evalscope 0.14.0__py3-none-any.whl → 0.15.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

Files changed (181) hide show
  1. evalscope/arguments.py +2 -1
  2. evalscope/benchmarks/__init__.py +2 -2
  3. evalscope/benchmarks/aigc/__init__.py +0 -0
  4. evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
  5. evalscope/benchmarks/aigc/t2i/base.py +56 -0
  6. evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
  7. evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
  8. evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
  9. evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
  10. evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
  11. evalscope/benchmarks/aime/aime24_adapter.py +1 -1
  12. evalscope/benchmarks/aime/aime25_adapter.py +4 -4
  13. evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
  14. evalscope/benchmarks/arc/arc_adapter.py +1 -1
  15. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
  16. evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
  17. evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
  18. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
  19. evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
  20. evalscope/benchmarks/data_adapter.py +16 -9
  21. evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
  22. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
  23. evalscope/benchmarks/general_qa/general_qa_adapter.py +3 -3
  24. evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
  25. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
  26. evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
  27. evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
  28. evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
  29. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
  30. evalscope/benchmarks/utils.py +7 -16
  31. evalscope/cli/start_app.py +1 -1
  32. evalscope/collections/evaluator.py +16 -4
  33. evalscope/config.py +7 -3
  34. evalscope/constants.py +11 -0
  35. evalscope/evaluator/evaluator.py +9 -3
  36. evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
  37. evalscope/metrics/__init__.py +49 -4
  38. evalscope/metrics/llm_judge.py +1 -1
  39. evalscope/metrics/named_metrics.py +13 -0
  40. evalscope/metrics/t2v_metrics/__init__.py +66 -0
  41. evalscope/metrics/t2v_metrics/clipscore.py +14 -0
  42. evalscope/metrics/t2v_metrics/constants.py +12 -0
  43. evalscope/metrics/t2v_metrics/itmscore.py +14 -0
  44. evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
  45. evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
  46. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
  47. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
  48. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
  49. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
  50. evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
  51. evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
  52. evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
  53. evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
  54. evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
  55. evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
  56. evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
  57. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
  58. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
  59. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
  60. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
  61. evalscope/metrics/t2v_metrics/models/model.py +45 -0
  62. evalscope/metrics/t2v_metrics/models/utils.py +25 -0
  63. evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
  64. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
  65. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
  66. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
  67. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
  68. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
  69. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
  70. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
  71. evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
  72. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
  73. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
  74. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
  75. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
  76. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
  77. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
  78. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
  79. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
  80. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
  81. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
  82. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
  83. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
  84. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
  85. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
  86. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
  87. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
  88. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
  89. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
  90. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
  91. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
  92. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
  93. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
  94. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
  95. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
  96. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
  97. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
  98. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
  99. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
  100. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
  101. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
  102. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
  103. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
  104. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
  105. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
  106. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
  107. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
  108. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
  109. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
  110. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
  111. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
  112. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
  113. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
  114. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
  115. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
  116. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
  117. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
  118. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
  119. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
  120. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
  121. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
  122. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
  123. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
  124. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
  125. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
  126. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
  127. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
  128. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
  129. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
  130. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
  131. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
  132. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
  133. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
  134. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
  135. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
  136. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
  137. evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
  138. evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
  139. evalscope/metrics/t2v_metrics/score.py +78 -0
  140. evalscope/metrics/t2v_metrics/vqascore.py +14 -0
  141. evalscope/models/__init__.py +50 -14
  142. evalscope/models/adapters/__init__.py +17 -0
  143. evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
  144. evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
  145. evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
  146. evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
  147. evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
  148. evalscope/models/adapters/t2i_adapter.py +76 -0
  149. evalscope/models/custom/__init__.py +2 -1
  150. evalscope/models/custom/dummy_model.py +11 -13
  151. evalscope/models/local_model.py +82 -33
  152. evalscope/models/model.py +2 -42
  153. evalscope/models/register.py +26 -0
  154. evalscope/perf/benchmark.py +4 -3
  155. evalscope/perf/main.py +4 -2
  156. evalscope/perf/plugin/datasets/flickr8k.py +2 -1
  157. evalscope/perf/utils/benchmark_util.py +2 -2
  158. evalscope/perf/utils/db_util.py +16 -8
  159. evalscope/report/__init__.py +1 -0
  160. evalscope/report/app.py +117 -67
  161. evalscope/report/app_arguments.py +11 -0
  162. evalscope/report/generator.py +1 -1
  163. evalscope/run.py +3 -3
  164. evalscope/third_party/thinkbench/eval.py +19 -7
  165. evalscope/utils/chat_service.py +2 -2
  166. evalscope/utils/import_utils.py +66 -0
  167. evalscope/utils/utils.py +12 -4
  168. evalscope/version.py +2 -2
  169. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/METADATA +20 -3
  170. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/RECORD +178 -66
  171. tests/aigc/__init__.py +1 -0
  172. tests/aigc/test_t2i.py +87 -0
  173. tests/cli/test_run.py +20 -7
  174. tests/perf/test_perf.py +6 -3
  175. evalscope/metrics/code_metric.py +0 -98
  176. evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
  177. evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
  178. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/LICENSE +0 -0
  179. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/WHEEL +0 -0
  180. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/entry_points.txt +0 -0
  181. {evalscope-0.14.0.dist-info → evalscope-0.15.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1270 @@
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+
7
+ Based on huggingface code base
8
+ https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ """
10
+
11
+ import math
12
+ import os
13
+ import torch
14
+ import torch.nn.functional as F
15
+ import torch.utils.checkpoint
16
+ import warnings
17
+ from dataclasses import dataclass
18
+ from torch import Tensor, device, nn
19
+ from torch.nn import CrossEntropyLoss
20
+ from transformers import BatchEncoding, PreTrainedTokenizer
21
+ from transformers.activations import ACT2FN
22
+ from transformers.file_utils import ModelOutput
23
+ from transformers.modeling_outputs import (BaseModelOutputWithPastAndCrossAttentions,
24
+ BaseModelOutputWithPoolingAndCrossAttentions,
25
+ CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput,
26
+ NextSentencePredictorOutput, QuestionAnsweringModelOutput,
27
+ SequenceClassifierOutput, TokenClassifierOutput)
28
+ from transformers.modeling_utils import (PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices,
29
+ prune_linear_layer)
30
+ from transformers.models.bert.configuration_bert import BertConfig
31
+ from transformers.utils import logging
32
+ from typing import Optional, Tuple
33
+
34
+ from ..common.utils import get_abs_path
35
+ from ..models.base_model import BaseEncoder
36
+
37
+ logging.set_verbosity_error()
38
+ logger = logging.get_logger(__name__)
39
+
40
+
41
+ class BertEmbeddings(nn.Module):
42
+ """Construct the embeddings from word and position embeddings."""
43
+
44
+ def __init__(self, config):
45
+ super().__init__()
46
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
47
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
48
+
49
+ if config.add_type_embeddings:
50
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
51
+
52
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
53
+ # any TensorFlow checkpoint file
54
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
55
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
56
+
57
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
58
+ self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1)))
59
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
60
+
61
+ self.config = config
62
+
63
+ def forward(
64
+ self,
65
+ input_ids=None,
66
+ token_type_ids=None,
67
+ position_ids=None,
68
+ inputs_embeds=None,
69
+ past_key_values_length=0,
70
+ ):
71
+ if input_ids is not None:
72
+ input_shape = input_ids.size()
73
+ else:
74
+ input_shape = inputs_embeds.size()[:-1]
75
+
76
+ seq_length = input_shape[1]
77
+
78
+ if position_ids is None:
79
+ position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length]
80
+
81
+ if inputs_embeds is None:
82
+ inputs_embeds = self.word_embeddings(input_ids)
83
+
84
+ if token_type_ids is not None:
85
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
86
+
87
+ embeddings = inputs_embeds + token_type_embeddings
88
+ else:
89
+ embeddings = inputs_embeds
90
+
91
+ if self.position_embedding_type == 'absolute':
92
+ position_embeddings = self.position_embeddings(position_ids)
93
+ embeddings += position_embeddings
94
+ embeddings = self.LayerNorm(embeddings)
95
+ embeddings = self.dropout(embeddings)
96
+ return embeddings
97
+
98
+
99
+ class BertSelfAttention(nn.Module):
100
+
101
+ def __init__(self, config, is_cross_attention):
102
+ super().__init__()
103
+ self.config = config
104
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size'):
105
+ raise ValueError('The hidden size (%d) is not a multiple of the number of attention '
106
+ 'heads (%d)' % (config.hidden_size, config.num_attention_heads))
107
+
108
+ self.num_attention_heads = config.num_attention_heads
109
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
110
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
111
+
112
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
113
+ if is_cross_attention:
114
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
115
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
116
+ else:
117
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
118
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
119
+
120
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
121
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
122
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
123
+ self.max_position_embeddings = config.max_position_embeddings
124
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
125
+ self.save_attention = False
126
+
127
+ def save_attn_gradients(self, attn_gradients):
128
+ self.attn_gradients = attn_gradients
129
+
130
+ def get_attn_gradients(self):
131
+ return self.attn_gradients
132
+
133
+ def save_attention_map(self, attention_map):
134
+ self.attention_map = attention_map
135
+
136
+ def get_attention_map(self):
137
+ return self.attention_map
138
+
139
+ def transpose_for_scores(self, x):
140
+ new_x_shape = x.size()[:-1] + (
141
+ self.num_attention_heads,
142
+ self.attention_head_size,
143
+ )
144
+ x = x.view(*new_x_shape)
145
+ return x.permute(0, 2, 1, 3)
146
+
147
+ def forward(
148
+ self,
149
+ hidden_states,
150
+ attention_mask=None,
151
+ head_mask=None,
152
+ encoder_hidden_states=None,
153
+ encoder_attention_mask=None,
154
+ past_key_value=None,
155
+ output_attentions=False,
156
+ ):
157
+ mixed_query_layer = self.query(hidden_states)
158
+
159
+ # If this is instantiated as a cross-attention module, the keys
160
+ # and values come from an encoder; the attention mask needs to be
161
+ # such that the encoder's padding tokens are not attended to.
162
+ is_cross_attention = encoder_hidden_states is not None
163
+
164
+ if is_cross_attention:
165
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
166
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
167
+ attention_mask = encoder_attention_mask
168
+ elif past_key_value is not None:
169
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
170
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
171
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
172
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
173
+ else:
174
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
175
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
176
+
177
+ query_layer = self.transpose_for_scores(mixed_query_layer)
178
+
179
+ past_key_value = (key_layer, value_layer)
180
+
181
+ # Take the dot product between "query" and "key" to get the raw attention scores.
182
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
183
+
184
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
185
+ seq_length = hidden_states.size()[1]
186
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
187
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
188
+ distance = position_ids_l - position_ids_r
189
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
190
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
191
+
192
+ if self.position_embedding_type == 'relative_key':
193
+ relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
194
+ attention_scores = attention_scores + relative_position_scores
195
+ elif self.position_embedding_type == 'relative_key_query':
196
+ relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
197
+ relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding)
198
+ attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key)
199
+
200
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
201
+ if attention_mask is not None:
202
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
203
+ attention_scores = attention_scores + attention_mask
204
+
205
+ # Normalize the attention scores to probabilities.
206
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
207
+
208
+ if is_cross_attention and self.save_attention:
209
+ self.save_attention_map(attention_probs)
210
+ attention_probs.register_hook(self.save_attn_gradients)
211
+
212
+ # This is actually dropping out entire tokens to attend to, which might
213
+ # seem a bit unusual, but is taken from the original Transformer paper.
214
+ attention_probs_dropped = self.dropout(attention_probs)
215
+
216
+ # Mask heads if we want to
217
+ if head_mask is not None:
218
+ attention_probs_dropped = attention_probs_dropped * head_mask
219
+
220
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
221
+
222
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
223
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
224
+ context_layer = context_layer.view(*new_context_layer_shape)
225
+
226
+ outputs = ((context_layer, attention_probs) if output_attentions else (context_layer, ))
227
+
228
+ outputs = outputs + (past_key_value, )
229
+ return outputs
230
+
231
+
232
+ class BertSelfOutput(nn.Module):
233
+
234
+ def __init__(self, config):
235
+ super().__init__()
236
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
237
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
238
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
239
+
240
+ def forward(self, hidden_states, input_tensor):
241
+ hidden_states = self.dense(hidden_states)
242
+ hidden_states = self.dropout(hidden_states)
243
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
244
+ return hidden_states
245
+
246
+
247
+ class BertAttention(nn.Module):
248
+
249
+ def __init__(self, config, is_cross_attention=False):
250
+ super().__init__()
251
+ self.self = BertSelfAttention(config, is_cross_attention)
252
+ self.output = BertSelfOutput(config)
253
+ self.pruned_heads = set()
254
+
255
+ def prune_heads(self, heads):
256
+ if len(heads) == 0:
257
+ return
258
+ heads, index = find_pruneable_heads_and_indices(
259
+ heads,
260
+ self.self.num_attention_heads,
261
+ self.self.attention_head_size,
262
+ self.pruned_heads,
263
+ )
264
+
265
+ # Prune linear layers
266
+ self.self.query = prune_linear_layer(self.self.query, index)
267
+ self.self.key = prune_linear_layer(self.self.key, index)
268
+ self.self.value = prune_linear_layer(self.self.value, index)
269
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
270
+
271
+ # Update hyper params and store pruned heads
272
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
273
+ self.self.all_head_size = (self.self.attention_head_size * self.self.num_attention_heads)
274
+ self.pruned_heads = self.pruned_heads.union(heads)
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states,
279
+ attention_mask=None,
280
+ head_mask=None,
281
+ encoder_hidden_states=None,
282
+ encoder_attention_mask=None,
283
+ past_key_value=None,
284
+ output_attentions=False,
285
+ ):
286
+ self_outputs = self.self(
287
+ hidden_states,
288
+ attention_mask,
289
+ head_mask,
290
+ encoder_hidden_states,
291
+ encoder_attention_mask,
292
+ past_key_value,
293
+ output_attentions,
294
+ )
295
+ attention_output = self.output(self_outputs[0], hidden_states)
296
+ outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them
297
+ return outputs
298
+
299
+
300
+ class BertIntermediate(nn.Module):
301
+
302
+ def __init__(self, config):
303
+ super().__init__()
304
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
305
+ if isinstance(config.hidden_act, str):
306
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
307
+ else:
308
+ self.intermediate_act_fn = config.hidden_act
309
+
310
+ def forward(self, hidden_states):
311
+ hidden_states = self.dense(hidden_states)
312
+ hidden_states = self.intermediate_act_fn(hidden_states)
313
+ return hidden_states
314
+
315
+
316
+ class BertOutput(nn.Module):
317
+
318
+ def __init__(self, config):
319
+ super().__init__()
320
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
321
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
322
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
323
+
324
+ def forward(self, hidden_states, input_tensor):
325
+ hidden_states = self.dense(hidden_states)
326
+ hidden_states = self.dropout(hidden_states)
327
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
328
+ return hidden_states
329
+
330
+
331
+ class BertLayer(nn.Module):
332
+
333
+ def __init__(self, config, layer_num):
334
+ super().__init__()
335
+ self.config = config
336
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
337
+ self.seq_len_dim = 1
338
+ self.attention = BertAttention(config)
339
+ self.layer_num = layer_num
340
+
341
+ # compatibility for ALBEF and BLIP
342
+ try:
343
+ # ALBEF & ALPRO
344
+ fusion_layer = self.config.fusion_layer
345
+ add_cross_attention = (fusion_layer <= layer_num and self.config.add_cross_attention)
346
+
347
+ self.fusion_layer = fusion_layer
348
+ except AttributeError:
349
+ # BLIP
350
+ self.fusion_layer = self.config.num_hidden_layers
351
+ add_cross_attention = self.config.add_cross_attention
352
+
353
+ # if self.config.add_cross_attention:
354
+ if add_cross_attention:
355
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
356
+ self.intermediate = BertIntermediate(config)
357
+ self.output = BertOutput(config)
358
+
359
+ def forward(
360
+ self,
361
+ hidden_states,
362
+ attention_mask=None,
363
+ head_mask=None,
364
+ encoder_hidden_states=None,
365
+ encoder_attention_mask=None,
366
+ past_key_value=None,
367
+ output_attentions=False,
368
+ mode=None,
369
+ ):
370
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
371
+ self_attn_past_key_value = (past_key_value[:2] if past_key_value is not None else None)
372
+ self_attention_outputs = self.attention(
373
+ hidden_states,
374
+ attention_mask,
375
+ head_mask,
376
+ output_attentions=output_attentions,
377
+ past_key_value=self_attn_past_key_value,
378
+ )
379
+ attention_output = self_attention_outputs[0]
380
+
381
+ outputs = self_attention_outputs[1:-1]
382
+ present_key_value = self_attention_outputs[-1]
383
+
384
+ # TODO line 482 in albef/models/xbert.py
385
+ # compatibility for ALBEF and BLIP
386
+ if mode in ['multimodal', 'fusion'] and hasattr(self, 'crossattention'):
387
+ assert (encoder_hidden_states is not None), 'encoder_hidden_states must be given for cross-attention layers'
388
+
389
+ if isinstance(encoder_hidden_states, list):
390
+ cross_attention_outputs = self.crossattention(
391
+ attention_output,
392
+ attention_mask,
393
+ head_mask,
394
+ encoder_hidden_states[(self.layer_num - self.fusion_layer) % len(encoder_hidden_states)],
395
+ encoder_attention_mask[(self.layer_num - self.fusion_layer) % len(encoder_hidden_states)],
396
+ output_attentions=output_attentions,
397
+ )
398
+ attention_output = cross_attention_outputs[0]
399
+ outputs = outputs + cross_attention_outputs[1:-1]
400
+
401
+ else:
402
+ cross_attention_outputs = self.crossattention(
403
+ attention_output,
404
+ attention_mask,
405
+ head_mask,
406
+ encoder_hidden_states,
407
+ encoder_attention_mask,
408
+ output_attentions=output_attentions,
409
+ )
410
+ attention_output = cross_attention_outputs[0]
411
+ outputs = (outputs + cross_attention_outputs[1:-1]
412
+ ) # add cross attentions if we output attention weights
413
+ layer_output = apply_chunking_to_forward(
414
+ self.feed_forward_chunk,
415
+ self.chunk_size_feed_forward,
416
+ self.seq_len_dim,
417
+ attention_output,
418
+ )
419
+ outputs = (layer_output, ) + outputs
420
+
421
+ outputs = outputs + (present_key_value, )
422
+
423
+ return outputs
424
+
425
+ def feed_forward_chunk(self, attention_output):
426
+ intermediate_output = self.intermediate(attention_output)
427
+ layer_output = self.output(intermediate_output, attention_output)
428
+ return layer_output
429
+
430
+
431
+ class BertEncoder(nn.Module):
432
+
433
+ def __init__(self, config):
434
+ super().__init__()
435
+ self.config = config
436
+ self.layer = nn.ModuleList([BertLayer(config, i) for i in range(config.num_hidden_layers)])
437
+ self.gradient_checkpointing = False
438
+
439
+ def forward(
440
+ self,
441
+ hidden_states,
442
+ attention_mask=None,
443
+ head_mask=None,
444
+ encoder_hidden_states=None,
445
+ encoder_attention_mask=None,
446
+ past_key_values=None,
447
+ use_cache=None,
448
+ output_attentions=False,
449
+ output_hidden_states=False,
450
+ return_dict=True,
451
+ mode='multimodal',
452
+ ):
453
+ all_hidden_states = () if output_hidden_states else None
454
+ all_self_attentions = () if output_attentions else None
455
+ all_cross_attentions = (() if output_attentions and self.config.add_cross_attention else None)
456
+
457
+ next_decoder_cache = () if use_cache else None
458
+
459
+ try:
460
+ # ALBEF
461
+ fusion_layer = self.config.fusion_layer
462
+ except AttributeError:
463
+ # BLIP
464
+ fusion_layer = self.config.num_hidden_layers
465
+
466
+ if mode == 'text':
467
+ start_layer = 0
468
+ # output_layer = self.config.fusion_layer
469
+ output_layer = fusion_layer
470
+
471
+ elif mode == 'fusion':
472
+ # start_layer = self.config.fusion_layer
473
+ start_layer = fusion_layer
474
+ output_layer = self.config.num_hidden_layers
475
+
476
+ elif mode == 'multimodal':
477
+ start_layer = 0
478
+ output_layer = self.config.num_hidden_layers
479
+
480
+ # compatibility for ALBEF and BLIP
481
+ # for i in range(self.config.num_hidden_layers):
482
+ for i in range(start_layer, output_layer):
483
+ layer_module = self.layer[i]
484
+ if output_hidden_states:
485
+ all_hidden_states = all_hidden_states + (hidden_states, )
486
+
487
+ layer_head_mask = head_mask[i] if head_mask is not None else None
488
+ past_key_value = past_key_values[i] if past_key_values is not None else None
489
+
490
+ # TODO pay attention to this.
491
+ if self.gradient_checkpointing and self.training:
492
+
493
+ if use_cache:
494
+ logger.warn(
495
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
496
+ use_cache = False
497
+
498
+ def create_custom_forward(module):
499
+
500
+ def custom_forward(*inputs):
501
+ return module(*inputs, past_key_value, output_attentions)
502
+
503
+ return custom_forward
504
+
505
+ layer_outputs = torch.utils.checkpoint.checkpoint(
506
+ create_custom_forward(layer_module),
507
+ hidden_states,
508
+ attention_mask,
509
+ layer_head_mask,
510
+ encoder_hidden_states,
511
+ encoder_attention_mask,
512
+ mode=mode,
513
+ )
514
+ else:
515
+ layer_outputs = layer_module(
516
+ hidden_states,
517
+ attention_mask,
518
+ layer_head_mask,
519
+ encoder_hidden_states,
520
+ encoder_attention_mask,
521
+ past_key_value,
522
+ output_attentions,
523
+ mode=mode,
524
+ )
525
+
526
+ hidden_states = layer_outputs[0]
527
+ if use_cache:
528
+ next_decoder_cache += (layer_outputs[-1], )
529
+ if output_attentions:
530
+ all_self_attentions = all_self_attentions + (layer_outputs[1], )
531
+
532
+ if output_hidden_states:
533
+ all_hidden_states = all_hidden_states + (hidden_states, )
534
+
535
+ if not return_dict:
536
+ return tuple(v for v in [
537
+ hidden_states,
538
+ next_decoder_cache,
539
+ all_hidden_states,
540
+ all_self_attentions,
541
+ all_cross_attentions,
542
+ ] if v is not None)
543
+ return BaseModelOutputWithPastAndCrossAttentions(
544
+ last_hidden_state=hidden_states,
545
+ past_key_values=next_decoder_cache,
546
+ hidden_states=all_hidden_states,
547
+ attentions=all_self_attentions,
548
+ cross_attentions=all_cross_attentions,
549
+ )
550
+
551
+
552
+ class BertPooler(nn.Module):
553
+
554
+ def __init__(self, config):
555
+ super().__init__()
556
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
557
+ self.activation = nn.Tanh()
558
+
559
+ def forward(self, hidden_states):
560
+ # We "pool" the model by simply taking the hidden state corresponding
561
+ # to the first token.
562
+ first_token_tensor = hidden_states[:, 0]
563
+ pooled_output = self.dense(first_token_tensor)
564
+ pooled_output = self.activation(pooled_output)
565
+ return pooled_output
566
+
567
+
568
+ class BertPredictionHeadTransform(nn.Module):
569
+
570
+ def __init__(self, config):
571
+ super().__init__()
572
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
573
+ if isinstance(config.hidden_act, str):
574
+ self.transform_act_fn = ACT2FN[config.hidden_act]
575
+ else:
576
+ self.transform_act_fn = config.hidden_act
577
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
578
+
579
+ def forward(self, hidden_states):
580
+ hidden_states = self.dense(hidden_states)
581
+ hidden_states = self.transform_act_fn(hidden_states)
582
+ hidden_states = self.LayerNorm(hidden_states)
583
+ return hidden_states
584
+
585
+
586
+ class BertLMPredictionHead(nn.Module):
587
+
588
+ def __init__(self, config):
589
+ super().__init__()
590
+ self.transform = BertPredictionHeadTransform(config)
591
+
592
+ # The output weights are the same as the input embeddings, but there is
593
+ # an output-only bias for each token.
594
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
595
+
596
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
597
+
598
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
599
+ self.decoder.bias = self.bias
600
+
601
+ def forward(self, hidden_states):
602
+ hidden_states = self.transform(hidden_states)
603
+ hidden_states = self.decoder(hidden_states)
604
+ return hidden_states
605
+
606
+
607
+ class BertOnlyMLMHead(nn.Module):
608
+
609
+ def __init__(self, config):
610
+ super().__init__()
611
+ self.predictions = BertLMPredictionHead(config)
612
+
613
+ def forward(self, sequence_output):
614
+ prediction_scores = self.predictions(sequence_output)
615
+ return prediction_scores
616
+
617
+
618
+ class BertPreTrainedModel(PreTrainedModel):
619
+ """
620
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
621
+ models.
622
+ """
623
+
624
+ config_class = BertConfig
625
+ base_model_prefix = 'bert'
626
+ _keys_to_ignore_on_load_missing = [r'position_ids']
627
+
628
+ def _init_weights(self, module):
629
+ """Initialize the weights"""
630
+ if isinstance(module, (nn.Linear, nn.Embedding)):
631
+ # Slightly different from the TF version which uses truncated_normal for initialization
632
+ # cf https://github.com/pytorch/pytorch/pull/5617
633
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
634
+ elif isinstance(module, nn.LayerNorm):
635
+ module.bias.data.zero_()
636
+ module.weight.data.fill_(1.0)
637
+ if isinstance(module, nn.Linear) and module.bias is not None:
638
+ module.bias.data.zero_()
639
+
640
+
641
+ class BertModel(BertPreTrainedModel):
642
+ """
643
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
644
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
645
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
646
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
647
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
648
+ input to the forward pass.
649
+ """
650
+
651
+ def __init__(self, config, add_pooling_layer=True):
652
+ super().__init__(config)
653
+ self.config = config
654
+
655
+ self.embeddings = BertEmbeddings(config)
656
+
657
+ self.encoder = BertEncoder(config)
658
+
659
+ self.pooler = BertPooler(config) if add_pooling_layer else None
660
+
661
+ self.init_weights()
662
+
663
+ def get_input_embeddings(self):
664
+ return self.embeddings.word_embeddings
665
+
666
+ def set_input_embeddings(self, value):
667
+ self.embeddings.word_embeddings = value
668
+
669
+ def _prune_heads(self, heads_to_prune):
670
+ """
671
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
672
+ class PreTrainedModel
673
+ """
674
+ for layer, heads in heads_to_prune.items():
675
+ self.encoder.layer[layer].attention.prune_heads(heads)
676
+
677
+ def get_extended_attention_mask(
678
+ self,
679
+ attention_mask: Tensor,
680
+ input_shape: Tuple[int],
681
+ device: device,
682
+ is_decoder: bool,
683
+ ) -> Tensor:
684
+ """
685
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
686
+
687
+ Arguments:
688
+ attention_mask (:obj:`torch.Tensor`):
689
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
690
+ input_shape (:obj:`Tuple[int]`):
691
+ The shape of the input to the model.
692
+ device: (:obj:`torch.device`):
693
+ The device of the input to the model.
694
+
695
+ Returns:
696
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
697
+ """
698
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
699
+ # ourselves in which case we just need to make it broadcastable to all heads.
700
+ if attention_mask.dim() == 3:
701
+ extended_attention_mask = attention_mask[:, None, :, :]
702
+ elif attention_mask.dim() == 2:
703
+ # Provided a padding mask of dimensions [batch_size, seq_length]
704
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
705
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
706
+ if is_decoder:
707
+ batch_size, seq_length = input_shape
708
+
709
+ seq_ids = torch.arange(seq_length, device=device)
710
+ causal_mask = (seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None])
711
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
712
+ # causal and attention masks must have same type with pytorch version < 1.3
713
+ causal_mask = causal_mask.to(attention_mask.dtype)
714
+
715
+ if causal_mask.shape[1] < attention_mask.shape[1]:
716
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
717
+ causal_mask = torch.cat(
718
+ [
719
+ torch.ones(
720
+ (batch_size, seq_length, prefix_seq_len),
721
+ device=device,
722
+ dtype=causal_mask.dtype,
723
+ ),
724
+ causal_mask,
725
+ ],
726
+ axis=-1,
727
+ )
728
+
729
+ extended_attention_mask = (causal_mask[:, None, :, :] * attention_mask[:, None, None, :])
730
+ else:
731
+ extended_attention_mask = attention_mask[:, None, None, :]
732
+ else:
733
+ raise ValueError('Wrong shape for input_ids (shape {}) or attention_mask (shape {})'.format(
734
+ input_shape, attention_mask.shape))
735
+
736
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
737
+ # masked positions, this operation will create a tensor which is 0.0 for
738
+ # positions we want to attend and -10000.0 for masked positions.
739
+ # Since we are adding it to the raw scores before the softmax, this is
740
+ # effectively the same as removing these entirely.
741
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
742
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
743
+ return extended_attention_mask
744
+
745
+ def forward(
746
+ self,
747
+ input_ids=None,
748
+ attention_mask=None,
749
+ token_type_ids=None,
750
+ position_ids=None,
751
+ head_mask=None,
752
+ inputs_embeds=None,
753
+ encoder_embeds=None,
754
+ encoder_hidden_states=None,
755
+ encoder_attention_mask=None,
756
+ past_key_values=None,
757
+ use_cache=None,
758
+ output_attentions=None,
759
+ output_hidden_states=None,
760
+ return_dict=None,
761
+ is_decoder=False,
762
+ mode='multimodal',
763
+ ):
764
+ r"""
765
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
766
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
767
+ the model is configured as a decoder.
768
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
769
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
770
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
771
+ - 1 for tokens that are **not masked**,
772
+ - 0 for tokens that are **masked**.
773
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
774
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
775
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
776
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
777
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
778
+ use_cache (:obj:`bool`, `optional`):
779
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
780
+ decoding (see :obj:`past_key_values`).
781
+ """
782
+ output_attentions = (output_attentions if output_attentions is not None else self.config.output_attentions)
783
+ output_hidden_states = (
784
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
785
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
786
+
787
+ if is_decoder:
788
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
789
+ else:
790
+ use_cache = False
791
+
792
+ if input_ids is not None and inputs_embeds is not None:
793
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
794
+ elif input_ids is not None:
795
+ input_shape = input_ids.size()
796
+ batch_size, seq_length = input_shape
797
+ device = input_ids.device
798
+ elif inputs_embeds is not None:
799
+ input_shape = inputs_embeds.size()[:-1]
800
+ batch_size, seq_length = input_shape
801
+ device = inputs_embeds.device
802
+ elif encoder_embeds is not None:
803
+ input_shape = encoder_embeds.size()[:-1]
804
+ batch_size, seq_length = input_shape
805
+ device = encoder_embeds.device
806
+ else:
807
+ raise ValueError('You have to specify either input_ids or inputs_embeds or encoder_embeds')
808
+
809
+ # past_key_values_length
810
+ past_key_values_length = (past_key_values[0][0].shape[2] if past_key_values is not None else 0)
811
+
812
+ if attention_mask is None:
813
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
814
+
815
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
816
+ # ourselves in which case we just need to make it broadcastable to all heads.
817
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device,
818
+ is_decoder)
819
+
820
+ # If a 2D or 3D attention mask is provided for the cross-attention
821
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
822
+ if encoder_hidden_states is not None:
823
+ if type(encoder_hidden_states) == list:
824
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
825
+ else:
826
+ (
827
+ encoder_batch_size,
828
+ encoder_sequence_length,
829
+ _,
830
+ ) = encoder_hidden_states.size()
831
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
832
+
833
+ if type(encoder_attention_mask) == list:
834
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
835
+ elif encoder_attention_mask is None:
836
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
837
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
838
+ else:
839
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
840
+ else:
841
+ encoder_extended_attention_mask = None
842
+
843
+ # Prepare head mask if needed
844
+ # 1.0 in head_mask indicate we keep the head
845
+ # attention_probs has shape bsz x n_heads x N x N
846
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
847
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
848
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
849
+
850
+ if encoder_embeds is None:
851
+ embedding_output = self.embeddings(
852
+ input_ids=input_ids,
853
+ position_ids=position_ids,
854
+ token_type_ids=token_type_ids,
855
+ inputs_embeds=inputs_embeds,
856
+ past_key_values_length=past_key_values_length,
857
+ )
858
+ else:
859
+ embedding_output = encoder_embeds
860
+
861
+ encoder_outputs = self.encoder(
862
+ embedding_output,
863
+ attention_mask=extended_attention_mask,
864
+ head_mask=head_mask,
865
+ encoder_hidden_states=encoder_hidden_states,
866
+ encoder_attention_mask=encoder_extended_attention_mask,
867
+ past_key_values=past_key_values,
868
+ use_cache=use_cache,
869
+ output_attentions=output_attentions,
870
+ output_hidden_states=output_hidden_states,
871
+ return_dict=return_dict,
872
+ mode=mode,
873
+ )
874
+ sequence_output = encoder_outputs[0]
875
+ pooled_output = (self.pooler(sequence_output) if self.pooler is not None else None)
876
+
877
+ if not return_dict:
878
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
879
+
880
+ return BaseModelOutputWithPoolingAndCrossAttentions(
881
+ last_hidden_state=sequence_output,
882
+ pooler_output=pooled_output,
883
+ past_key_values=encoder_outputs.past_key_values,
884
+ hidden_states=encoder_outputs.hidden_states,
885
+ attentions=encoder_outputs.attentions,
886
+ cross_attentions=encoder_outputs.cross_attentions,
887
+ )
888
+
889
+
890
+ class BertForMaskedLM(BertPreTrainedModel):
891
+
892
+ _keys_to_ignore_on_load_unexpected = [r'pooler']
893
+ _keys_to_ignore_on_load_missing = [r'position_ids', r'predictions.decoder.bias']
894
+
895
+ def __init__(self, config):
896
+ super().__init__(config)
897
+
898
+ self.bert = BertModel(config, add_pooling_layer=False)
899
+ self.cls = BertOnlyMLMHead(config)
900
+
901
+ self.init_weights()
902
+
903
+ def get_output_embeddings(self):
904
+ return self.cls.predictions.decoder
905
+
906
+ def set_output_embeddings(self, new_embeddings):
907
+ self.cls.predictions.decoder = new_embeddings
908
+
909
+ def forward(
910
+ self,
911
+ input_ids=None,
912
+ attention_mask=None,
913
+ # token_type_ids=None,
914
+ position_ids=None,
915
+ head_mask=None,
916
+ inputs_embeds=None,
917
+ encoder_embeds=None,
918
+ encoder_hidden_states=None,
919
+ encoder_attention_mask=None,
920
+ labels=None,
921
+ output_attentions=None,
922
+ output_hidden_states=None,
923
+ return_dict=None,
924
+ is_decoder=False,
925
+ mode='multimodal',
926
+ soft_labels=None,
927
+ alpha=0,
928
+ return_logits=False,
929
+ ):
930
+ r"""
931
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
932
+ Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
933
+ config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
934
+ (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
935
+ """
936
+
937
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
938
+
939
+ outputs = self.bert(
940
+ input_ids,
941
+ attention_mask=attention_mask,
942
+ # token_type_ids=token_type_ids,
943
+ position_ids=position_ids,
944
+ head_mask=head_mask,
945
+ inputs_embeds=inputs_embeds,
946
+ encoder_embeds=encoder_embeds,
947
+ encoder_hidden_states=encoder_hidden_states,
948
+ encoder_attention_mask=encoder_attention_mask,
949
+ output_attentions=output_attentions,
950
+ output_hidden_states=output_hidden_states,
951
+ return_dict=return_dict,
952
+ is_decoder=is_decoder,
953
+ mode=mode,
954
+ )
955
+
956
+ sequence_output = outputs[0]
957
+ prediction_scores = self.cls(sequence_output)
958
+
959
+ if return_logits:
960
+ return prediction_scores
961
+
962
+ masked_lm_loss = None
963
+ if labels is not None:
964
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
965
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
966
+
967
+ if soft_labels is not None:
968
+ loss_distill = -torch.sum(F.log_softmax(prediction_scores, dim=-1) * soft_labels, dim=-1)
969
+ loss_distill = loss_distill[labels != -100].mean()
970
+ masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill
971
+
972
+ if not return_dict:
973
+ output = (prediction_scores, ) + outputs[2:]
974
+ return (((masked_lm_loss, ) + output) if masked_lm_loss is not None else output)
975
+
976
+ return MaskedLMOutput(
977
+ loss=masked_lm_loss,
978
+ logits=prediction_scores,
979
+ hidden_states=outputs.hidden_states,
980
+ attentions=outputs.attentions,
981
+ )
982
+
983
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
984
+ input_shape = input_ids.shape
985
+ effective_batch_size = input_shape[0]
986
+
987
+ # add a dummy token
988
+ assert (self.config.pad_token_id is not None), 'The PAD token should be defined for generation'
989
+ attention_mask = torch.cat(
990
+ [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
991
+ dim=-1,
992
+ )
993
+ dummy_token = torch.full(
994
+ (effective_batch_size, 1),
995
+ self.config.pad_token_id,
996
+ dtype=torch.long,
997
+ device=input_ids.device,
998
+ )
999
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1000
+
1001
+ return {'input_ids': input_ids, 'attention_mask': attention_mask}
1002
+
1003
+
1004
+ class BertLMHeadModel(BertPreTrainedModel):
1005
+
1006
+ _keys_to_ignore_on_load_unexpected = [r'pooler']
1007
+ _keys_to_ignore_on_load_missing = [r'position_ids', r'predictions.decoder.bias']
1008
+
1009
+ def __init__(self, config):
1010
+ super().__init__(config)
1011
+
1012
+ self.bert = BertModel(config, add_pooling_layer=False)
1013
+ self.cls = BertOnlyMLMHead(config)
1014
+
1015
+ self.init_weights()
1016
+
1017
+ def get_output_embeddings(self):
1018
+ return self.cls.predictions.decoder
1019
+
1020
+ def set_output_embeddings(self, new_embeddings):
1021
+ self.cls.predictions.decoder = new_embeddings
1022
+
1023
+ def forward(
1024
+ self,
1025
+ input_ids=None,
1026
+ attention_mask=None,
1027
+ position_ids=None,
1028
+ head_mask=None,
1029
+ inputs_embeds=None,
1030
+ encoder_hidden_states=None,
1031
+ encoder_attention_mask=None,
1032
+ labels=None,
1033
+ past_key_values=None,
1034
+ use_cache=None,
1035
+ output_attentions=None,
1036
+ output_hidden_states=None,
1037
+ return_dict=None,
1038
+ return_logits=False,
1039
+ is_decoder=True,
1040
+ reduction='mean',
1041
+ mode='multimodal',
1042
+ soft_labels=None,
1043
+ alpha=0,
1044
+ ):
1045
+ r"""
1046
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1047
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1048
+ the model is configured as a decoder.
1049
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1050
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1051
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
1052
+ - 1 for tokens that are **not masked**,
1053
+ - 0 for tokens that are **masked**.
1054
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1055
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1056
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
1057
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
1058
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1059
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1060
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1061
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1062
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1063
+ use_cache (:obj:`bool`, `optional`):
1064
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1065
+ decoding (see :obj:`past_key_values`).
1066
+ Returns:
1067
+ Example::
1068
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
1069
+ >>> import torch
1070
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
1071
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
1072
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
1073
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1074
+ >>> outputs = model(**inputs)
1075
+ >>> prediction_logits = outputs.logits
1076
+ """
1077
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
1078
+ if labels is not None:
1079
+ use_cache = False
1080
+
1081
+ outputs = self.bert(
1082
+ input_ids,
1083
+ attention_mask=attention_mask,
1084
+ position_ids=position_ids,
1085
+ head_mask=head_mask,
1086
+ inputs_embeds=inputs_embeds,
1087
+ encoder_hidden_states=encoder_hidden_states,
1088
+ encoder_attention_mask=encoder_attention_mask,
1089
+ past_key_values=past_key_values,
1090
+ use_cache=use_cache,
1091
+ output_attentions=output_attentions,
1092
+ output_hidden_states=output_hidden_states,
1093
+ return_dict=return_dict,
1094
+ is_decoder=is_decoder,
1095
+ mode=mode,
1096
+ )
1097
+
1098
+ sequence_output = outputs[0]
1099
+ prediction_scores = self.cls(sequence_output)
1100
+
1101
+ if return_logits:
1102
+ return prediction_scores[:, :-1, :].contiguous()
1103
+
1104
+ lm_loss = None
1105
+ if labels is not None:
1106
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1107
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1108
+ labels = labels[:, 1:].contiguous()
1109
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
1110
+ lm_loss = loss_fct(
1111
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
1112
+ labels.view(-1),
1113
+ )
1114
+ if reduction == 'none':
1115
+ lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
1116
+
1117
+ if soft_labels is not None:
1118
+ loss_distill = -torch.sum(F.log_softmax(shifted_prediction_scores, dim=-1) * soft_labels, dim=-1)
1119
+ loss_distill = (loss_distill * (labels != -100)).sum(1)
1120
+ lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill
1121
+
1122
+ if not return_dict:
1123
+ output = (prediction_scores, ) + outputs[2:]
1124
+ return ((lm_loss, ) + output) if lm_loss is not None else output
1125
+
1126
+ return CausalLMOutputWithCrossAttentions(
1127
+ loss=lm_loss,
1128
+ logits=prediction_scores,
1129
+ past_key_values=outputs.past_key_values,
1130
+ hidden_states=outputs.hidden_states,
1131
+ attentions=outputs.attentions,
1132
+ cross_attentions=outputs.cross_attentions,
1133
+ )
1134
+
1135
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
1136
+ input_shape = input_ids.shape
1137
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1138
+ if attention_mask is None:
1139
+ attention_mask = input_ids.new_ones(input_shape)
1140
+
1141
+ # cut decoder_input_ids if past is used
1142
+ if past is not None:
1143
+ input_ids = input_ids[:, -1:]
1144
+
1145
+ return {
1146
+ 'input_ids': input_ids,
1147
+ 'attention_mask': attention_mask,
1148
+ 'past_key_values': past,
1149
+ 'encoder_hidden_states': model_kwargs.get('encoder_hidden_states', None),
1150
+ 'encoder_attention_mask': model_kwargs.get('encoder_attention_mask', None),
1151
+ 'is_decoder': True,
1152
+ }
1153
+
1154
+ def _reorder_cache(self, past, beam_idx):
1155
+ reordered_past = ()
1156
+ for layer_past in past:
1157
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past), )
1158
+ return reordered_past
1159
+
1160
+
1161
+ class XBertLMHeadDecoder(BertLMHeadModel):
1162
+ """
1163
+ This class decouples the decoder forward logic from the VL model.
1164
+ In this way, different VL models can share this decoder as long as
1165
+ they feed encoder_embeds as required.
1166
+ """
1167
+
1168
+ @classmethod
1169
+ def from_config(cls, cfg, from_pretrained=False):
1170
+
1171
+ med_config_path = get_abs_path(cfg.get('med_config_path'))
1172
+ med_config = BertConfig.from_json_file(med_config_path)
1173
+
1174
+ if from_pretrained:
1175
+ return cls.from_pretrained('bert-base-uncased', config=med_config)
1176
+ else:
1177
+ return cls(config=med_config)
1178
+
1179
+ def generate_from_encoder(self,
1180
+ tokenized_prompt,
1181
+ visual_embeds,
1182
+ sep_token_id,
1183
+ pad_token_id,
1184
+ use_nucleus_sampling=False,
1185
+ num_beams=3,
1186
+ max_length=30,
1187
+ min_length=10,
1188
+ top_p=0.9,
1189
+ repetition_penalty=1.0,
1190
+ **kwargs):
1191
+
1192
+ if not use_nucleus_sampling:
1193
+ num_beams = num_beams
1194
+ visual_embeds = visual_embeds.repeat_interleave(num_beams, dim=0)
1195
+
1196
+ image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
1197
+
1198
+ model_kwargs = {
1199
+ 'encoder_hidden_states': visual_embeds,
1200
+ 'encoder_attention_mask': image_atts,
1201
+ }
1202
+
1203
+ if use_nucleus_sampling:
1204
+ # nucleus sampling
1205
+ outputs = self.generate(
1206
+ input_ids=tokenized_prompt.input_ids,
1207
+ max_length=max_length,
1208
+ min_length=min_length,
1209
+ do_sample=True,
1210
+ top_p=top_p,
1211
+ num_return_sequences=1,
1212
+ eos_token_id=sep_token_id,
1213
+ pad_token_id=pad_token_id,
1214
+ repetition_penalty=1.1,
1215
+ **model_kwargs)
1216
+ else:
1217
+ # beam search
1218
+ outputs = self.generate(
1219
+ input_ids=tokenized_prompt.input_ids,
1220
+ max_length=max_length,
1221
+ min_length=min_length,
1222
+ num_beams=num_beams,
1223
+ eos_token_id=sep_token_id,
1224
+ pad_token_id=pad_token_id,
1225
+ repetition_penalty=repetition_penalty,
1226
+ **model_kwargs)
1227
+
1228
+ return outputs
1229
+
1230
+
1231
+ class XBertEncoder(BertModel, BaseEncoder):
1232
+
1233
+ @classmethod
1234
+ def from_config(cls, cfg, from_pretrained=False):
1235
+
1236
+ med_config_path = get_abs_path(cfg.get('med_config_path'))
1237
+ med_config = BertConfig.from_json_file(med_config_path)
1238
+
1239
+ if from_pretrained:
1240
+ return cls.from_pretrained('bert-base-uncased', config=med_config, add_pooling_layer=False)
1241
+ else:
1242
+ return cls(config=med_config, add_pooling_layer=False)
1243
+
1244
+ def forward_automask(self, tokenized_text, visual_embeds, **kwargs):
1245
+ image_atts = torch.ones(visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
1246
+
1247
+ text = tokenized_text
1248
+ text_output = super().forward(
1249
+ text.input_ids,
1250
+ attention_mask=text.attention_mask,
1251
+ encoder_hidden_states=visual_embeds,
1252
+ encoder_attention_mask=image_atts,
1253
+ return_dict=True,
1254
+ )
1255
+
1256
+ return text_output
1257
+
1258
+ def forward_text(self, tokenized_text, **kwargs):
1259
+ text = tokenized_text
1260
+ token_type_ids = kwargs.get('token_type_ids', None)
1261
+
1262
+ text_output = super().forward(
1263
+ text.input_ids,
1264
+ attention_mask=text.attention_mask,
1265
+ token_type_ids=token_type_ids,
1266
+ return_dict=True,
1267
+ mode='text',
1268
+ )
1269
+
1270
+ return text_output