diffusers 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +13 -10
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +38 -18
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/METADATA +70 -55
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/WHEEL +1 -1
  475. diffusers-0.33.1.dist-info/RECORD +0 -608
  476. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  477. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1114 @@
1
+ # Copyright 2025 The Framepack Team, The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from enum import Enum
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import torch
22
+ from transformers import (
23
+ CLIPTextModel,
24
+ CLIPTokenizer,
25
+ LlamaModel,
26
+ LlamaTokenizerFast,
27
+ SiglipImageProcessor,
28
+ SiglipVisionModel,
29
+ )
30
+
31
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
32
+ from ...image_processor import PipelineImageInput
33
+ from ...loaders import HunyuanVideoLoraLoaderMixin
34
+ from ...models import AutoencoderKLHunyuanVideo, HunyuanVideoFramepackTransformer3DModel
35
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
36
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
37
+ from ...utils.torch_utils import randn_tensor
38
+ from ...video_processor import VideoProcessor
39
+ from ..pipeline_utils import DiffusionPipeline
40
+ from .pipeline_output import HunyuanVideoFramepackPipelineOutput
41
+
42
+
43
+ if is_torch_xla_available():
44
+ import torch_xla.core.xla_model as xm
45
+
46
+ XLA_AVAILABLE = True
47
+ else:
48
+ XLA_AVAILABLE = False
49
+
50
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
51
+
52
+
53
+ # TODO(yiyi): We can pack the checkpoints nicely with modular loader
54
+ EXAMPLE_DOC_STRING = """
55
+ Examples:
56
+ ##### Image-to-Video
57
+
58
+ ```python
59
+ >>> import torch
60
+ >>> from diffusers import HunyuanVideoFramepackPipeline, HunyuanVideoFramepackTransformer3DModel
61
+ >>> from diffusers.utils import export_to_video, load_image
62
+ >>> from transformers import SiglipImageProcessor, SiglipVisionModel
63
+
64
+ >>> transformer = HunyuanVideoFramepackTransformer3DModel.from_pretrained(
65
+ ... "lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
66
+ ... )
67
+ >>> feature_extractor = SiglipImageProcessor.from_pretrained(
68
+ ... "lllyasviel/flux_redux_bfl", subfolder="feature_extractor"
69
+ ... )
70
+ >>> image_encoder = SiglipVisionModel.from_pretrained(
71
+ ... "lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
72
+ ... )
73
+ >>> pipe = HunyuanVideoFramepackPipeline.from_pretrained(
74
+ ... "hunyuanvideo-community/HunyuanVideo",
75
+ ... transformer=transformer,
76
+ ... feature_extractor=feature_extractor,
77
+ ... image_encoder=image_encoder,
78
+ ... torch_dtype=torch.float16,
79
+ ... )
80
+ >>> pipe.vae.enable_tiling()
81
+ >>> pipe.to("cuda")
82
+
83
+ >>> image = load_image(
84
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
85
+ ... )
86
+ >>> output = pipe(
87
+ ... image=image,
88
+ ... prompt="A penguin dancing in the snow",
89
+ ... height=832,
90
+ ... width=480,
91
+ ... num_frames=91,
92
+ ... num_inference_steps=30,
93
+ ... guidance_scale=9.0,
94
+ ... generator=torch.Generator().manual_seed(0),
95
+ ... sampling_type="inverted_anti_drifting",
96
+ ... ).frames[0]
97
+ >>> export_to_video(output, "output.mp4", fps=30)
98
+ ```
99
+
100
+ ##### First and Last Image-to-Video
101
+
102
+ ```python
103
+ >>> import torch
104
+ >>> from diffusers import HunyuanVideoFramepackPipeline, HunyuanVideoFramepackTransformer3DModel
105
+ >>> from diffusers.utils import export_to_video, load_image
106
+ >>> from transformers import SiglipImageProcessor, SiglipVisionModel
107
+
108
+ >>> transformer = HunyuanVideoFramepackTransformer3DModel.from_pretrained(
109
+ ... "lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
110
+ ... )
111
+ >>> feature_extractor = SiglipImageProcessor.from_pretrained(
112
+ ... "lllyasviel/flux_redux_bfl", subfolder="feature_extractor"
113
+ ... )
114
+ >>> image_encoder = SiglipVisionModel.from_pretrained(
115
+ ... "lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
116
+ ... )
117
+ >>> pipe = HunyuanVideoFramepackPipeline.from_pretrained(
118
+ ... "hunyuanvideo-community/HunyuanVideo",
119
+ ... transformer=transformer,
120
+ ... feature_extractor=feature_extractor,
121
+ ... image_encoder=image_encoder,
122
+ ... torch_dtype=torch.float16,
123
+ ... )
124
+ >>> pipe.to("cuda")
125
+
126
+ >>> prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
127
+ >>> first_image = load_image(
128
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png"
129
+ ... )
130
+ >>> last_image = load_image(
131
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png"
132
+ ... )
133
+ >>> output = pipe(
134
+ ... image=first_image,
135
+ ... last_image=last_image,
136
+ ... prompt=prompt,
137
+ ... height=512,
138
+ ... width=512,
139
+ ... num_frames=91,
140
+ ... num_inference_steps=30,
141
+ ... guidance_scale=9.0,
142
+ ... generator=torch.Generator().manual_seed(0),
143
+ ... sampling_type="inverted_anti_drifting",
144
+ ... ).frames[0]
145
+ >>> export_to_video(output, "output.mp4", fps=30)
146
+ ```
147
+ """
148
+
149
+
150
+ DEFAULT_PROMPT_TEMPLATE = {
151
+ "template": (
152
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
153
+ "1. The main content and theme of the video."
154
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
155
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
156
+ "4. background environment, light, style and atmosphere."
157
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
158
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
159
+ ),
160
+ "crop_start": 95,
161
+ }
162
+
163
+
164
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
165
+ def calculate_shift(
166
+ image_seq_len,
167
+ base_seq_len: int = 256,
168
+ max_seq_len: int = 4096,
169
+ base_shift: float = 0.5,
170
+ max_shift: float = 1.15,
171
+ ):
172
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
173
+ b = base_shift - m * base_seq_len
174
+ mu = image_seq_len * m + b
175
+ return mu
176
+
177
+
178
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
179
+ def retrieve_timesteps(
180
+ scheduler,
181
+ num_inference_steps: Optional[int] = None,
182
+ device: Optional[Union[str, torch.device]] = None,
183
+ timesteps: Optional[List[int]] = None,
184
+ sigmas: Optional[List[float]] = None,
185
+ **kwargs,
186
+ ):
187
+ r"""
188
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
189
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
190
+
191
+ Args:
192
+ scheduler (`SchedulerMixin`):
193
+ The scheduler to get timesteps from.
194
+ num_inference_steps (`int`):
195
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
196
+ must be `None`.
197
+ device (`str` or `torch.device`, *optional*):
198
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
199
+ timesteps (`List[int]`, *optional*):
200
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
201
+ `num_inference_steps` and `sigmas` must be `None`.
202
+ sigmas (`List[float]`, *optional*):
203
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
204
+ `num_inference_steps` and `timesteps` must be `None`.
205
+
206
+ Returns:
207
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
208
+ second element is the number of inference steps.
209
+ """
210
+ if timesteps is not None and sigmas is not None:
211
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
212
+ if timesteps is not None:
213
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
214
+ if not accepts_timesteps:
215
+ raise ValueError(
216
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
217
+ f" timestep schedules. Please check whether you are using the correct scheduler."
218
+ )
219
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
220
+ timesteps = scheduler.timesteps
221
+ num_inference_steps = len(timesteps)
222
+ elif sigmas is not None:
223
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
224
+ if not accept_sigmas:
225
+ raise ValueError(
226
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
227
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
228
+ )
229
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
230
+ timesteps = scheduler.timesteps
231
+ num_inference_steps = len(timesteps)
232
+ else:
233
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
234
+ timesteps = scheduler.timesteps
235
+ return timesteps, num_inference_steps
236
+
237
+
238
+ class FramepackSamplingType(str, Enum):
239
+ VANILLA = "vanilla"
240
+ INVERTED_ANTI_DRIFTING = "inverted_anti_drifting"
241
+
242
+
243
+ class HunyuanVideoFramepackPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
244
+ r"""
245
+ Pipeline for text-to-video generation using HunyuanVideo.
246
+
247
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
248
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
249
+
250
+ Args:
251
+ text_encoder ([`LlamaModel`]):
252
+ [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
253
+ tokenizer (`LlamaTokenizer`):
254
+ Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
255
+ transformer ([`HunyuanVideoTransformer3DModel`]):
256
+ Conditional Transformer to denoise the encoded image latents.
257
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
258
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
259
+ vae ([`AutoencoderKLHunyuanVideo`]):
260
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
261
+ text_encoder_2 ([`CLIPTextModel`]):
262
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
263
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
264
+ tokenizer_2 (`CLIPTokenizer`):
265
+ Tokenizer of class
266
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
267
+ """
268
+
269
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
270
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
271
+
272
+ def __init__(
273
+ self,
274
+ text_encoder: LlamaModel,
275
+ tokenizer: LlamaTokenizerFast,
276
+ transformer: HunyuanVideoFramepackTransformer3DModel,
277
+ vae: AutoencoderKLHunyuanVideo,
278
+ scheduler: FlowMatchEulerDiscreteScheduler,
279
+ text_encoder_2: CLIPTextModel,
280
+ tokenizer_2: CLIPTokenizer,
281
+ image_encoder: SiglipVisionModel,
282
+ feature_extractor: SiglipImageProcessor,
283
+ ):
284
+ super().__init__()
285
+
286
+ self.register_modules(
287
+ vae=vae,
288
+ text_encoder=text_encoder,
289
+ tokenizer=tokenizer,
290
+ transformer=transformer,
291
+ scheduler=scheduler,
292
+ text_encoder_2=text_encoder_2,
293
+ tokenizer_2=tokenizer_2,
294
+ image_encoder=image_encoder,
295
+ feature_extractor=feature_extractor,
296
+ )
297
+
298
+ self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
299
+ self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
300
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
301
+
302
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline._get_llama_prompt_embeds
303
+ def _get_llama_prompt_embeds(
304
+ self,
305
+ prompt: Union[str, List[str]],
306
+ prompt_template: Dict[str, Any],
307
+ num_videos_per_prompt: int = 1,
308
+ device: Optional[torch.device] = None,
309
+ dtype: Optional[torch.dtype] = None,
310
+ max_sequence_length: int = 256,
311
+ num_hidden_layers_to_skip: int = 2,
312
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
313
+ device = device or self._execution_device
314
+ dtype = dtype or self.text_encoder.dtype
315
+
316
+ prompt = [prompt] if isinstance(prompt, str) else prompt
317
+ batch_size = len(prompt)
318
+
319
+ prompt = [prompt_template["template"].format(p) for p in prompt]
320
+
321
+ crop_start = prompt_template.get("crop_start", None)
322
+ if crop_start is None:
323
+ prompt_template_input = self.tokenizer(
324
+ prompt_template["template"],
325
+ padding="max_length",
326
+ return_tensors="pt",
327
+ return_length=False,
328
+ return_overflowing_tokens=False,
329
+ return_attention_mask=False,
330
+ )
331
+ crop_start = prompt_template_input["input_ids"].shape[-1]
332
+ # Remove <|eot_id|> token and placeholder {}
333
+ crop_start -= 2
334
+
335
+ max_sequence_length += crop_start
336
+ text_inputs = self.tokenizer(
337
+ prompt,
338
+ max_length=max_sequence_length,
339
+ padding="max_length",
340
+ truncation=True,
341
+ return_tensors="pt",
342
+ return_length=False,
343
+ return_overflowing_tokens=False,
344
+ return_attention_mask=True,
345
+ )
346
+ text_input_ids = text_inputs.input_ids.to(device=device)
347
+ prompt_attention_mask = text_inputs.attention_mask.to(device=device)
348
+
349
+ prompt_embeds = self.text_encoder(
350
+ input_ids=text_input_ids,
351
+ attention_mask=prompt_attention_mask,
352
+ output_hidden_states=True,
353
+ ).hidden_states[-(num_hidden_layers_to_skip + 1)]
354
+ prompt_embeds = prompt_embeds.to(dtype=dtype)
355
+
356
+ if crop_start is not None and crop_start > 0:
357
+ prompt_embeds = prompt_embeds[:, crop_start:]
358
+ prompt_attention_mask = prompt_attention_mask[:, crop_start:]
359
+
360
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
361
+ _, seq_len, _ = prompt_embeds.shape
362
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
363
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
364
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
365
+ prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
366
+
367
+ return prompt_embeds, prompt_attention_mask
368
+
369
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline._get_clip_prompt_embeds
370
+ def _get_clip_prompt_embeds(
371
+ self,
372
+ prompt: Union[str, List[str]],
373
+ num_videos_per_prompt: int = 1,
374
+ device: Optional[torch.device] = None,
375
+ dtype: Optional[torch.dtype] = None,
376
+ max_sequence_length: int = 77,
377
+ ) -> torch.Tensor:
378
+ device = device or self._execution_device
379
+ dtype = dtype or self.text_encoder_2.dtype
380
+
381
+ prompt = [prompt] if isinstance(prompt, str) else prompt
382
+ batch_size = len(prompt)
383
+
384
+ text_inputs = self.tokenizer_2(
385
+ prompt,
386
+ padding="max_length",
387
+ max_length=max_sequence_length,
388
+ truncation=True,
389
+ return_tensors="pt",
390
+ )
391
+
392
+ text_input_ids = text_inputs.input_ids
393
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
394
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
395
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
396
+ logger.warning(
397
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
398
+ f" {max_sequence_length} tokens: {removed_text}"
399
+ )
400
+
401
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
402
+
403
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
404
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
405
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
406
+
407
+ return prompt_embeds
408
+
409
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline.encode_prompt
410
+ def encode_prompt(
411
+ self,
412
+ prompt: Union[str, List[str]],
413
+ prompt_2: Union[str, List[str]] = None,
414
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
415
+ num_videos_per_prompt: int = 1,
416
+ prompt_embeds: Optional[torch.Tensor] = None,
417
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
418
+ prompt_attention_mask: Optional[torch.Tensor] = None,
419
+ device: Optional[torch.device] = None,
420
+ dtype: Optional[torch.dtype] = None,
421
+ max_sequence_length: int = 256,
422
+ ):
423
+ if prompt_embeds is None:
424
+ prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
425
+ prompt,
426
+ prompt_template,
427
+ num_videos_per_prompt,
428
+ device=device,
429
+ dtype=dtype,
430
+ max_sequence_length=max_sequence_length,
431
+ )
432
+
433
+ if pooled_prompt_embeds is None:
434
+ if prompt_2 is None:
435
+ prompt_2 = prompt
436
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
437
+ prompt,
438
+ num_videos_per_prompt,
439
+ device=device,
440
+ dtype=dtype,
441
+ max_sequence_length=77,
442
+ )
443
+
444
+ return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask
445
+
446
+ def encode_image(
447
+ self, image: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None
448
+ ):
449
+ device = device or self._execution_device
450
+ image = (image + 1) / 2.0 # [-1, 1] -> [0, 1]
451
+ image = self.feature_extractor(images=image, return_tensors="pt", do_rescale=False).to(
452
+ device=device, dtype=self.image_encoder.dtype
453
+ )
454
+ image_embeds = self.image_encoder(**image).last_hidden_state
455
+ return image_embeds.to(dtype=dtype)
456
+
457
+ def check_inputs(
458
+ self,
459
+ prompt,
460
+ prompt_2,
461
+ height,
462
+ width,
463
+ prompt_embeds=None,
464
+ callback_on_step_end_tensor_inputs=None,
465
+ prompt_template=None,
466
+ image=None,
467
+ image_latents=None,
468
+ last_image=None,
469
+ last_image_latents=None,
470
+ sampling_type=None,
471
+ ):
472
+ if height % 16 != 0 or width % 16 != 0:
473
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
474
+
475
+ if callback_on_step_end_tensor_inputs is not None and not all(
476
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
477
+ ):
478
+ raise ValueError(
479
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
480
+ )
481
+
482
+ if prompt is not None and prompt_embeds is not None:
483
+ raise ValueError(
484
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
485
+ " only forward one of the two."
486
+ )
487
+ elif prompt_2 is not None and prompt_embeds is not None:
488
+ raise ValueError(
489
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
490
+ " only forward one of the two."
491
+ )
492
+ elif prompt is None and prompt_embeds is None:
493
+ raise ValueError(
494
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
495
+ )
496
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
497
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
498
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
499
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
500
+
501
+ if prompt_template is not None:
502
+ if not isinstance(prompt_template, dict):
503
+ raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
504
+ if "template" not in prompt_template:
505
+ raise ValueError(
506
+ f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
507
+ )
508
+
509
+ sampling_types = [x.value for x in FramepackSamplingType.__members__.values()]
510
+ if sampling_type not in sampling_types:
511
+ raise ValueError(f"`sampling_type` has to be one of '{sampling_types}' but is '{sampling_type}'")
512
+
513
+ if image is not None and image_latents is not None:
514
+ raise ValueError("Only one of `image` or `image_latents` can be passed.")
515
+ if last_image is not None and last_image_latents is not None:
516
+ raise ValueError("Only one of `last_image` or `last_image_latents` can be passed.")
517
+ if sampling_type != FramepackSamplingType.INVERTED_ANTI_DRIFTING and (
518
+ last_image is not None or last_image_latents is not None
519
+ ):
520
+ raise ValueError(
521
+ 'Only `"inverted_anti_drifting"` inference type supports `last_image` or `last_image_latents`.'
522
+ )
523
+
524
+ def prepare_latents(
525
+ self,
526
+ batch_size: int = 1,
527
+ num_channels_latents: int = 16,
528
+ height: int = 720,
529
+ width: int = 1280,
530
+ num_frames: int = 129,
531
+ dtype: Optional[torch.dtype] = None,
532
+ device: Optional[torch.device] = None,
533
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
534
+ latents: Optional[torch.Tensor] = None,
535
+ ) -> torch.Tensor:
536
+ if latents is not None:
537
+ return latents.to(device=device, dtype=dtype)
538
+ shape = (
539
+ batch_size,
540
+ num_channels_latents,
541
+ (num_frames - 1) // self.vae_scale_factor_temporal + 1,
542
+ int(height) // self.vae_scale_factor_spatial,
543
+ int(width) // self.vae_scale_factor_spatial,
544
+ )
545
+ if isinstance(generator, list) and len(generator) != batch_size:
546
+ raise ValueError(
547
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
548
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
549
+ )
550
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
551
+ return latents
552
+
553
+ def prepare_image_latents(
554
+ self,
555
+ image: torch.Tensor,
556
+ dtype: Optional[torch.dtype] = None,
557
+ device: Optional[torch.device] = None,
558
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
559
+ latents: Optional[torch.Tensor] = None,
560
+ ) -> torch.Tensor:
561
+ device = device or self._execution_device
562
+ if latents is None:
563
+ image = image.unsqueeze(2).to(device=device, dtype=self.vae.dtype)
564
+ latents = self.vae.encode(image).latent_dist.sample(generator=generator)
565
+ latents = latents * self.vae.config.scaling_factor
566
+ return latents.to(device=device, dtype=dtype)
567
+
568
+ def enable_vae_slicing(self):
569
+ r"""
570
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
571
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
572
+ """
573
+ self.vae.enable_slicing()
574
+
575
+ def disable_vae_slicing(self):
576
+ r"""
577
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
578
+ computing decoding in one step.
579
+ """
580
+ self.vae.disable_slicing()
581
+
582
+ def enable_vae_tiling(self):
583
+ r"""
584
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
585
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
586
+ processing larger images.
587
+ """
588
+ self.vae.enable_tiling()
589
+
590
+ def disable_vae_tiling(self):
591
+ r"""
592
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
593
+ computing decoding in one step.
594
+ """
595
+ self.vae.disable_tiling()
596
+
597
+ @property
598
+ def guidance_scale(self):
599
+ return self._guidance_scale
600
+
601
+ @property
602
+ def num_timesteps(self):
603
+ return self._num_timesteps
604
+
605
+ @property
606
+ def attention_kwargs(self):
607
+ return self._attention_kwargs
608
+
609
+ @property
610
+ def current_timestep(self):
611
+ return self._current_timestep
612
+
613
+ @property
614
+ def interrupt(self):
615
+ return self._interrupt
616
+
617
+ @torch.no_grad()
618
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
619
+ def __call__(
620
+ self,
621
+ image: PipelineImageInput,
622
+ last_image: Optional[PipelineImageInput] = None,
623
+ prompt: Union[str, List[str]] = None,
624
+ prompt_2: Union[str, List[str]] = None,
625
+ negative_prompt: Union[str, List[str]] = None,
626
+ negative_prompt_2: Union[str, List[str]] = None,
627
+ height: int = 720,
628
+ width: int = 1280,
629
+ num_frames: int = 129,
630
+ latent_window_size: int = 9,
631
+ num_inference_steps: int = 50,
632
+ sigmas: List[float] = None,
633
+ true_cfg_scale: float = 1.0,
634
+ guidance_scale: float = 6.0,
635
+ num_videos_per_prompt: Optional[int] = 1,
636
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
637
+ image_latents: Optional[torch.Tensor] = None,
638
+ last_image_latents: Optional[torch.Tensor] = None,
639
+ prompt_embeds: Optional[torch.Tensor] = None,
640
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
641
+ prompt_attention_mask: Optional[torch.Tensor] = None,
642
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
643
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
644
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
645
+ output_type: Optional[str] = "pil",
646
+ return_dict: bool = True,
647
+ attention_kwargs: Optional[Dict[str, Any]] = None,
648
+ callback_on_step_end: Optional[
649
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
650
+ ] = None,
651
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
652
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
653
+ max_sequence_length: int = 256,
654
+ sampling_type: FramepackSamplingType = FramepackSamplingType.INVERTED_ANTI_DRIFTING,
655
+ ):
656
+ r"""
657
+ The call function to the pipeline for generation.
658
+
659
+ Args:
660
+ image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
661
+ The image to be used as the starting point for the video generation.
662
+ last_image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`, *optional*):
663
+ The optional last image to be used as the ending point for the video generation. This is useful for
664
+ generating transitions between two images.
665
+ prompt (`str` or `List[str]`, *optional*):
666
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
667
+ instead.
668
+ prompt_2 (`str` or `List[str]`, *optional*):
669
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
670
+ will be used instead.
671
+ negative_prompt (`str` or `List[str]`, *optional*):
672
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
673
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
674
+ not greater than `1`).
675
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
676
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
677
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
678
+ height (`int`, defaults to `720`):
679
+ The height in pixels of the generated image.
680
+ width (`int`, defaults to `1280`):
681
+ The width in pixels of the generated image.
682
+ num_frames (`int`, defaults to `129`):
683
+ The number of frames in the generated video.
684
+ num_inference_steps (`int`, defaults to `50`):
685
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
686
+ expense of slower inference.
687
+ sigmas (`List[float]`, *optional*):
688
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
689
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
690
+ will be used.
691
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
692
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
693
+ guidance_scale (`float`, defaults to `6.0`):
694
+ Guidance scale as defined in [Classifier-Free Diffusion
695
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
696
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
697
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
698
+ the text `prompt`, usually at the expense of lower image quality. Note that the only available
699
+ HunyuanVideo model is CFG-distilled, which means that traditional guidance between unconditional and
700
+ conditional latent is not applied.
701
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
702
+ The number of images to generate per prompt.
703
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
704
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
705
+ generation deterministic.
706
+ image_latents (`torch.Tensor`, *optional*):
707
+ Pre-encoded image latents. If not provided, the image will be encoded using the VAE.
708
+ last_image_latents (`torch.Tensor`, *optional*):
709
+ Pre-encoded last image latents. If not provided, the last image will be encoded using the VAE.
710
+ prompt_embeds (`torch.Tensor`, *optional*):
711
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
712
+ provided, text embeddings are generated from the `prompt` input argument.
713
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
714
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
715
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
716
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
717
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
718
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
719
+ argument.
720
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
721
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
722
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
723
+ input argument.
724
+ output_type (`str`, *optional*, defaults to `"pil"`):
725
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
726
+ return_dict (`bool`, *optional*, defaults to `True`):
727
+ Whether or not to return a [`HunyuanVideoFramepackPipelineOutput`] instead of a plain tuple.
728
+ attention_kwargs (`dict`, *optional*):
729
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
730
+ `self.processor` in
731
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
732
+ clip_skip (`int`, *optional*):
733
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
734
+ the output of the pre-final layer will be used for computing the prompt embeddings.
735
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
736
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
737
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
738
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
739
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
740
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
741
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
742
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
743
+ `._callback_tensor_inputs` attribute of your pipeline class.
744
+
745
+ Examples:
746
+
747
+ Returns:
748
+ [`~HunyuanVideoFramepackPipelineOutput`] or `tuple`:
749
+ If `return_dict` is `True`, [`HunyuanVideoFramepackPipelineOutput`] is returned, otherwise a `tuple` is
750
+ returned where the first element is a list with the generated images and the second element is a list
751
+ of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw)
752
+ content.
753
+ """
754
+
755
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
756
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
757
+
758
+ # 1. Check inputs. Raise error if not correct
759
+ self.check_inputs(
760
+ prompt,
761
+ prompt_2,
762
+ height,
763
+ width,
764
+ prompt_embeds,
765
+ callback_on_step_end_tensor_inputs,
766
+ prompt_template,
767
+ image,
768
+ image_latents,
769
+ last_image,
770
+ last_image_latents,
771
+ sampling_type,
772
+ )
773
+
774
+ has_neg_prompt = negative_prompt is not None or (
775
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
776
+ )
777
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
778
+
779
+ self._guidance_scale = guidance_scale
780
+ self._attention_kwargs = attention_kwargs
781
+ self._current_timestep = None
782
+ self._interrupt = False
783
+
784
+ device = self._execution_device
785
+ transformer_dtype = self.transformer.dtype
786
+ vae_dtype = self.vae.dtype
787
+
788
+ # 2. Define call parameters
789
+ if prompt is not None and isinstance(prompt, str):
790
+ batch_size = 1
791
+ elif prompt is not None and isinstance(prompt, list):
792
+ batch_size = len(prompt)
793
+ else:
794
+ batch_size = prompt_embeds.shape[0]
795
+
796
+ # 3. Encode input prompt
797
+ transformer_dtype = self.transformer.dtype
798
+ prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
799
+ prompt=prompt,
800
+ prompt_2=prompt_2,
801
+ prompt_template=prompt_template,
802
+ num_videos_per_prompt=num_videos_per_prompt,
803
+ prompt_embeds=prompt_embeds,
804
+ pooled_prompt_embeds=pooled_prompt_embeds,
805
+ prompt_attention_mask=prompt_attention_mask,
806
+ device=device,
807
+ max_sequence_length=max_sequence_length,
808
+ )
809
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
810
+ prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
811
+ pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
812
+
813
+ if do_true_cfg:
814
+ negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt(
815
+ prompt=negative_prompt,
816
+ prompt_2=negative_prompt_2,
817
+ prompt_template=prompt_template,
818
+ num_videos_per_prompt=num_videos_per_prompt,
819
+ prompt_embeds=negative_prompt_embeds,
820
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
821
+ prompt_attention_mask=negative_prompt_attention_mask,
822
+ device=device,
823
+ max_sequence_length=max_sequence_length,
824
+ )
825
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
826
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
827
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
828
+
829
+ # 4. Prepare image
830
+ image = self.video_processor.preprocess(image, height, width)
831
+ image_embeds = self.encode_image(image, device=device).to(transformer_dtype)
832
+ if last_image is not None:
833
+ # Credits: https://github.com/lllyasviel/FramePack/pull/167
834
+ # Users can modify the weighting strategy applied here
835
+ last_image = self.video_processor.preprocess(last_image, height, width)
836
+ last_image_embeds = self.encode_image(last_image, device=device).to(transformer_dtype)
837
+ last_image_embeds = (image_embeds + last_image_embeds) / 2
838
+
839
+ # 5. Prepare latent variables
840
+ num_channels_latents = self.transformer.config.in_channels
841
+ window_num_frames = (latent_window_size - 1) * self.vae_scale_factor_temporal + 1
842
+ num_latent_sections = max(1, (num_frames + window_num_frames - 1) // window_num_frames)
843
+ history_video = None
844
+ total_generated_latent_frames = 0
845
+
846
+ image_latents = self.prepare_image_latents(
847
+ image, dtype=torch.float32, device=device, generator=generator, latents=image_latents
848
+ )
849
+ if last_image is not None:
850
+ last_image_latents = self.prepare_image_latents(
851
+ last_image, dtype=torch.float32, device=device, generator=generator
852
+ )
853
+
854
+ # Specific to the released checkpoints:
855
+ # - https://huggingface.co/lllyasviel/FramePackI2V_HY
856
+ # - https://huggingface.co/lllyasviel/FramePack_F1_I2V_HY_20250503
857
+ # TODO: find a more generic way in future if there are more checkpoints
858
+ if sampling_type == FramepackSamplingType.INVERTED_ANTI_DRIFTING:
859
+ history_sizes = [1, 2, 16]
860
+ history_latents = torch.zeros(
861
+ batch_size,
862
+ num_channels_latents,
863
+ sum(history_sizes),
864
+ height // self.vae_scale_factor_spatial,
865
+ width // self.vae_scale_factor_spatial,
866
+ device=device,
867
+ dtype=torch.float32,
868
+ )
869
+
870
+ elif sampling_type == FramepackSamplingType.VANILLA:
871
+ history_sizes = [16, 2, 1]
872
+ history_latents = torch.zeros(
873
+ batch_size,
874
+ num_channels_latents,
875
+ sum(history_sizes),
876
+ height // self.vae_scale_factor_spatial,
877
+ width // self.vae_scale_factor_spatial,
878
+ device=device,
879
+ dtype=torch.float32,
880
+ )
881
+ history_latents = torch.cat([history_latents, image_latents], dim=2)
882
+ total_generated_latent_frames += 1
883
+
884
+ else:
885
+ assert False
886
+
887
+ # 6. Prepare guidance condition
888
+ guidance = torch.tensor([guidance_scale] * batch_size, dtype=transformer_dtype, device=device) * 1000.0
889
+
890
+ # 7. Denoising loop
891
+ for k in range(num_latent_sections):
892
+ if sampling_type == FramepackSamplingType.INVERTED_ANTI_DRIFTING:
893
+ latent_paddings = list(reversed(range(num_latent_sections)))
894
+ if num_latent_sections > 4:
895
+ latent_paddings = [3] + [2] * (num_latent_sections - 3) + [1, 0]
896
+
897
+ is_first_section = k == 0
898
+ is_last_section = k == num_latent_sections - 1
899
+ latent_padding_size = latent_paddings[k] * latent_window_size
900
+
901
+ indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, *history_sizes]))
902
+ (
903
+ indices_prefix,
904
+ indices_padding,
905
+ indices_latents,
906
+ indices_latents_history_1x,
907
+ indices_latents_history_2x,
908
+ indices_latents_history_4x,
909
+ ) = indices.split([1, latent_padding_size, latent_window_size, *history_sizes], dim=0)
910
+ # Inverted anti-drifting sampling: Figure 2(c) in the paper
911
+ indices_clean_latents = torch.cat([indices_prefix, indices_latents_history_1x], dim=0)
912
+
913
+ latents_prefix = image_latents
914
+ latents_history_1x, latents_history_2x, latents_history_4x = history_latents[
915
+ :, :, : sum(history_sizes)
916
+ ].split(history_sizes, dim=2)
917
+ if last_image is not None and is_first_section:
918
+ latents_history_1x = last_image_latents
919
+ latents_clean = torch.cat([latents_prefix, latents_history_1x], dim=2)
920
+
921
+ elif sampling_type == FramepackSamplingType.VANILLA:
922
+ indices = torch.arange(0, sum([1, *history_sizes, latent_window_size]))
923
+ (
924
+ indices_prefix,
925
+ indices_latents_history_4x,
926
+ indices_latents_history_2x,
927
+ indices_latents_history_1x,
928
+ indices_latents,
929
+ ) = indices.split([1, *history_sizes, latent_window_size], dim=0)
930
+ indices_clean_latents = torch.cat([indices_prefix, indices_latents_history_1x], dim=0)
931
+
932
+ latents_prefix = image_latents
933
+ latents_history_4x, latents_history_2x, latents_history_1x = history_latents[
934
+ :, :, -sum(history_sizes) :
935
+ ].split(history_sizes, dim=2)
936
+ latents_clean = torch.cat([latents_prefix, latents_history_1x], dim=2)
937
+
938
+ else:
939
+ assert False
940
+
941
+ latents = self.prepare_latents(
942
+ batch_size,
943
+ num_channels_latents,
944
+ height,
945
+ width,
946
+ window_num_frames,
947
+ dtype=torch.float32,
948
+ device=device,
949
+ generator=generator,
950
+ latents=None,
951
+ )
952
+
953
+ sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
954
+ image_seq_len = (
955
+ latents.shape[2] * latents.shape[3] * latents.shape[4] / self.transformer.config.patch_size**2
956
+ )
957
+ exp_max = 7.0
958
+ mu = calculate_shift(
959
+ image_seq_len,
960
+ self.scheduler.config.get("base_image_seq_len", 256),
961
+ self.scheduler.config.get("max_image_seq_len", 4096),
962
+ self.scheduler.config.get("base_shift", 0.5),
963
+ self.scheduler.config.get("max_shift", 1.15),
964
+ )
965
+ mu = min(mu, math.log(exp_max))
966
+ timesteps, num_inference_steps = retrieve_timesteps(
967
+ self.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu
968
+ )
969
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
970
+ self._num_timesteps = len(timesteps)
971
+
972
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
973
+ for i, t in enumerate(timesteps):
974
+ if self.interrupt:
975
+ continue
976
+
977
+ self._current_timestep = t
978
+ timestep = t.expand(latents.shape[0])
979
+
980
+ noise_pred = self.transformer(
981
+ hidden_states=latents.to(transformer_dtype),
982
+ timestep=timestep,
983
+ encoder_hidden_states=prompt_embeds,
984
+ encoder_attention_mask=prompt_attention_mask,
985
+ pooled_projections=pooled_prompt_embeds,
986
+ image_embeds=image_embeds,
987
+ indices_latents=indices_latents,
988
+ guidance=guidance,
989
+ latents_clean=latents_clean.to(transformer_dtype),
990
+ indices_latents_clean=indices_clean_latents,
991
+ latents_history_2x=latents_history_2x.to(transformer_dtype),
992
+ indices_latents_history_2x=indices_latents_history_2x,
993
+ latents_history_4x=latents_history_4x.to(transformer_dtype),
994
+ indices_latents_history_4x=indices_latents_history_4x,
995
+ attention_kwargs=attention_kwargs,
996
+ return_dict=False,
997
+ )[0]
998
+
999
+ if do_true_cfg:
1000
+ neg_noise_pred = self.transformer(
1001
+ hidden_states=latents.to(transformer_dtype),
1002
+ timestep=timestep,
1003
+ encoder_hidden_states=negative_prompt_embeds,
1004
+ encoder_attention_mask=negative_prompt_attention_mask,
1005
+ pooled_projections=negative_pooled_prompt_embeds,
1006
+ image_embeds=image_embeds,
1007
+ indices_latents=indices_latents,
1008
+ guidance=guidance,
1009
+ latents_clean=latents_clean.to(transformer_dtype),
1010
+ indices_latents_clean=indices_clean_latents,
1011
+ latents_history_2x=latents_history_2x.to(transformer_dtype),
1012
+ indices_latents_history_2x=indices_latents_history_2x,
1013
+ latents_history_4x=latents_history_4x.to(transformer_dtype),
1014
+ indices_latents_history_4x=indices_latents_history_4x,
1015
+ attention_kwargs=attention_kwargs,
1016
+ return_dict=False,
1017
+ )[0]
1018
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1019
+
1020
+ # compute the previous noisy sample x_t -> x_t-1
1021
+ latents = self.scheduler.step(noise_pred.float(), t, latents, return_dict=False)[0]
1022
+
1023
+ if callback_on_step_end is not None:
1024
+ callback_kwargs = {}
1025
+ for k in callback_on_step_end_tensor_inputs:
1026
+ callback_kwargs[k] = locals()[k]
1027
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1028
+
1029
+ latents = callback_outputs.pop("latents", latents)
1030
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1031
+
1032
+ # call the callback, if provided
1033
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1034
+ progress_bar.update()
1035
+
1036
+ if XLA_AVAILABLE:
1037
+ xm.mark_step()
1038
+
1039
+ if sampling_type == FramepackSamplingType.INVERTED_ANTI_DRIFTING:
1040
+ if is_last_section:
1041
+ latents = torch.cat([image_latents, latents], dim=2)
1042
+ total_generated_latent_frames += latents.shape[2]
1043
+ history_latents = torch.cat([latents, history_latents], dim=2)
1044
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames]
1045
+ section_latent_frames = (
1046
+ (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
1047
+ )
1048
+ index_slice = (slice(None), slice(None), slice(0, section_latent_frames))
1049
+
1050
+ elif sampling_type == FramepackSamplingType.VANILLA:
1051
+ total_generated_latent_frames += latents.shape[2]
1052
+ history_latents = torch.cat([history_latents, latents], dim=2)
1053
+ real_history_latents = history_latents[:, :, -total_generated_latent_frames:]
1054
+ section_latent_frames = latent_window_size * 2
1055
+ index_slice = (slice(None), slice(None), slice(-section_latent_frames, None))
1056
+
1057
+ else:
1058
+ assert False
1059
+
1060
+ if history_video is None:
1061
+ if not output_type == "latent":
1062
+ current_latents = real_history_latents.to(vae_dtype) / self.vae.config.scaling_factor
1063
+ history_video = self.vae.decode(current_latents, return_dict=False)[0]
1064
+ else:
1065
+ history_video = [real_history_latents]
1066
+ else:
1067
+ if not output_type == "latent":
1068
+ overlapped_frames = (latent_window_size - 1) * self.vae_scale_factor_temporal + 1
1069
+ current_latents = (
1070
+ real_history_latents[index_slice].to(vae_dtype) / self.vae.config.scaling_factor
1071
+ )
1072
+ current_video = self.vae.decode(current_latents, return_dict=False)[0]
1073
+
1074
+ if sampling_type == FramepackSamplingType.INVERTED_ANTI_DRIFTING:
1075
+ history_video = self._soft_append(current_video, history_video, overlapped_frames)
1076
+ elif sampling_type == FramepackSamplingType.VANILLA:
1077
+ history_video = self._soft_append(history_video, current_video, overlapped_frames)
1078
+ else:
1079
+ assert False
1080
+ else:
1081
+ history_video.append(real_history_latents)
1082
+
1083
+ self._current_timestep = None
1084
+
1085
+ if not output_type == "latent":
1086
+ generated_frames = history_video.size(2)
1087
+ generated_frames = (
1088
+ generated_frames - 1
1089
+ ) // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
1090
+ history_video = history_video[:, :, :generated_frames]
1091
+ video = self.video_processor.postprocess_video(history_video, output_type=output_type)
1092
+ else:
1093
+ video = history_video
1094
+
1095
+ # Offload all models
1096
+ self.maybe_free_model_hooks()
1097
+
1098
+ if not return_dict:
1099
+ return (video,)
1100
+
1101
+ return HunyuanVideoFramepackPipelineOutput(frames=video)
1102
+
1103
+ def _soft_append(self, history: torch.Tensor, current: torch.Tensor, overlap: int = 0):
1104
+ if overlap <= 0:
1105
+ return torch.cat([history, current], dim=2)
1106
+
1107
+ assert history.shape[2] >= overlap, f"Current length ({history.shape[2]}) must be >= overlap ({overlap})"
1108
+ assert current.shape[2] >= overlap, f"History length ({current.shape[2]}) must be >= overlap ({overlap})"
1109
+
1110
+ weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
1111
+ blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
1112
+ output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
1113
+
1114
+ return output.to(history)