evalscope 0.14.0__py3-none-any.whl → 0.15.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +3 -3
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +9 -3
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/benchmark.py +4 -3
- evalscope/perf/main.py +4 -2
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +16 -8
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/METADATA +20 -3
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/RECORD +178 -66
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +20 -7
- tests/perf/test_perf.py +6 -3
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,273 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2022, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn as nn
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
|
|
12
|
+
from ...common.registry import registry
|
|
13
|
+
from ..blip_models.blip_outputs import BlipOutput
|
|
14
|
+
from .blip2_qformer import Blip2Qformer
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class MLP(nn.Module):
|
|
18
|
+
|
|
19
|
+
def __init__(self, input_size):
|
|
20
|
+
super().__init__()
|
|
21
|
+
self.input_size = input_size
|
|
22
|
+
|
|
23
|
+
self.layers = nn.Sequential(
|
|
24
|
+
nn.Linear(self.input_size, 256),
|
|
25
|
+
nn.ReLU(),
|
|
26
|
+
# nn.Dropout(0.2),
|
|
27
|
+
nn.Linear(256, 128),
|
|
28
|
+
nn.ReLU(),
|
|
29
|
+
# nn.Dropout(0.2),
|
|
30
|
+
nn.Linear(128, 64),
|
|
31
|
+
nn.ReLU(),
|
|
32
|
+
# nn.Dropout(0.1),
|
|
33
|
+
nn.Linear(64, 16),
|
|
34
|
+
nn.ReLU(),
|
|
35
|
+
nn.Linear(16, 1))
|
|
36
|
+
|
|
37
|
+
# initial MLP param
|
|
38
|
+
for name, param in self.layers.named_parameters():
|
|
39
|
+
if 'weight' in name:
|
|
40
|
+
nn.init.normal_(param, mean=0.0, std=1.0 / (self.input_size + 1))
|
|
41
|
+
if 'bias' in name:
|
|
42
|
+
nn.init.constant_(param, val=0)
|
|
43
|
+
|
|
44
|
+
def forward(self, input):
|
|
45
|
+
return torch.sigmoid(self.layers(input))
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
@registry.register_model('fga_blip2')
|
|
49
|
+
class FGA_Blip2(Blip2Qformer):
|
|
50
|
+
"""
|
|
51
|
+
BLIP Image-Text Matching (ITM) model.
|
|
52
|
+
Supported model types:
|
|
53
|
+
- pretrained: pretrained model
|
|
54
|
+
- coco: fintuned model on coco
|
|
55
|
+
Usage:
|
|
56
|
+
>>> from lavis.models import load_model
|
|
57
|
+
>>> model = load_model("blip2_image_text_matching", "pretrained")
|
|
58
|
+
>>> model = load_model("blip2_image_text_matching", "coco")
|
|
59
|
+
"""
|
|
60
|
+
|
|
61
|
+
def __init__(
|
|
62
|
+
self,
|
|
63
|
+
vit_model='eva_clip_g',
|
|
64
|
+
img_size=224,
|
|
65
|
+
drop_path_rate=0,
|
|
66
|
+
use_grad_checkpoint=False,
|
|
67
|
+
vit_precision='fp16',
|
|
68
|
+
freeze_vit=True,
|
|
69
|
+
num_query_token=32,
|
|
70
|
+
cross_attention_freq=2,
|
|
71
|
+
embed_dim=256,
|
|
72
|
+
max_txt_len=32,
|
|
73
|
+
):
|
|
74
|
+
super().__init__(
|
|
75
|
+
vit_model=vit_model,
|
|
76
|
+
img_size=img_size,
|
|
77
|
+
drop_path_rate=drop_path_rate,
|
|
78
|
+
use_grad_checkpoint=use_grad_checkpoint,
|
|
79
|
+
vit_precision=vit_precision,
|
|
80
|
+
freeze_vit=freeze_vit,
|
|
81
|
+
num_query_token=num_query_token,
|
|
82
|
+
cross_attention_freq=cross_attention_freq,
|
|
83
|
+
embed_dim=embed_dim,
|
|
84
|
+
max_txt_len=max_txt_len,
|
|
85
|
+
)
|
|
86
|
+
# self.mask_proj = torch.nn.Linear(self.Qformer.config.hidden_size, 1)
|
|
87
|
+
# self.weight_proj = MLP(self.Qformer.config.hidden_size)
|
|
88
|
+
self.mask_proj = MLP(self.Qformer.config.hidden_size)
|
|
89
|
+
# for name, parms in self.named_parameters():
|
|
90
|
+
# if '_proj' not in name:
|
|
91
|
+
# parms.requires_grad_(False)
|
|
92
|
+
|
|
93
|
+
def element_score(self, image, caption):
|
|
94
|
+
with self.maybe_autocast():
|
|
95
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
96
|
+
image_embeds = image_embeds.float()
|
|
97
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
98
|
+
|
|
99
|
+
text = self.tokenizer(
|
|
100
|
+
caption,
|
|
101
|
+
# padding="max_length",
|
|
102
|
+
truncation=False,
|
|
103
|
+
max_length=self.max_txt_len,
|
|
104
|
+
return_tensors='pt',
|
|
105
|
+
).to(image.device)
|
|
106
|
+
|
|
107
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
108
|
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
109
|
+
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
|
|
110
|
+
output_itm = self.Qformer.bert(
|
|
111
|
+
text.input_ids,
|
|
112
|
+
query_embeds=query_tokens,
|
|
113
|
+
attention_mask=attention_mask,
|
|
114
|
+
encoder_hidden_states=image_embeds,
|
|
115
|
+
encoder_attention_mask=image_atts,
|
|
116
|
+
return_dict=True,
|
|
117
|
+
)
|
|
118
|
+
itm_embeddings = output_itm.last_hidden_state[:, :, :]
|
|
119
|
+
itm_logit = self.itm_head(itm_embeddings)
|
|
120
|
+
itm_scores = torch.nn.functional.softmax(itm_logit, dim=2)[:, :, 1]
|
|
121
|
+
# itm_score = (itm_scores * mask).sum(dim=1) / mask.sum(dim=1)
|
|
122
|
+
alignment_score = itm_scores[:, :query_tokens.size(1)].mean(dim=1) * 4 + 1
|
|
123
|
+
|
|
124
|
+
return alignment_score, itm_scores[:, query_tokens.size(1):]
|
|
125
|
+
|
|
126
|
+
def forward(self, samples, match_head='itm', inference=False):
|
|
127
|
+
# breakpoint()
|
|
128
|
+
image = samples['image']
|
|
129
|
+
caption = samples['text_input']
|
|
130
|
+
|
|
131
|
+
if inference == False:
|
|
132
|
+
mask_gt = torch.tensor(samples['mask']).to(image.device)
|
|
133
|
+
token_score = torch.tensor(samples['token_score']).to(image.device)
|
|
134
|
+
score = torch.tensor(samples['score']).to(image.device)
|
|
135
|
+
var = torch.tensor(samples['var']).to(image.device)
|
|
136
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
137
|
+
else:
|
|
138
|
+
with self.maybe_autocast():
|
|
139
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
140
|
+
image_embeds = image_embeds.float()
|
|
141
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
142
|
+
# breakpoint()
|
|
143
|
+
text = self.tokenizer(
|
|
144
|
+
caption,
|
|
145
|
+
padding='max_length',
|
|
146
|
+
truncation=True,
|
|
147
|
+
max_length=self.max_txt_len,
|
|
148
|
+
return_tensors='pt',
|
|
149
|
+
).to(image.device)
|
|
150
|
+
|
|
151
|
+
if match_head == 'itm':
|
|
152
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
153
|
+
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
|
|
154
|
+
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1)
|
|
155
|
+
output_itm = self.Qformer.bert(
|
|
156
|
+
text.input_ids,
|
|
157
|
+
query_embeds=query_tokens,
|
|
158
|
+
attention_mask=attention_mask,
|
|
159
|
+
encoder_hidden_states=image_embeds,
|
|
160
|
+
encoder_attention_mask=image_atts,
|
|
161
|
+
return_dict=True,
|
|
162
|
+
)
|
|
163
|
+
itm_embeddings = output_itm.last_hidden_state[:, :, :]
|
|
164
|
+
itm_logit = self.itm_head(itm_embeddings)
|
|
165
|
+
itm_scores = torch.nn.functional.softmax(itm_logit, dim=2)[:, :, 1]
|
|
166
|
+
|
|
167
|
+
# mask = self.mask_proj(itm_embeddings).squeeze(dim=2)
|
|
168
|
+
# mask = torch.sigmoid(mask)
|
|
169
|
+
# mask = mask * text.attention_mask
|
|
170
|
+
|
|
171
|
+
# mask = torch.sigmoid(mask)
|
|
172
|
+
# mask = mask * text.attention_mask
|
|
173
|
+
# ############## stage 1 #################
|
|
174
|
+
text_output = self.Qformer.bert(
|
|
175
|
+
text.input_ids,
|
|
176
|
+
attention_mask=text.attention_mask,
|
|
177
|
+
return_dict=True,
|
|
178
|
+
)
|
|
179
|
+
mask = self.mask_proj(text_output.last_hidden_state).squeeze(dim=2)
|
|
180
|
+
itm_score = itm_scores[:, :query_tokens.size(1)].mean(dim=1) * 4 + 1
|
|
181
|
+
# itm_score = (itm_scores * mask).sum(dim=1) / mask.sum(dim=1) * 4 + 1
|
|
182
|
+
# itm_logit = (itm_logit * mask).sum(dim=1) / mask.sum(dim=1)
|
|
183
|
+
# breakpoint()
|
|
184
|
+
# itm_scores = torch.nn.functional.softmax(itm_logit, dim=1) * 4 + 1
|
|
185
|
+
|
|
186
|
+
# breakpoint()
|
|
187
|
+
# itm_scores = self.mlp(itm_embeddings).mean(dim=1) * 4 + 1
|
|
188
|
+
if inference:
|
|
189
|
+
# mask = torch.cat([torch.ones(mask.shape).to(mask.device),mask.detach() > 0.5],dim=1)
|
|
190
|
+
# itm_score = (itm_scores * mask).sum(dim=1) / mask.sum(dim=1) * 4 + 1
|
|
191
|
+
|
|
192
|
+
# mask = mask.detach() > 0.5
|
|
193
|
+
# itm_score = (itm_scores[:, query_tokens.size(1):] * mask).sum(dim=1) / mask.sum(dim=1) * 4 + 1
|
|
194
|
+
|
|
195
|
+
return itm_score
|
|
196
|
+
l1_loss = torch.nn.L1Loss(reduction='mean')
|
|
197
|
+
diff_score = torch.abs(itm_score - score)
|
|
198
|
+
diff_token_score = torch.abs(itm_scores[:, query_tokens.size(1):] * mask_gt - token_score).mean(dim=1)
|
|
199
|
+
diff_mask = torch.abs(mask - mask_gt).mean(dim=1)
|
|
200
|
+
loss_itm = torch.mean((diff_score + 0.1 * diff_token_score + 0.1 * diff_mask))
|
|
201
|
+
# loss_itm = (itm_scores[:, 1] - score) * (itm_scores[:, 1] - score)
|
|
202
|
+
# breakpoint()
|
|
203
|
+
# loss_itm = loss_itm.mean()
|
|
204
|
+
return BlipOutput(loss=loss_itm, loss_itm=loss_itm)
|
|
205
|
+
|
|
206
|
+
############## stage 2 #################
|
|
207
|
+
# text_output = self.Qformer.bert(
|
|
208
|
+
# text.input_ids,
|
|
209
|
+
# attention_mask=text.attention_mask,
|
|
210
|
+
# return_dict=True,
|
|
211
|
+
# )
|
|
212
|
+
# # breakpoint()
|
|
213
|
+
|
|
214
|
+
# mask = self.mask_proj(text_output.last_hidden_state).squeeze(dim=2)
|
|
215
|
+
# # print(mask[0])
|
|
216
|
+
# weight = self.weight_proj(itm_embeddings).squeeze(dim=2)
|
|
217
|
+
# weight = weight * torch.cat([torch.ones(mask.shape).to(mask.device),mask.detach() > 0.5],dim=1)
|
|
218
|
+
|
|
219
|
+
# itm_score = (itm_scores * weight).sum(dim=1) / weight.sum(dim=1) * 4 + 1
|
|
220
|
+
# # itm_score = itm_scores[:, :query_tokens.size(1)].mean(dim=1) * 4 + 1
|
|
221
|
+
# # itm_score = (itm_scores * mask).sum(dim=1) / mask.sum(dim=1) * 4 + 1
|
|
222
|
+
# # itm_logit = (itm_logit * mask).sum(dim=1) / mask.sum(dim=1)
|
|
223
|
+
# # breakpoint()
|
|
224
|
+
# # itm_scores = torch.nn.functional.softmax(itm_logit, dim=1) * 4 + 1
|
|
225
|
+
|
|
226
|
+
# # itm_scores = self.mlp(itm_embeddings).mean(dim=1) * 4 + 1
|
|
227
|
+
# if inference:
|
|
228
|
+
# return itm_score
|
|
229
|
+
# l1_loss = torch.nn.L1Loss(reduction='mean')
|
|
230
|
+
# loss_itm = torch.mean(torch.exp(var) * (torch.abs(itm_score - score))) + l1_loss(mask, mask_gt)
|
|
231
|
+
# # loss_itm = (itm_scores[:, 1] - score) * (itm_scores[:, 1] - score)
|
|
232
|
+
# # breakpoint()
|
|
233
|
+
# # loss_itm = loss_itm.mean()
|
|
234
|
+
# return BlipOutput(loss=loss_itm, loss_itm=loss_itm)
|
|
235
|
+
elif match_head == 'itc':
|
|
236
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
237
|
+
|
|
238
|
+
query_output = self.Qformer.bert(
|
|
239
|
+
query_embeds=query_tokens,
|
|
240
|
+
encoder_hidden_states=image_embeds,
|
|
241
|
+
encoder_attention_mask=image_atts,
|
|
242
|
+
return_dict=True,
|
|
243
|
+
)
|
|
244
|
+
image_feats = F.normalize(self.vision_proj(query_output.last_hidden_state), dim=-1)
|
|
245
|
+
|
|
246
|
+
text_output = self.Qformer.bert(
|
|
247
|
+
text.input_ids,
|
|
248
|
+
attention_mask=text.attention_mask,
|
|
249
|
+
return_dict=True,
|
|
250
|
+
)
|
|
251
|
+
# text_feat = F.normalize(
|
|
252
|
+
# self.text_proj(text_output.last_hidden_state), dim=-1
|
|
253
|
+
# )
|
|
254
|
+
|
|
255
|
+
# mask = self.mask_proj(text_output.last_hidden_state)
|
|
256
|
+
# mask = torch.softmax(mask.squeeze(), dim=1)
|
|
257
|
+
# sims = torch.bmm(image_feats, text_feat.transpose(1, 2))
|
|
258
|
+
# sims, _ = torch.max(sims, dim=1)
|
|
259
|
+
# sim = torch.sum(sims * mask, dim=1)
|
|
260
|
+
|
|
261
|
+
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1)
|
|
262
|
+
|
|
263
|
+
sims = torch.bmm(image_feats, text_feat.unsqueeze(-1))
|
|
264
|
+
sim, _ = torch.max(sims, dim=1)
|
|
265
|
+
|
|
266
|
+
itc_scores = sim * 5
|
|
267
|
+
if inference:
|
|
268
|
+
# print(itc_scores.shape)
|
|
269
|
+
return itc_scores.squeeze()
|
|
270
|
+
loss_itc = (itc_scores - score) * (itc_scores - score)
|
|
271
|
+
# print(loss_itc.shape)
|
|
272
|
+
loss_itc = loss_itc.mean()
|
|
273
|
+
return BlipOutput(loss=loss_itc, loss_itc=loss_itc)
|