diffusers 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +48 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/hooks/faster_cache.py +2 -2
- diffusers/hooks/group_offloading.py +128 -29
- diffusers/hooks/hooks.py +2 -2
- diffusers/hooks/layerwise_casting.py +3 -3
- diffusers/hooks/pyramid_attention_broadcast.py +1 -1
- diffusers/image_processor.py +7 -2
- diffusers/loaders/__init__.py +4 -0
- diffusers/loaders/ip_adapter.py +5 -14
- diffusers/loaders/lora_base.py +212 -111
- diffusers/loaders/lora_conversion_utils.py +275 -34
- diffusers/loaders/lora_pipeline.py +1554 -819
- diffusers/loaders/peft.py +52 -109
- diffusers/loaders/single_file.py +2 -2
- diffusers/loaders/single_file_model.py +20 -4
- diffusers/loaders/single_file_utils.py +225 -5
- diffusers/loaders/textual_inversion.py +3 -2
- diffusers/loaders/transformer_flux.py +1 -1
- diffusers/loaders/transformer_sd3.py +2 -2
- diffusers/loaders/unet.py +2 -16
- diffusers/loaders/unet_loader_utils.py +1 -1
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +15 -1
- diffusers/models/activations.py +5 -5
- diffusers/models/adapter.py +2 -3
- diffusers/models/attention.py +4 -4
- diffusers/models/attention_flax.py +10 -10
- diffusers/models/attention_processor.py +14 -10
- diffusers/models/auto_model.py +47 -10
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_dc.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +13 -2
- diffusers/models/autoencoders/vq_model.py +2 -2
- diffusers/models/cache_utils.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flux.py +1 -1
- diffusers/models/controlnet_sd3.py +1 -1
- diffusers/models/controlnet_sparsectrl.py +1 -1
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -3
- diffusers/models/controlnets/controlnet_flax.py +1 -1
- diffusers/models/controlnets/controlnet_flux.py +16 -15
- diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
- diffusers/models/controlnets/controlnet_sana.py +290 -0
- diffusers/models/controlnets/controlnet_sd3.py +1 -1
- diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
- diffusers/models/controlnets/controlnet_union.py +1 -1
- diffusers/models/controlnets/controlnet_xs.py +7 -7
- diffusers/models/controlnets/multicontrolnet.py +4 -5
- diffusers/models/controlnets/multicontrolnet_union.py +5 -6
- diffusers/models/downsampling.py +2 -2
- diffusers/models/embeddings.py +10 -12
- diffusers/models/embeddings_flax.py +2 -2
- diffusers/models/lora.py +3 -3
- diffusers/models/modeling_utils.py +44 -14
- diffusers/models/normalization.py +4 -4
- diffusers/models/resnet.py +2 -2
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
- diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
- diffusers/models/transformers/consisid_transformer_3d.py +1 -1
- diffusers/models/transformers/dit_transformer_2d.py +2 -2
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
- diffusers/models/transformers/latte_transformer_3d.py +4 -5
- diffusers/models/transformers/lumina_nextdit2d.py +2 -2
- diffusers/models/transformers/pixart_transformer_2d.py +3 -3
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/sana_transformer.py +8 -3
- diffusers/models/transformers/stable_audio_transformer.py +5 -9
- diffusers/models/transformers/t5_film_transformer.py +3 -3
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +1 -1
- diffusers/models/transformers/transformer_chroma.py +742 -0
- diffusers/models/transformers/transformer_cogview3plus.py +5 -10
- diffusers/models/transformers/transformer_cogview4.py +317 -25
- diffusers/models/transformers/transformer_cosmos.py +579 -0
- diffusers/models/transformers/transformer_flux.py +9 -11
- diffusers/models/transformers/transformer_hidream_image.py +942 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
- diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
- diffusers/models/transformers/transformer_ltx.py +2 -2
- diffusers/models/transformers/transformer_lumina2.py +1 -1
- diffusers/models/transformers/transformer_mochi.py +1 -1
- diffusers/models/transformers/transformer_omnigen.py +2 -2
- diffusers/models/transformers/transformer_sd3.py +7 -7
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/transformers/transformer_wan.py +24 -8
- diffusers/models/transformers/transformer_wan_vace.py +393 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +1 -1
- diffusers/models/unets/unet_2d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
- diffusers/models/unets/unet_2d_condition.py +2 -2
- diffusers/models/unets/unet_2d_condition_flax.py +2 -2
- diffusers/models/unets/unet_3d_blocks.py +1 -1
- diffusers/models/unets/unet_3d_condition.py +3 -3
- diffusers/models/unets/unet_i2vgen_xl.py +3 -3
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +2 -2
- diffusers/models/unets/unet_stable_cascade.py +1 -1
- diffusers/models/upsampling.py +2 -2
- diffusers/models/vae_flax.py +2 -2
- diffusers/models/vq_model.py +1 -1
- diffusers/pipelines/__init__.py +37 -6
- diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
- diffusers/pipelines/amused/pipeline_amused.py +7 -6
- diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
- diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
- diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
- diffusers/pipelines/auto_pipeline.py +6 -7
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
- diffusers/pipelines/chroma/__init__.py +49 -0
- diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
- diffusers/pipelines/chroma/pipeline_output.py +21 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
- diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
- diffusers/pipelines/consisid/consisid_utils.py +2 -2
- diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
- diffusers/pipelines/cosmos/__init__.py +54 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
- diffusers/pipelines/cosmos/pipeline_output.py +40 -0
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
- diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
- diffusers/pipelines/flux/modeling_flux.py +1 -1
- diffusers/pipelines/flux/pipeline_flux.py +10 -17
- diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/free_init_utils.py +2 -2
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hidream_image/__init__.py +47 -0
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
- diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
- diffusers/pipelines/hunyuan_video/__init__.py +2 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
- diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
- diffusers/pipelines/kolors/text_encoder.py +3 -3
- diffusers/pipelines/kolors/tokenizer.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
- diffusers/pipelines/latte/pipeline_latte.py +12 -12
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
- diffusers/pipelines/ltx/__init__.py +4 -0
- diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
- diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
- diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
- diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
- diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
- diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
- diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
- diffusers/pipelines/onnx_utils.py +15 -2
- diffusers/pipelines/pag/pag_utils.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
- diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
- diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
- diffusers/pipelines/pia/pipeline_pia.py +8 -6
- diffusers/pipelines/pipeline_flax_utils.py +3 -4
- diffusers/pipelines/pipeline_loading_utils.py +89 -13
- diffusers/pipelines/pipeline_utils.py +105 -33
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
- diffusers/pipelines/sana/__init__.py +4 -0
- diffusers/pipelines/sana/pipeline_sana.py +23 -21
- diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
- diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +3 -3
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
- diffusers/pipelines/stable_diffusion/__init__.py +0 -7
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
- diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
- diffusers/pipelines/unclip/text_proj.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
- diffusers/pipelines/visualcloze/__init__.py +52 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
- diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
- diffusers/pipelines/wan/__init__.py +2 -0
- diffusers/pipelines/wan/pipeline_wan.py +13 -10
- diffusers/pipelines/wan/pipeline_wan_i2v.py +38 -18
- diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
- diffusers/quantizers/__init__.py +179 -1
- diffusers/quantizers/base.py +6 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
- diffusers/quantizers/bitsandbytes/utils.py +10 -7
- diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
- diffusers/quantizers/gguf/utils.py +16 -13
- diffusers/quantizers/quantization_config.py +18 -16
- diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
- diffusers/schedulers/__init__.py +3 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -1
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
- diffusers/schedulers/scheduling_ddim.py +8 -8
- diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_ddim_flax.py +6 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
- diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
- diffusers/schedulers/scheduling_ddpm.py +9 -9
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
- diffusers/schedulers/scheduling_deis_multistep.py +8 -8
- diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
- diffusers/schedulers/scheduling_edm_euler.py +20 -11
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
- diffusers/schedulers/scheduling_heun_discrete.py +2 -2
- diffusers/schedulers/scheduling_ipndm.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
- diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
- diffusers/schedulers/scheduling_lcm.py +3 -3
- diffusers/schedulers/scheduling_lms_discrete.py +2 -2
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +4 -4
- diffusers/schedulers/scheduling_pndm_flax.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +9 -9
- diffusers/schedulers/scheduling_sasolver.py +15 -15
- diffusers/schedulers/scheduling_scm.py +1 -1
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
- diffusers/schedulers/scheduling_tcd.py +3 -3
- diffusers/schedulers/scheduling_unclip.py +5 -5
- diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
- diffusers/schedulers/scheduling_utils.py +1 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +13 -5
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +120 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
- diffusers/utils/dynamic_modules_utils.py +21 -3
- diffusers/utils/export_utils.py +1 -1
- diffusers/utils/import_utils.py +81 -18
- diffusers/utils/logging.py +1 -1
- diffusers/utils/outputs.py +2 -1
- diffusers/utils/peft_utils.py +91 -8
- diffusers/utils/state_dict_utils.py +20 -3
- diffusers/utils/testing_utils.py +59 -7
- diffusers/utils/torch_utils.py +25 -5
- diffusers/video_processor.py +2 -2
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/METADATA +70 -55
- diffusers-0.34.0.dist-info/RECORD +639 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/WHEEL +1 -1
- diffusers-0.33.1.dist-info/RECORD +0 -608
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1026 @@
|
|
1
|
+
# Copyright 2025 HiDream-ai Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
import math
|
17
|
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
from transformers import (
|
21
|
+
CLIPTextModelWithProjection,
|
22
|
+
CLIPTokenizer,
|
23
|
+
LlamaForCausalLM,
|
24
|
+
PreTrainedTokenizerFast,
|
25
|
+
T5EncoderModel,
|
26
|
+
T5Tokenizer,
|
27
|
+
)
|
28
|
+
|
29
|
+
from ...image_processor import VaeImageProcessor
|
30
|
+
from ...loaders import HiDreamImageLoraLoaderMixin
|
31
|
+
from ...models import AutoencoderKL, HiDreamImageTransformer2DModel
|
32
|
+
from ...schedulers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler
|
33
|
+
from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
|
34
|
+
from ...utils.torch_utils import randn_tensor
|
35
|
+
from ..pipeline_utils import DiffusionPipeline
|
36
|
+
from .pipeline_output import HiDreamImagePipelineOutput
|
37
|
+
|
38
|
+
|
39
|
+
if is_torch_xla_available():
|
40
|
+
import torch_xla.core.xla_model as xm
|
41
|
+
|
42
|
+
XLA_AVAILABLE = True
|
43
|
+
else:
|
44
|
+
XLA_AVAILABLE = False
|
45
|
+
|
46
|
+
|
47
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48
|
+
|
49
|
+
EXAMPLE_DOC_STRING = """
|
50
|
+
Examples:
|
51
|
+
```py
|
52
|
+
>>> import torch
|
53
|
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
54
|
+
>>> from diffusers import HiDreamImagePipeline
|
55
|
+
|
56
|
+
|
57
|
+
>>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
58
|
+
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
59
|
+
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
60
|
+
... output_hidden_states=True,
|
61
|
+
... output_attentions=True,
|
62
|
+
... torch_dtype=torch.bfloat16,
|
63
|
+
... )
|
64
|
+
|
65
|
+
>>> pipe = HiDreamImagePipeline.from_pretrained(
|
66
|
+
... "HiDream-ai/HiDream-I1-Full",
|
67
|
+
... tokenizer_4=tokenizer_4,
|
68
|
+
... text_encoder_4=text_encoder_4,
|
69
|
+
... torch_dtype=torch.bfloat16,
|
70
|
+
... )
|
71
|
+
>>> pipe.enable_model_cpu_offload()
|
72
|
+
|
73
|
+
>>> image = pipe(
|
74
|
+
... 'A cat holding a sign that says "Hi-Dreams.ai".',
|
75
|
+
... height=1024,
|
76
|
+
... width=1024,
|
77
|
+
... guidance_scale=5.0,
|
78
|
+
... num_inference_steps=50,
|
79
|
+
... generator=torch.Generator("cuda").manual_seed(0),
|
80
|
+
... ).images[0]
|
81
|
+
>>> image.save("output.png")
|
82
|
+
```
|
83
|
+
"""
|
84
|
+
|
85
|
+
|
86
|
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
87
|
+
def calculate_shift(
|
88
|
+
image_seq_len,
|
89
|
+
base_seq_len: int = 256,
|
90
|
+
max_seq_len: int = 4096,
|
91
|
+
base_shift: float = 0.5,
|
92
|
+
max_shift: float = 1.15,
|
93
|
+
):
|
94
|
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
95
|
+
b = base_shift - m * base_seq_len
|
96
|
+
mu = image_seq_len * m + b
|
97
|
+
return mu
|
98
|
+
|
99
|
+
|
100
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
101
|
+
def retrieve_timesteps(
|
102
|
+
scheduler,
|
103
|
+
num_inference_steps: Optional[int] = None,
|
104
|
+
device: Optional[Union[str, torch.device]] = None,
|
105
|
+
timesteps: Optional[List[int]] = None,
|
106
|
+
sigmas: Optional[List[float]] = None,
|
107
|
+
**kwargs,
|
108
|
+
):
|
109
|
+
r"""
|
110
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
111
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
112
|
+
|
113
|
+
Args:
|
114
|
+
scheduler (`SchedulerMixin`):
|
115
|
+
The scheduler to get timesteps from.
|
116
|
+
num_inference_steps (`int`):
|
117
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
118
|
+
must be `None`.
|
119
|
+
device (`str` or `torch.device`, *optional*):
|
120
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
121
|
+
timesteps (`List[int]`, *optional*):
|
122
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
123
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
124
|
+
sigmas (`List[float]`, *optional*):
|
125
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
126
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
127
|
+
|
128
|
+
Returns:
|
129
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
130
|
+
second element is the number of inference steps.
|
131
|
+
"""
|
132
|
+
if timesteps is not None and sigmas is not None:
|
133
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
134
|
+
if timesteps is not None:
|
135
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
136
|
+
if not accepts_timesteps:
|
137
|
+
raise ValueError(
|
138
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
139
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
140
|
+
)
|
141
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
142
|
+
timesteps = scheduler.timesteps
|
143
|
+
num_inference_steps = len(timesteps)
|
144
|
+
elif sigmas is not None:
|
145
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
146
|
+
if not accept_sigmas:
|
147
|
+
raise ValueError(
|
148
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
149
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
150
|
+
)
|
151
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
152
|
+
timesteps = scheduler.timesteps
|
153
|
+
num_inference_steps = len(timesteps)
|
154
|
+
else:
|
155
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
156
|
+
timesteps = scheduler.timesteps
|
157
|
+
return timesteps, num_inference_steps
|
158
|
+
|
159
|
+
|
160
|
+
class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
|
161
|
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->transformer->vae"
|
162
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds_t5", "prompt_embeds_llama3", "pooled_prompt_embeds"]
|
163
|
+
|
164
|
+
def __init__(
|
165
|
+
self,
|
166
|
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
167
|
+
vae: AutoencoderKL,
|
168
|
+
text_encoder: CLIPTextModelWithProjection,
|
169
|
+
tokenizer: CLIPTokenizer,
|
170
|
+
text_encoder_2: CLIPTextModelWithProjection,
|
171
|
+
tokenizer_2: CLIPTokenizer,
|
172
|
+
text_encoder_3: T5EncoderModel,
|
173
|
+
tokenizer_3: T5Tokenizer,
|
174
|
+
text_encoder_4: LlamaForCausalLM,
|
175
|
+
tokenizer_4: PreTrainedTokenizerFast,
|
176
|
+
transformer: HiDreamImageTransformer2DModel,
|
177
|
+
):
|
178
|
+
super().__init__()
|
179
|
+
|
180
|
+
self.register_modules(
|
181
|
+
vae=vae,
|
182
|
+
text_encoder=text_encoder,
|
183
|
+
text_encoder_2=text_encoder_2,
|
184
|
+
text_encoder_3=text_encoder_3,
|
185
|
+
text_encoder_4=text_encoder_4,
|
186
|
+
tokenizer=tokenizer,
|
187
|
+
tokenizer_2=tokenizer_2,
|
188
|
+
tokenizer_3=tokenizer_3,
|
189
|
+
tokenizer_4=tokenizer_4,
|
190
|
+
scheduler=scheduler,
|
191
|
+
transformer=transformer,
|
192
|
+
)
|
193
|
+
self.vae_scale_factor = (
|
194
|
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
195
|
+
)
|
196
|
+
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
197
|
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
198
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
199
|
+
self.default_sample_size = 128
|
200
|
+
if getattr(self, "tokenizer_4", None) is not None:
|
201
|
+
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
202
|
+
|
203
|
+
def _get_t5_prompt_embeds(
|
204
|
+
self,
|
205
|
+
prompt: Union[str, List[str]] = None,
|
206
|
+
max_sequence_length: int = 128,
|
207
|
+
device: Optional[torch.device] = None,
|
208
|
+
dtype: Optional[torch.dtype] = None,
|
209
|
+
):
|
210
|
+
device = device or self._execution_device
|
211
|
+
dtype = dtype or self.text_encoder_3.dtype
|
212
|
+
|
213
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
214
|
+
|
215
|
+
text_inputs = self.tokenizer_3(
|
216
|
+
prompt,
|
217
|
+
padding="max_length",
|
218
|
+
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
|
219
|
+
truncation=True,
|
220
|
+
add_special_tokens=True,
|
221
|
+
return_tensors="pt",
|
222
|
+
)
|
223
|
+
text_input_ids = text_inputs.input_ids
|
224
|
+
attention_mask = text_inputs.attention_mask
|
225
|
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
226
|
+
|
227
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
228
|
+
removed_text = self.tokenizer_3.batch_decode(
|
229
|
+
untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1]
|
230
|
+
)
|
231
|
+
logger.warning(
|
232
|
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
233
|
+
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
234
|
+
)
|
235
|
+
|
236
|
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
|
237
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
238
|
+
return prompt_embeds
|
239
|
+
|
240
|
+
def _get_clip_prompt_embeds(
|
241
|
+
self,
|
242
|
+
tokenizer,
|
243
|
+
text_encoder,
|
244
|
+
prompt: Union[str, List[str]],
|
245
|
+
max_sequence_length: int = 128,
|
246
|
+
device: Optional[torch.device] = None,
|
247
|
+
dtype: Optional[torch.dtype] = None,
|
248
|
+
):
|
249
|
+
device = device or self._execution_device
|
250
|
+
dtype = dtype or text_encoder.dtype
|
251
|
+
|
252
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
253
|
+
|
254
|
+
text_inputs = tokenizer(
|
255
|
+
prompt,
|
256
|
+
padding="max_length",
|
257
|
+
max_length=min(max_sequence_length, 218),
|
258
|
+
truncation=True,
|
259
|
+
return_tensors="pt",
|
260
|
+
)
|
261
|
+
|
262
|
+
text_input_ids = text_inputs.input_ids
|
263
|
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
264
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
265
|
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
266
|
+
logger.warning(
|
267
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
268
|
+
f" {218} tokens: {removed_text}"
|
269
|
+
)
|
270
|
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
271
|
+
|
272
|
+
# Use pooled output of CLIPTextModel
|
273
|
+
prompt_embeds = prompt_embeds[0]
|
274
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
275
|
+
return prompt_embeds
|
276
|
+
|
277
|
+
def _get_llama3_prompt_embeds(
|
278
|
+
self,
|
279
|
+
prompt: Union[str, List[str]] = None,
|
280
|
+
max_sequence_length: int = 128,
|
281
|
+
device: Optional[torch.device] = None,
|
282
|
+
dtype: Optional[torch.dtype] = None,
|
283
|
+
):
|
284
|
+
device = device or self._execution_device
|
285
|
+
dtype = dtype or self.text_encoder_4.dtype
|
286
|
+
|
287
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
288
|
+
|
289
|
+
text_inputs = self.tokenizer_4(
|
290
|
+
prompt,
|
291
|
+
padding="max_length",
|
292
|
+
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
|
293
|
+
truncation=True,
|
294
|
+
add_special_tokens=True,
|
295
|
+
return_tensors="pt",
|
296
|
+
)
|
297
|
+
text_input_ids = text_inputs.input_ids
|
298
|
+
attention_mask = text_inputs.attention_mask
|
299
|
+
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
|
300
|
+
|
301
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
302
|
+
removed_text = self.tokenizer_4.batch_decode(
|
303
|
+
untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1]
|
304
|
+
)
|
305
|
+
logger.warning(
|
306
|
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
307
|
+
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
308
|
+
)
|
309
|
+
|
310
|
+
outputs = self.text_encoder_4(
|
311
|
+
text_input_ids.to(device),
|
312
|
+
attention_mask=attention_mask.to(device),
|
313
|
+
output_hidden_states=True,
|
314
|
+
output_attentions=True,
|
315
|
+
)
|
316
|
+
|
317
|
+
prompt_embeds = outputs.hidden_states[1:]
|
318
|
+
prompt_embeds = torch.stack(prompt_embeds, dim=0)
|
319
|
+
return prompt_embeds
|
320
|
+
|
321
|
+
def encode_prompt(
|
322
|
+
self,
|
323
|
+
prompt: Optional[Union[str, List[str]]] = None,
|
324
|
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
325
|
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
326
|
+
prompt_4: Optional[Union[str, List[str]]] = None,
|
327
|
+
device: Optional[torch.device] = None,
|
328
|
+
dtype: Optional[torch.dtype] = None,
|
329
|
+
num_images_per_prompt: int = 1,
|
330
|
+
do_classifier_free_guidance: bool = True,
|
331
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
332
|
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
333
|
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
334
|
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
335
|
+
prompt_embeds_t5: Optional[List[torch.FloatTensor]] = None,
|
336
|
+
prompt_embeds_llama3: Optional[List[torch.FloatTensor]] = None,
|
337
|
+
negative_prompt_embeds_t5: Optional[List[torch.FloatTensor]] = None,
|
338
|
+
negative_prompt_embeds_llama3: Optional[List[torch.FloatTensor]] = None,
|
339
|
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
340
|
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
341
|
+
max_sequence_length: int = 128,
|
342
|
+
lora_scale: Optional[float] = None,
|
343
|
+
):
|
344
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
345
|
+
if prompt is not None:
|
346
|
+
batch_size = len(prompt)
|
347
|
+
else:
|
348
|
+
batch_size = pooled_prompt_embeds.shape[0]
|
349
|
+
|
350
|
+
device = device or self._execution_device
|
351
|
+
|
352
|
+
if pooled_prompt_embeds is None:
|
353
|
+
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
354
|
+
self.tokenizer, self.text_encoder, prompt, max_sequence_length, device, dtype
|
355
|
+
)
|
356
|
+
|
357
|
+
if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
|
358
|
+
negative_prompt = negative_prompt or ""
|
359
|
+
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
360
|
+
|
361
|
+
if len(negative_prompt) > 1 and len(negative_prompt) != batch_size:
|
362
|
+
raise ValueError(f"negative_prompt must be of length 1 or {batch_size}")
|
363
|
+
|
364
|
+
negative_pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
365
|
+
self.tokenizer, self.text_encoder, negative_prompt, max_sequence_length, device, dtype
|
366
|
+
)
|
367
|
+
|
368
|
+
if negative_pooled_prompt_embeds_1.shape[0] == 1 and batch_size > 1:
|
369
|
+
negative_pooled_prompt_embeds_1 = negative_pooled_prompt_embeds_1.repeat(batch_size, 1)
|
370
|
+
|
371
|
+
if pooled_prompt_embeds is None:
|
372
|
+
prompt_2 = prompt_2 or prompt
|
373
|
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
374
|
+
|
375
|
+
if len(prompt_2) > 1 and len(prompt_2) != batch_size:
|
376
|
+
raise ValueError(f"prompt_2 must be of length 1 or {batch_size}")
|
377
|
+
|
378
|
+
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
379
|
+
self.tokenizer_2, self.text_encoder_2, prompt_2, max_sequence_length, device, dtype
|
380
|
+
)
|
381
|
+
|
382
|
+
if pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
|
383
|
+
pooled_prompt_embeds_2 = pooled_prompt_embeds_2.repeat(batch_size, 1)
|
384
|
+
|
385
|
+
if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
|
386
|
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
387
|
+
negative_prompt_2 = [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
388
|
+
|
389
|
+
if len(negative_prompt_2) > 1 and len(negative_prompt_2) != batch_size:
|
390
|
+
raise ValueError(f"negative_prompt_2 must be of length 1 or {batch_size}")
|
391
|
+
|
392
|
+
negative_pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
393
|
+
self.tokenizer_2, self.text_encoder_2, negative_prompt_2, max_sequence_length, device, dtype
|
394
|
+
)
|
395
|
+
|
396
|
+
if negative_pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
|
397
|
+
negative_pooled_prompt_embeds_2 = negative_pooled_prompt_embeds_2.repeat(batch_size, 1)
|
398
|
+
|
399
|
+
if pooled_prompt_embeds is None:
|
400
|
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
|
401
|
+
|
402
|
+
if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
|
403
|
+
negative_pooled_prompt_embeds = torch.cat(
|
404
|
+
[negative_pooled_prompt_embeds_1, negative_pooled_prompt_embeds_2], dim=-1
|
405
|
+
)
|
406
|
+
|
407
|
+
if prompt_embeds_t5 is None:
|
408
|
+
prompt_3 = prompt_3 or prompt
|
409
|
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
410
|
+
|
411
|
+
if len(prompt_3) > 1 and len(prompt_3) != batch_size:
|
412
|
+
raise ValueError(f"prompt_3 must be of length 1 or {batch_size}")
|
413
|
+
|
414
|
+
prompt_embeds_t5 = self._get_t5_prompt_embeds(prompt_3, max_sequence_length, device, dtype)
|
415
|
+
|
416
|
+
if prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
|
417
|
+
prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)
|
418
|
+
|
419
|
+
if do_classifier_free_guidance and negative_prompt_embeds_t5 is None:
|
420
|
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
421
|
+
negative_prompt_3 = [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
422
|
+
|
423
|
+
if len(negative_prompt_3) > 1 and len(negative_prompt_3) != batch_size:
|
424
|
+
raise ValueError(f"negative_prompt_3 must be of length 1 or {batch_size}")
|
425
|
+
|
426
|
+
negative_prompt_embeds_t5 = self._get_t5_prompt_embeds(
|
427
|
+
negative_prompt_3, max_sequence_length, device, dtype
|
428
|
+
)
|
429
|
+
|
430
|
+
if negative_prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
|
431
|
+
negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)
|
432
|
+
|
433
|
+
if prompt_embeds_llama3 is None:
|
434
|
+
prompt_4 = prompt_4 or prompt
|
435
|
+
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
|
436
|
+
|
437
|
+
if len(prompt_4) > 1 and len(prompt_4) != batch_size:
|
438
|
+
raise ValueError(f"prompt_4 must be of length 1 or {batch_size}")
|
439
|
+
|
440
|
+
prompt_embeds_llama3 = self._get_llama3_prompt_embeds(prompt_4, max_sequence_length, device, dtype)
|
441
|
+
|
442
|
+
if prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
|
443
|
+
prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
|
444
|
+
|
445
|
+
if do_classifier_free_guidance and negative_prompt_embeds_llama3 is None:
|
446
|
+
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
447
|
+
negative_prompt_4 = [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
|
448
|
+
|
449
|
+
if len(negative_prompt_4) > 1 and len(negative_prompt_4) != batch_size:
|
450
|
+
raise ValueError(f"negative_prompt_4 must be of length 1 or {batch_size}")
|
451
|
+
|
452
|
+
negative_prompt_embeds_llama3 = self._get_llama3_prompt_embeds(
|
453
|
+
negative_prompt_4, max_sequence_length, device, dtype
|
454
|
+
)
|
455
|
+
|
456
|
+
if negative_prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
|
457
|
+
negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
|
458
|
+
|
459
|
+
# duplicate pooled_prompt_embeds for each generation per prompt
|
460
|
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt)
|
461
|
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
462
|
+
|
463
|
+
# duplicate t5_prompt_embeds for batch_size and num_images_per_prompt
|
464
|
+
bs_embed, seq_len, _ = prompt_embeds_t5.shape
|
465
|
+
if bs_embed == 1 and batch_size > 1:
|
466
|
+
prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)
|
467
|
+
elif bs_embed > 1 and bs_embed != batch_size:
|
468
|
+
raise ValueError(f"cannot duplicate prompt_embeds_t5 of batch size {bs_embed}")
|
469
|
+
prompt_embeds_t5 = prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
|
470
|
+
prompt_embeds_t5 = prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)
|
471
|
+
|
472
|
+
# duplicate llama3_prompt_embeds for batch_size and num_images_per_prompt
|
473
|
+
_, bs_embed, seq_len, dim = prompt_embeds_llama3.shape
|
474
|
+
if bs_embed == 1 and batch_size > 1:
|
475
|
+
prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
|
476
|
+
elif bs_embed > 1 and bs_embed != batch_size:
|
477
|
+
raise ValueError(f"cannot duplicate prompt_embeds_llama3 of batch size {bs_embed}")
|
478
|
+
prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
|
479
|
+
prompt_embeds_llama3 = prompt_embeds_llama3.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
|
480
|
+
|
481
|
+
if do_classifier_free_guidance:
|
482
|
+
# duplicate negative_pooled_prompt_embeds for batch_size and num_images_per_prompt
|
483
|
+
bs_embed, seq_len = negative_pooled_prompt_embeds.shape
|
484
|
+
if bs_embed == 1 and batch_size > 1:
|
485
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1)
|
486
|
+
elif bs_embed > 1 and bs_embed != batch_size:
|
487
|
+
raise ValueError(f"cannot duplicate negative_pooled_prompt_embeds of batch size {bs_embed}")
|
488
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt)
|
489
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
490
|
+
|
491
|
+
# duplicate negative_t5_prompt_embeds for batch_size and num_images_per_prompt
|
492
|
+
bs_embed, seq_len, _ = negative_prompt_embeds_t5.shape
|
493
|
+
if bs_embed == 1 and batch_size > 1:
|
494
|
+
negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)
|
495
|
+
elif bs_embed > 1 and bs_embed != batch_size:
|
496
|
+
raise ValueError(f"cannot duplicate negative_prompt_embeds_t5 of batch size {bs_embed}")
|
497
|
+
negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
|
498
|
+
negative_prompt_embeds_t5 = negative_prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)
|
499
|
+
|
500
|
+
# duplicate negative_prompt_embeds_llama3 for batch_size and num_images_per_prompt
|
501
|
+
_, bs_embed, seq_len, dim = negative_prompt_embeds_llama3.shape
|
502
|
+
if bs_embed == 1 and batch_size > 1:
|
503
|
+
negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
|
504
|
+
elif bs_embed > 1 and bs_embed != batch_size:
|
505
|
+
raise ValueError(f"cannot duplicate negative_prompt_embeds_llama3 of batch size {bs_embed}")
|
506
|
+
negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
|
507
|
+
negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.view(
|
508
|
+
-1, batch_size * num_images_per_prompt, seq_len, dim
|
509
|
+
)
|
510
|
+
|
511
|
+
return (
|
512
|
+
prompt_embeds_t5,
|
513
|
+
negative_prompt_embeds_t5,
|
514
|
+
prompt_embeds_llama3,
|
515
|
+
negative_prompt_embeds_llama3,
|
516
|
+
pooled_prompt_embeds,
|
517
|
+
negative_pooled_prompt_embeds,
|
518
|
+
)
|
519
|
+
|
520
|
+
def enable_vae_slicing(self):
|
521
|
+
r"""
|
522
|
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
523
|
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
524
|
+
"""
|
525
|
+
self.vae.enable_slicing()
|
526
|
+
|
527
|
+
def disable_vae_slicing(self):
|
528
|
+
r"""
|
529
|
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
530
|
+
computing decoding in one step.
|
531
|
+
"""
|
532
|
+
self.vae.disable_slicing()
|
533
|
+
|
534
|
+
def enable_vae_tiling(self):
|
535
|
+
r"""
|
536
|
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
537
|
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
538
|
+
processing larger images.
|
539
|
+
"""
|
540
|
+
self.vae.enable_tiling()
|
541
|
+
|
542
|
+
def disable_vae_tiling(self):
|
543
|
+
r"""
|
544
|
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
545
|
+
computing decoding in one step.
|
546
|
+
"""
|
547
|
+
self.vae.disable_tiling()
|
548
|
+
|
549
|
+
def check_inputs(
|
550
|
+
self,
|
551
|
+
prompt,
|
552
|
+
prompt_2,
|
553
|
+
prompt_3,
|
554
|
+
prompt_4,
|
555
|
+
negative_prompt=None,
|
556
|
+
negative_prompt_2=None,
|
557
|
+
negative_prompt_3=None,
|
558
|
+
negative_prompt_4=None,
|
559
|
+
prompt_embeds_t5=None,
|
560
|
+
prompt_embeds_llama3=None,
|
561
|
+
negative_prompt_embeds_t5=None,
|
562
|
+
negative_prompt_embeds_llama3=None,
|
563
|
+
pooled_prompt_embeds=None,
|
564
|
+
negative_pooled_prompt_embeds=None,
|
565
|
+
callback_on_step_end_tensor_inputs=None,
|
566
|
+
):
|
567
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
568
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
569
|
+
):
|
570
|
+
raise ValueError(
|
571
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
572
|
+
)
|
573
|
+
|
574
|
+
if prompt is not None and pooled_prompt_embeds is not None:
|
575
|
+
raise ValueError(
|
576
|
+
f"Cannot forward both `prompt`: {prompt} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
|
577
|
+
" only forward one of the two."
|
578
|
+
)
|
579
|
+
elif prompt_2 is not None and pooled_prompt_embeds is not None:
|
580
|
+
raise ValueError(
|
581
|
+
f"Cannot forward both `prompt_2`: {prompt_2} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
|
582
|
+
" only forward one of the two."
|
583
|
+
)
|
584
|
+
elif prompt_3 is not None and prompt_embeds_t5 is not None:
|
585
|
+
raise ValueError(
|
586
|
+
f"Cannot forward both `prompt_3`: {prompt_3} and `prompt_embeds_t5`: {prompt_embeds_t5}. Please make sure to"
|
587
|
+
" only forward one of the two."
|
588
|
+
)
|
589
|
+
elif prompt_4 is not None and prompt_embeds_llama3 is not None:
|
590
|
+
raise ValueError(
|
591
|
+
f"Cannot forward both `prompt_4`: {prompt_4} and `prompt_embeds_llama3`: {prompt_embeds_llama3}. Please make sure to"
|
592
|
+
" only forward one of the two."
|
593
|
+
)
|
594
|
+
elif prompt is None and pooled_prompt_embeds is None:
|
595
|
+
raise ValueError(
|
596
|
+
"Provide either `prompt` or `pooled_prompt_embeds`. Cannot leave both `prompt` and `pooled_prompt_embeds` undefined."
|
597
|
+
)
|
598
|
+
elif prompt is None and prompt_embeds_t5 is None:
|
599
|
+
raise ValueError(
|
600
|
+
"Provide either `prompt` or `prompt_embeds_t5`. Cannot leave both `prompt` and `prompt_embeds_t5` undefined."
|
601
|
+
)
|
602
|
+
elif prompt is None and prompt_embeds_llama3 is None:
|
603
|
+
raise ValueError(
|
604
|
+
"Provide either `prompt` or `prompt_embeds_llama3`. Cannot leave both `prompt` and `prompt_embeds_llama3` undefined."
|
605
|
+
)
|
606
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
607
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
608
|
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
609
|
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
610
|
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
611
|
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
612
|
+
elif prompt_4 is not None and (not isinstance(prompt_4, str) and not isinstance(prompt_4, list)):
|
613
|
+
raise ValueError(f"`prompt_4` has to be of type `str` or `list` but is {type(prompt_4)}")
|
614
|
+
|
615
|
+
if negative_prompt is not None and negative_pooled_prompt_embeds is not None:
|
616
|
+
raise ValueError(
|
617
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_pooled_prompt_embeds`:"
|
618
|
+
f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
|
619
|
+
)
|
620
|
+
elif negative_prompt_2 is not None and negative_pooled_prompt_embeds is not None:
|
621
|
+
raise ValueError(
|
622
|
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_pooled_prompt_embeds`:"
|
623
|
+
f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
|
624
|
+
)
|
625
|
+
elif negative_prompt_3 is not None and negative_prompt_embeds_t5 is not None:
|
626
|
+
raise ValueError(
|
627
|
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds_t5`:"
|
628
|
+
f" {negative_prompt_embeds_t5}. Please make sure to only forward one of the two."
|
629
|
+
)
|
630
|
+
elif negative_prompt_4 is not None and negative_prompt_embeds_llama3 is not None:
|
631
|
+
raise ValueError(
|
632
|
+
f"Cannot forward both `negative_prompt_4`: {negative_prompt_4} and `negative_prompt_embeds_llama3`:"
|
633
|
+
f" {negative_prompt_embeds_llama3}. Please make sure to only forward one of the two."
|
634
|
+
)
|
635
|
+
|
636
|
+
if pooled_prompt_embeds is not None and negative_pooled_prompt_embeds is not None:
|
637
|
+
if pooled_prompt_embeds.shape != negative_pooled_prompt_embeds.shape:
|
638
|
+
raise ValueError(
|
639
|
+
"`pooled_prompt_embeds` and `negative_pooled_prompt_embeds` must have the same shape when passed directly, but"
|
640
|
+
f" got: `pooled_prompt_embeds` {pooled_prompt_embeds.shape} != `negative_pooled_prompt_embeds`"
|
641
|
+
f" {negative_pooled_prompt_embeds.shape}."
|
642
|
+
)
|
643
|
+
if prompt_embeds_t5 is not None and negative_prompt_embeds_t5 is not None:
|
644
|
+
if prompt_embeds_t5.shape != negative_prompt_embeds_t5.shape:
|
645
|
+
raise ValueError(
|
646
|
+
"`prompt_embeds_t5` and `negative_prompt_embeds_t5` must have the same shape when passed directly, but"
|
647
|
+
f" got: `prompt_embeds_t5` {prompt_embeds_t5.shape} != `negative_prompt_embeds_t5`"
|
648
|
+
f" {negative_prompt_embeds_t5.shape}."
|
649
|
+
)
|
650
|
+
if prompt_embeds_llama3 is not None and negative_prompt_embeds_llama3 is not None:
|
651
|
+
if prompt_embeds_llama3.shape != negative_prompt_embeds_llama3.shape:
|
652
|
+
raise ValueError(
|
653
|
+
"`prompt_embeds_llama3` and `negative_prompt_embeds_llama3` must have the same shape when passed directly, but"
|
654
|
+
f" got: `prompt_embeds_llama3` {prompt_embeds_llama3.shape} != `negative_prompt_embeds_llama3`"
|
655
|
+
f" {negative_prompt_embeds_llama3.shape}."
|
656
|
+
)
|
657
|
+
|
658
|
+
def prepare_latents(
|
659
|
+
self,
|
660
|
+
batch_size,
|
661
|
+
num_channels_latents,
|
662
|
+
height,
|
663
|
+
width,
|
664
|
+
dtype,
|
665
|
+
device,
|
666
|
+
generator,
|
667
|
+
latents=None,
|
668
|
+
):
|
669
|
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
670
|
+
# latent height and width to be divisible by 2.
|
671
|
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
672
|
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
673
|
+
|
674
|
+
shape = (batch_size, num_channels_latents, height, width)
|
675
|
+
|
676
|
+
if latents is None:
|
677
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
678
|
+
else:
|
679
|
+
if latents.shape != shape:
|
680
|
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
681
|
+
latents = latents.to(device)
|
682
|
+
return latents
|
683
|
+
|
684
|
+
@property
|
685
|
+
def guidance_scale(self):
|
686
|
+
return self._guidance_scale
|
687
|
+
|
688
|
+
@property
|
689
|
+
def do_classifier_free_guidance(self):
|
690
|
+
return self._guidance_scale > 1
|
691
|
+
|
692
|
+
@property
|
693
|
+
def attention_kwargs(self):
|
694
|
+
return self._attention_kwargs
|
695
|
+
|
696
|
+
@property
|
697
|
+
def num_timesteps(self):
|
698
|
+
return self._num_timesteps
|
699
|
+
|
700
|
+
@property
|
701
|
+
def interrupt(self):
|
702
|
+
return self._interrupt
|
703
|
+
|
704
|
+
@torch.no_grad()
|
705
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
706
|
+
def __call__(
|
707
|
+
self,
|
708
|
+
prompt: Union[str, List[str]] = None,
|
709
|
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
710
|
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
711
|
+
prompt_4: Optional[Union[str, List[str]]] = None,
|
712
|
+
height: Optional[int] = None,
|
713
|
+
width: Optional[int] = None,
|
714
|
+
num_inference_steps: int = 50,
|
715
|
+
sigmas: Optional[List[float]] = None,
|
716
|
+
guidance_scale: float = 5.0,
|
717
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
718
|
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
719
|
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
720
|
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
721
|
+
num_images_per_prompt: Optional[int] = 1,
|
722
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
723
|
+
latents: Optional[torch.FloatTensor] = None,
|
724
|
+
prompt_embeds_t5: Optional[torch.FloatTensor] = None,
|
725
|
+
prompt_embeds_llama3: Optional[torch.FloatTensor] = None,
|
726
|
+
negative_prompt_embeds_t5: Optional[torch.FloatTensor] = None,
|
727
|
+
negative_prompt_embeds_llama3: Optional[torch.FloatTensor] = None,
|
728
|
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
729
|
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
730
|
+
output_type: Optional[str] = "pil",
|
731
|
+
return_dict: bool = True,
|
732
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
733
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
734
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
735
|
+
max_sequence_length: int = 128,
|
736
|
+
**kwargs,
|
737
|
+
):
|
738
|
+
r"""
|
739
|
+
Function invoked when calling the pipeline for generation.
|
740
|
+
|
741
|
+
Args:
|
742
|
+
prompt (`str` or `List[str]`, *optional*):
|
743
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
744
|
+
instead.
|
745
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
746
|
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
747
|
+
will be used instead.
|
748
|
+
prompt_3 (`str` or `List[str]`, *optional*):
|
749
|
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
750
|
+
will be used instead.
|
751
|
+
prompt_4 (`str` or `List[str]`, *optional*):
|
752
|
+
The prompt or prompts to be sent to `tokenizer_4` and `text_encoder_4`. If not defined, `prompt` is
|
753
|
+
will be used instead.
|
754
|
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
755
|
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
756
|
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
757
|
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
758
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
759
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
760
|
+
expense of slower inference.
|
761
|
+
sigmas (`List[float]`, *optional*):
|
762
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
763
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
764
|
+
will be used.
|
765
|
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
766
|
+
Guidance scale as defined in [Classifier-Free Diffusion
|
767
|
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
768
|
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
769
|
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
770
|
+
the text `prompt`, usually at the expense of lower image quality.
|
771
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
772
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
773
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
774
|
+
not greater than `1`).
|
775
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
776
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
777
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
778
|
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
779
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
780
|
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
781
|
+
negative_prompt_4 (`str` or `List[str]`, *optional*):
|
782
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_4` and
|
783
|
+
`text_encoder_4`. If not defined, `negative_prompt` is used in all the text-encoders.
|
784
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
785
|
+
The number of images to generate per prompt.
|
786
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
787
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
788
|
+
to make generation deterministic.
|
789
|
+
latents (`torch.FloatTensor`, *optional*):
|
790
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
791
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
792
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
793
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
794
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
795
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
796
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
797
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
798
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
799
|
+
argument.
|
800
|
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
801
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
802
|
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
803
|
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
804
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
805
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
806
|
+
input argument.
|
807
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
808
|
+
The output format of the generate image. Choose between
|
809
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
810
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
811
|
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
812
|
+
attention_kwargs (`dict`, *optional*):
|
813
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
814
|
+
`self.processor` in
|
815
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
816
|
+
callback_on_step_end (`Callable`, *optional*):
|
817
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
818
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
819
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
820
|
+
`callback_on_step_end_tensor_inputs`.
|
821
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
822
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
823
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
824
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
825
|
+
max_sequence_length (`int` defaults to 128): Maximum sequence length to use with the `prompt`.
|
826
|
+
|
827
|
+
Examples:
|
828
|
+
|
829
|
+
Returns:
|
830
|
+
[`~pipelines.hidream_image.HiDreamImagePipelineOutput`] or `tuple`:
|
831
|
+
[`~pipelines.hidream_image.HiDreamImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
832
|
+
returning a tuple, the first element is a list with the generated. images.
|
833
|
+
"""
|
834
|
+
|
835
|
+
prompt_embeds = kwargs.get("prompt_embeds", None)
|
836
|
+
negative_prompt_embeds = kwargs.get("negative_prompt_embeds", None)
|
837
|
+
|
838
|
+
if prompt_embeds is not None:
|
839
|
+
deprecation_message = "The `prompt_embeds` argument is deprecated. Please use `prompt_embeds_t5` and `prompt_embeds_llama3` instead."
|
840
|
+
deprecate("prompt_embeds", "0.35.0", deprecation_message)
|
841
|
+
prompt_embeds_t5 = prompt_embeds[0]
|
842
|
+
prompt_embeds_llama3 = prompt_embeds[1]
|
843
|
+
|
844
|
+
if negative_prompt_embeds is not None:
|
845
|
+
deprecation_message = "The `negative_prompt_embeds` argument is deprecated. Please use `negative_prompt_embeds_t5` and `negative_prompt_embeds_llama3` instead."
|
846
|
+
deprecate("negative_prompt_embeds", "0.35.0", deprecation_message)
|
847
|
+
negative_prompt_embeds_t5 = negative_prompt_embeds[0]
|
848
|
+
negative_prompt_embeds_llama3 = negative_prompt_embeds[1]
|
849
|
+
|
850
|
+
height = height or self.default_sample_size * self.vae_scale_factor
|
851
|
+
width = width or self.default_sample_size * self.vae_scale_factor
|
852
|
+
|
853
|
+
division = self.vae_scale_factor * 2
|
854
|
+
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
855
|
+
scale = S_max / (width * height)
|
856
|
+
scale = math.sqrt(scale)
|
857
|
+
width, height = int(width * scale // division * division), int(height * scale // division * division)
|
858
|
+
|
859
|
+
# 1. Check inputs. Raise error if not correct
|
860
|
+
self.check_inputs(
|
861
|
+
prompt,
|
862
|
+
prompt_2,
|
863
|
+
prompt_3,
|
864
|
+
prompt_4,
|
865
|
+
negative_prompt=negative_prompt,
|
866
|
+
negative_prompt_2=negative_prompt_2,
|
867
|
+
negative_prompt_3=negative_prompt_3,
|
868
|
+
negative_prompt_4=negative_prompt_4,
|
869
|
+
prompt_embeds_t5=prompt_embeds_t5,
|
870
|
+
prompt_embeds_llama3=prompt_embeds_llama3,
|
871
|
+
negative_prompt_embeds_t5=negative_prompt_embeds_t5,
|
872
|
+
negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
|
873
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
874
|
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
875
|
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
876
|
+
)
|
877
|
+
|
878
|
+
self._guidance_scale = guidance_scale
|
879
|
+
self._attention_kwargs = attention_kwargs
|
880
|
+
self._interrupt = False
|
881
|
+
|
882
|
+
# 2. Define call parameters
|
883
|
+
if prompt is not None and isinstance(prompt, str):
|
884
|
+
batch_size = 1
|
885
|
+
elif prompt is not None and isinstance(prompt, list):
|
886
|
+
batch_size = len(prompt)
|
887
|
+
elif pooled_prompt_embeds is not None:
|
888
|
+
batch_size = pooled_prompt_embeds.shape[0]
|
889
|
+
|
890
|
+
device = self._execution_device
|
891
|
+
|
892
|
+
# 3. Encode prompt
|
893
|
+
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
894
|
+
(
|
895
|
+
prompt_embeds_t5,
|
896
|
+
negative_prompt_embeds_t5,
|
897
|
+
prompt_embeds_llama3,
|
898
|
+
negative_prompt_embeds_llama3,
|
899
|
+
pooled_prompt_embeds,
|
900
|
+
negative_pooled_prompt_embeds,
|
901
|
+
) = self.encode_prompt(
|
902
|
+
prompt=prompt,
|
903
|
+
prompt_2=prompt_2,
|
904
|
+
prompt_3=prompt_3,
|
905
|
+
prompt_4=prompt_4,
|
906
|
+
negative_prompt=negative_prompt,
|
907
|
+
negative_prompt_2=negative_prompt_2,
|
908
|
+
negative_prompt_3=negative_prompt_3,
|
909
|
+
negative_prompt_4=negative_prompt_4,
|
910
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
911
|
+
prompt_embeds_t5=prompt_embeds_t5,
|
912
|
+
prompt_embeds_llama3=prompt_embeds_llama3,
|
913
|
+
negative_prompt_embeds_t5=negative_prompt_embeds_t5,
|
914
|
+
negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
|
915
|
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
916
|
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
917
|
+
device=device,
|
918
|
+
num_images_per_prompt=num_images_per_prompt,
|
919
|
+
max_sequence_length=max_sequence_length,
|
920
|
+
lora_scale=lora_scale,
|
921
|
+
)
|
922
|
+
|
923
|
+
if self.do_classifier_free_guidance:
|
924
|
+
prompt_embeds_t5 = torch.cat([negative_prompt_embeds_t5, prompt_embeds_t5], dim=0)
|
925
|
+
prompt_embeds_llama3 = torch.cat([negative_prompt_embeds_llama3, prompt_embeds_llama3], dim=1)
|
926
|
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
927
|
+
|
928
|
+
# 4. Prepare latent variables
|
929
|
+
num_channels_latents = self.transformer.config.in_channels
|
930
|
+
latents = self.prepare_latents(
|
931
|
+
batch_size * num_images_per_prompt,
|
932
|
+
num_channels_latents,
|
933
|
+
height,
|
934
|
+
width,
|
935
|
+
pooled_prompt_embeds.dtype,
|
936
|
+
device,
|
937
|
+
generator,
|
938
|
+
latents,
|
939
|
+
)
|
940
|
+
|
941
|
+
# 5. Prepare timesteps
|
942
|
+
mu = calculate_shift(self.transformer.max_seq)
|
943
|
+
scheduler_kwargs = {"mu": mu}
|
944
|
+
if isinstance(self.scheduler, UniPCMultistepScheduler):
|
945
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device) # , shift=math.exp(mu))
|
946
|
+
timesteps = self.scheduler.timesteps
|
947
|
+
else:
|
948
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
949
|
+
self.scheduler,
|
950
|
+
num_inference_steps,
|
951
|
+
device,
|
952
|
+
sigmas=sigmas,
|
953
|
+
**scheduler_kwargs,
|
954
|
+
)
|
955
|
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
956
|
+
self._num_timesteps = len(timesteps)
|
957
|
+
|
958
|
+
# 6. Denoising loop
|
959
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
960
|
+
for i, t in enumerate(timesteps):
|
961
|
+
if self.interrupt:
|
962
|
+
continue
|
963
|
+
|
964
|
+
# expand the latents if we are doing classifier free guidance
|
965
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
966
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
967
|
+
timestep = t.expand(latent_model_input.shape[0])
|
968
|
+
|
969
|
+
noise_pred = self.transformer(
|
970
|
+
hidden_states=latent_model_input,
|
971
|
+
timesteps=timestep,
|
972
|
+
encoder_hidden_states_t5=prompt_embeds_t5,
|
973
|
+
encoder_hidden_states_llama3=prompt_embeds_llama3,
|
974
|
+
pooled_embeds=pooled_prompt_embeds,
|
975
|
+
return_dict=False,
|
976
|
+
)[0]
|
977
|
+
noise_pred = -noise_pred
|
978
|
+
|
979
|
+
# perform guidance
|
980
|
+
if self.do_classifier_free_guidance:
|
981
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
982
|
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
983
|
+
|
984
|
+
# compute the previous noisy sample x_t -> x_t-1
|
985
|
+
latents_dtype = latents.dtype
|
986
|
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
987
|
+
|
988
|
+
if latents.dtype != latents_dtype:
|
989
|
+
if torch.backends.mps.is_available():
|
990
|
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
991
|
+
latents = latents.to(latents_dtype)
|
992
|
+
|
993
|
+
if callback_on_step_end is not None:
|
994
|
+
callback_kwargs = {}
|
995
|
+
for k in callback_on_step_end_tensor_inputs:
|
996
|
+
callback_kwargs[k] = locals()[k]
|
997
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
998
|
+
|
999
|
+
latents = callback_outputs.pop("latents", latents)
|
1000
|
+
prompt_embeds_t5 = callback_outputs.pop("prompt_embeds_t5", prompt_embeds_t5)
|
1001
|
+
prompt_embeds_llama3 = callback_outputs.pop("prompt_embeds_llama3", prompt_embeds_llama3)
|
1002
|
+
pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds)
|
1003
|
+
|
1004
|
+
# call the callback, if provided
|
1005
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1006
|
+
progress_bar.update()
|
1007
|
+
|
1008
|
+
if XLA_AVAILABLE:
|
1009
|
+
xm.mark_step()
|
1010
|
+
|
1011
|
+
if output_type == "latent":
|
1012
|
+
image = latents
|
1013
|
+
|
1014
|
+
else:
|
1015
|
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1016
|
+
|
1017
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1018
|
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1019
|
+
|
1020
|
+
# Offload all models
|
1021
|
+
self.maybe_free_model_hooks()
|
1022
|
+
|
1023
|
+
if not return_dict:
|
1024
|
+
return (image,)
|
1025
|
+
|
1026
|
+
return HiDreamImagePipelineOutput(images=image)
|