
|
+
samples (dict): A dictionary containing the following keys:
|
|
239
|
+
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
|
|
240
|
+
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
|
|
241
|
+
num_beams (int): Number of beams for beam search. 1 means no beam search.
|
|
242
|
+
max_length (int): The maximum length of the sequence to be generated.
|
|
243
|
+
min_length (int): The minimum length of the sequence to be generated.
|
|
244
|
+
top_p (float): The cumulative probability for nucleus sampling.
|
|
245
|
+
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
|
|
246
|
+
num_captions (int): Number of captions to be generated for each image.
|
|
247
|
+
Returns:
|
|
248
|
+
captions (list): A list of strings of length batch_size * num_captions.
|
|
249
|
+
"""
|
|
250
|
+
image = samples['image']
|
|
251
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
252
|
+
|
|
253
|
+
if not use_nucleus_sampling:
|
|
254
|
+
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
|
|
255
|
+
else:
|
|
256
|
+
num_beams = 1
|
|
257
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
258
|
+
|
|
259
|
+
model_kwargs = {
|
|
260
|
+
'encoder_hidden_states': image_embeds,
|
|
261
|
+
'encoder_attention_mask': image_atts,
|
|
262
|
+
}
|
|
263
|
+
|
|
264
|
+
input_ids = (torch.LongTensor(image.size(0), 1).fill_(self.tokenizer.bos_token_id).to(image.device))
|
|
265
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
266
|
+
|
|
267
|
+
outputs = self.Qformer.generate(
|
|
268
|
+
input_ids=input_ids,
|
|
269
|
+
query_embeds=query_tokens,
|
|
270
|
+
max_length=max_length,
|
|
271
|
+
min_length=min_length,
|
|
272
|
+
num_beams=num_beams,
|
|
273
|
+
do_sample=use_nucleus_sampling,
|
|
274
|
+
top_p=top_p,
|
|
275
|
+
eos_token_id=self.tokenizer.sep_token_id,
|
|
276
|
+
pad_token_id=self.tokenizer.pad_token_id,
|
|
277
|
+
**model_kwargs)
|
|
278
|
+
captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
279
|
+
return captions
|
|
280
|
+
|
|
281
|
+
def forward_image(self, image):
|
|
282
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
283
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
284
|
+
|
|
285
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
286
|
+
|
|
287
|
+
query_output = self.Qformer.bert(
|
|
288
|
+
query_embeds=query_tokens,
|
|
289
|
+
encoder_hidden_states=image_embeds,
|
|
290
|
+
encoder_attention_mask=image_atts,
|
|
291
|
+
return_dict=True,
|
|
292
|
+
)
|
|
293
|
+
return query_output.last_hidden_state, image_embeds
|
|
294
|
+
|
|
295
|
+
def forward_text(self, text_tokens):
|
|
296
|
+
text_output = self.Qformer.bert(
|
|
297
|
+
text_tokens.input_ids,
|
|
298
|
+
attention_mask=text_tokens.attention_mask,
|
|
299
|
+
return_dict=True,
|
|
300
|
+
)
|
|
301
|
+
return text_output.last_hidden_state[:, 0, :]
|
|
302
|
+
|
|
303
|
+
def compute_itm(self, image_inputs, text_ids, text_atts):
|
|
304
|
+
image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to(image_inputs.device)
|
|
305
|
+
query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1)
|
|
306
|
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_inputs.device)
|
|
307
|
+
attention_mask = torch.cat([query_atts, text_atts], dim=1)
|
|
308
|
+
output_itm = self.Qformer.bert(
|
|
309
|
+
text_ids,
|
|
310
|
+
query_embeds=query_tokens,
|
|
311
|
+
attention_mask=attention_mask,
|
|
312
|
+
encoder_hidden_states=image_inputs,
|
|
313
|
+
encoder_attention_mask=image_atts,
|
|
314
|
+
return_dict=True,
|
|
315
|
+
)
|
|
316
|
+
vl_embeddings = output_itm.last_hidden_state[:, :query_tokens.size(1), :]
|
|
317
|
+
itm_logit = self.itm_head(vl_embeddings)
|
|
318
|
+
itm_logit = itm_logit[:, :, 1].mean(dim=1)
|
|
319
|
+
return itm_logit
|
|
320
|
+
|
|
321
|
+
@torch.no_grad()
|
|
322
|
+
def extract_features(self, samples, mode='multimodal'):
|
|
323
|
+
"""
|
|
324
|
+
Extract features for multimodal or unimodal samples.
|
|
325
|
+
Args:
|
|
326
|
+
samples (dict): A dictionary of samples, containing the following keys:
|
|
327
|
+
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
|
|
328
|
+
Raw images should be preprocessed before being passed to feature extractor.
|
|
329
|
+
- text_input (list): A list of strings containing the text, length B.
|
|
330
|
+
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
|
|
331
|
+
If "multimodal", return image features and multimodal features;
|
|
332
|
+
if "text", return text features;
|
|
333
|
+
if "image", return image features.
|
|
334
|
+
Default: "multimodal".
|
|
335
|
+
Returns:
|
|
336
|
+
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
|
|
337
|
+
See lavis/models/blip_models/blip_outputs.py for more details.
|
|
338
|
+
"""
|
|
339
|
+
image = samples.get('image')
|
|
340
|
+
caption = samples.get('text_input')
|
|
341
|
+
|
|
342
|
+
# assert mode is one of "image", "text", "multimodal"
|
|
343
|
+
assert mode in [
|
|
344
|
+
'image',
|
|
345
|
+
'text',
|
|
346
|
+
'multimodal',
|
|
347
|
+
], "mode must be one of 'image', 'text', 'multimodal'"
|
|
348
|
+
|
|
349
|
+
# initalize output
|
|
350
|
+
image_embeds, text_embeds, multimodal_embeds = None, None, None
|
|
351
|
+
image_features, text_features = None, None
|
|
352
|
+
|
|
353
|
+
if mode == 'image':
|
|
354
|
+
assert (image is not None), "Image is not provided for mode 'image' or 'multimodal'"
|
|
355
|
+
# return query features
|
|
356
|
+
with self.maybe_autocast():
|
|
357
|
+
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
|
|
358
|
+
image_embeds_frozen = image_embeds_frozen.float()
|
|
359
|
+
image_atts = torch.ones(image_embeds_frozen.size()[:-1], dtype=torch.long).to(self.device)
|
|
360
|
+
query_tokens = self.query_tokens.expand(image_embeds_frozen.shape[0], -1, -1)
|
|
361
|
+
|
|
362
|
+
query_output = self.Qformer.bert(
|
|
363
|
+
query_embeds=query_tokens,
|
|
364
|
+
encoder_hidden_states=image_embeds_frozen,
|
|
365
|
+
encoder_attention_mask=image_atts,
|
|
366
|
+
return_dict=True,
|
|
367
|
+
)
|
|
368
|
+
image_embeds = query_output.last_hidden_state
|
|
369
|
+
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1)
|
|
370
|
+
|
|
371
|
+
elif mode == 'text':
|
|
372
|
+
assert (caption is not None), "text input is None for mode 'text' or 'multimodal'"
|
|
373
|
+
|
|
374
|
+
# return text features
|
|
375
|
+
text = self.tokenizer(caption, return_tensors='pt', padding=True).to(self.device)
|
|
376
|
+
|
|
377
|
+
text_output = self.Qformer.bert(
|
|
378
|
+
text.input_ids,
|
|
379
|
+
attention_mask=text.attention_mask,
|
|
380
|
+
return_dict=True,
|
|
381
|
+
)
|
|
382
|
+
text_embeds = text_output.last_hidden_state
|
|
383
|
+
text_features = self.text_proj(text_embeds)
|
|
384
|
+
text_features = F.normalize(text_features, dim=-1)
|
|
385
|
+
|
|
386
|
+
elif mode == 'multimodal':
|
|
387
|
+
# return multimodel query features
|
|
388
|
+
with self.maybe_autocast():
|
|
389
|
+
image_embeds_frozen = self.ln_vision(self.visual_encoder(image))
|
|
390
|
+
image_embeds_frozen = image_embeds_frozen.float()
|
|
391
|
+
image_atts = torch.ones(image_embeds_frozen.size()[:-1], dtype=torch.long).to(self.device)
|
|
392
|
+
query_tokens = self.query_tokens.expand(image_embeds_frozen.shape[0], -1, -1)
|
|
393
|
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(self.device)
|
|
394
|
+
|
|
395
|
+
text = self.tokenizer(caption, return_tensors='pt', padding=True).to(self.device)
|
|
396
|
+
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
|
|
397
|
+
|
|
398
|
+
output = self.Qformer.bert(
|
|
399
|
+
text.input_ids,
|
|
400
|
+
query_embeds=query_tokens,
|
|
401
|
+
attention_mask=attention_mask,
|
|
402
|
+
encoder_hidden_states=image_embeds_frozen,
|
|
403
|
+
encoder_attention_mask=image_atts,
|
|
404
|
+
return_dict=True,
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
multimodal_embeds = output.last_hidden_state[:, :query_tokens.size(1), :]
|
|
408
|
+
|
|
409
|
+
return BlipOutputFeatures(
|
|
410
|
+
image_embeds=image_embeds,
|
|
411
|
+
image_embeds_proj=image_features,
|
|
412
|
+
text_embeds=text_embeds,
|
|
413
|
+
text_embeds_proj=text_features,
|
|
414
|
+
multimodal_embeds=multimodal_embeds,
|
|
415
|
+
)
|
|
416
|
+
|
|
417
|
+
@classmethod
|
|
418
|
+
def from_config(cls, cfg):
|
|
419
|
+
vit_model = cfg.get('vit_model', 'eva_clip_g')
|
|
420
|
+
img_size = cfg.get('image_size')
|
|
421
|
+
num_query_token = cfg.get('num_query_token')
|
|
422
|
+
cross_attention_freq = cfg.get('cross_attention_freq', 2)
|
|
423
|
+
|
|
424
|
+
drop_path_rate = cfg.get('drop_path_rate', 0)
|
|
425
|
+
use_grad_checkpoint = cfg.get('use_grad_checkpoint', False)
|
|
426
|
+
vit_precision = cfg.get('vit_precision', 'fp16')
|
|
427
|
+
freeze_vit = cfg.get('freeze_vit', True)
|
|
428
|
+
|
|
429
|
+
max_txt_len = cfg.get('max_txt_len', 32)
|
|
430
|
+
|
|
431
|
+
model = cls(
|
|
432
|
+
vit_model=vit_model,
|
|
433
|
+
img_size=img_size,
|
|
434
|
+
drop_path_rate=drop_path_rate,
|
|
435
|
+
use_grad_checkpoint=use_grad_checkpoint,
|
|
436
|
+
vit_precision=vit_precision,
|
|
437
|
+
freeze_vit=freeze_vit,
|
|
438
|
+
num_query_token=num_query_token,
|
|
439
|
+
cross_attention_freq=cross_attention_freq,
|
|
440
|
+
max_txt_len=max_txt_len,
|
|
441
|
+
)
|
|
442
|
+
model.load_checkpoint_from_config(cfg)
|
|
443
|
+
|
|
444
|
+
return model
|
|
445
|
+
|
|
446
|
+
def compute_sim_matrix(self, data_loader, task_cfg):
|
|
447
|
+
"""
|
|
448
|
+
Compute similarity i2t, t2i matrix for the given data loader.
|
|
449
|
+
"""
|
|
450
|
+
k_test = task_cfg.k_test
|
|
451
|
+
|
|
452
|
+
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test)
|