diffusers 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +48 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/hooks/faster_cache.py +2 -2
- diffusers/hooks/group_offloading.py +128 -29
- diffusers/hooks/hooks.py +2 -2
- diffusers/hooks/layerwise_casting.py +3 -3
- diffusers/hooks/pyramid_attention_broadcast.py +1 -1
- diffusers/image_processor.py +7 -2
- diffusers/loaders/__init__.py +4 -0
- diffusers/loaders/ip_adapter.py +5 -14
- diffusers/loaders/lora_base.py +212 -111
- diffusers/loaders/lora_conversion_utils.py +275 -34
- diffusers/loaders/lora_pipeline.py +1554 -819
- diffusers/loaders/peft.py +52 -109
- diffusers/loaders/single_file.py +2 -2
- diffusers/loaders/single_file_model.py +20 -4
- diffusers/loaders/single_file_utils.py +225 -5
- diffusers/loaders/textual_inversion.py +3 -2
- diffusers/loaders/transformer_flux.py +1 -1
- diffusers/loaders/transformer_sd3.py +2 -2
- diffusers/loaders/unet.py +2 -16
- diffusers/loaders/unet_loader_utils.py +1 -1
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +15 -1
- diffusers/models/activations.py +5 -5
- diffusers/models/adapter.py +2 -3
- diffusers/models/attention.py +4 -4
- diffusers/models/attention_flax.py +10 -10
- diffusers/models/attention_processor.py +14 -10
- diffusers/models/auto_model.py +47 -10
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_dc.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +13 -2
- diffusers/models/autoencoders/vq_model.py +2 -2
- diffusers/models/cache_utils.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flux.py +1 -1
- diffusers/models/controlnet_sd3.py +1 -1
- diffusers/models/controlnet_sparsectrl.py +1 -1
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -3
- diffusers/models/controlnets/controlnet_flax.py +1 -1
- diffusers/models/controlnets/controlnet_flux.py +16 -15
- diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
- diffusers/models/controlnets/controlnet_sana.py +290 -0
- diffusers/models/controlnets/controlnet_sd3.py +1 -1
- diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
- diffusers/models/controlnets/controlnet_union.py +1 -1
- diffusers/models/controlnets/controlnet_xs.py +7 -7
- diffusers/models/controlnets/multicontrolnet.py +4 -5
- diffusers/models/controlnets/multicontrolnet_union.py +5 -6
- diffusers/models/downsampling.py +2 -2
- diffusers/models/embeddings.py +10 -12
- diffusers/models/embeddings_flax.py +2 -2
- diffusers/models/lora.py +3 -3
- diffusers/models/modeling_utils.py +44 -14
- diffusers/models/normalization.py +4 -4
- diffusers/models/resnet.py +2 -2
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
- diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
- diffusers/models/transformers/consisid_transformer_3d.py +1 -1
- diffusers/models/transformers/dit_transformer_2d.py +2 -2
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
- diffusers/models/transformers/latte_transformer_3d.py +4 -5
- diffusers/models/transformers/lumina_nextdit2d.py +2 -2
- diffusers/models/transformers/pixart_transformer_2d.py +3 -3
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/sana_transformer.py +8 -3
- diffusers/models/transformers/stable_audio_transformer.py +5 -9
- diffusers/models/transformers/t5_film_transformer.py +3 -3
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +1 -1
- diffusers/models/transformers/transformer_chroma.py +742 -0
- diffusers/models/transformers/transformer_cogview3plus.py +5 -10
- diffusers/models/transformers/transformer_cogview4.py +317 -25
- diffusers/models/transformers/transformer_cosmos.py +579 -0
- diffusers/models/transformers/transformer_flux.py +9 -11
- diffusers/models/transformers/transformer_hidream_image.py +942 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
- diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
- diffusers/models/transformers/transformer_ltx.py +2 -2
- diffusers/models/transformers/transformer_lumina2.py +1 -1
- diffusers/models/transformers/transformer_mochi.py +1 -1
- diffusers/models/transformers/transformer_omnigen.py +2 -2
- diffusers/models/transformers/transformer_sd3.py +7 -7
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/transformers/transformer_wan.py +24 -8
- diffusers/models/transformers/transformer_wan_vace.py +393 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +1 -1
- diffusers/models/unets/unet_2d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
- diffusers/models/unets/unet_2d_condition.py +2 -2
- diffusers/models/unets/unet_2d_condition_flax.py +2 -2
- diffusers/models/unets/unet_3d_blocks.py +1 -1
- diffusers/models/unets/unet_3d_condition.py +3 -3
- diffusers/models/unets/unet_i2vgen_xl.py +3 -3
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +2 -2
- diffusers/models/unets/unet_stable_cascade.py +1 -1
- diffusers/models/upsampling.py +2 -2
- diffusers/models/vae_flax.py +2 -2
- diffusers/models/vq_model.py +1 -1
- diffusers/pipelines/__init__.py +37 -6
- diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
- diffusers/pipelines/amused/pipeline_amused.py +7 -6
- diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
- diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
- diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
- diffusers/pipelines/auto_pipeline.py +6 -7
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
- diffusers/pipelines/chroma/__init__.py +49 -0
- diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
- diffusers/pipelines/chroma/pipeline_output.py +21 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
- diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
- diffusers/pipelines/consisid/consisid_utils.py +2 -2
- diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
- diffusers/pipelines/cosmos/__init__.py +54 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
- diffusers/pipelines/cosmos/pipeline_output.py +40 -0
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
- diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
- diffusers/pipelines/flux/modeling_flux.py +1 -1
- diffusers/pipelines/flux/pipeline_flux.py +10 -17
- diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/free_init_utils.py +2 -2
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hidream_image/__init__.py +47 -0
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
- diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
- diffusers/pipelines/hunyuan_video/__init__.py +2 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
- diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
- diffusers/pipelines/kolors/text_encoder.py +3 -3
- diffusers/pipelines/kolors/tokenizer.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
- diffusers/pipelines/latte/pipeline_latte.py +12 -12
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
- diffusers/pipelines/ltx/__init__.py +4 -0
- diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
- diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
- diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
- diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
- diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
- diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
- diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
- diffusers/pipelines/onnx_utils.py +15 -2
- diffusers/pipelines/pag/pag_utils.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
- diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
- diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
- diffusers/pipelines/pia/pipeline_pia.py +8 -6
- diffusers/pipelines/pipeline_flax_utils.py +3 -4
- diffusers/pipelines/pipeline_loading_utils.py +89 -13
- diffusers/pipelines/pipeline_utils.py +105 -33
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
- diffusers/pipelines/sana/__init__.py +4 -0
- diffusers/pipelines/sana/pipeline_sana.py +23 -21
- diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
- diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +3 -3
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
- diffusers/pipelines/stable_diffusion/__init__.py +0 -7
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
- diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
- diffusers/pipelines/unclip/text_proj.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
- diffusers/pipelines/visualcloze/__init__.py +52 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
- diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
- diffusers/pipelines/wan/__init__.py +2 -0
- diffusers/pipelines/wan/pipeline_wan.py +13 -10
- diffusers/pipelines/wan/pipeline_wan_i2v.py +38 -18
- diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
- diffusers/quantizers/__init__.py +179 -1
- diffusers/quantizers/base.py +6 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
- diffusers/quantizers/bitsandbytes/utils.py +10 -7
- diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
- diffusers/quantizers/gguf/utils.py +16 -13
- diffusers/quantizers/quantization_config.py +18 -16
- diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
- diffusers/schedulers/__init__.py +3 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -1
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
- diffusers/schedulers/scheduling_ddim.py +8 -8
- diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_ddim_flax.py +6 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
- diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
- diffusers/schedulers/scheduling_ddpm.py +9 -9
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
- diffusers/schedulers/scheduling_deis_multistep.py +8 -8
- diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
- diffusers/schedulers/scheduling_edm_euler.py +20 -11
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
- diffusers/schedulers/scheduling_heun_discrete.py +2 -2
- diffusers/schedulers/scheduling_ipndm.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
- diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
- diffusers/schedulers/scheduling_lcm.py +3 -3
- diffusers/schedulers/scheduling_lms_discrete.py +2 -2
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +4 -4
- diffusers/schedulers/scheduling_pndm_flax.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +9 -9
- diffusers/schedulers/scheduling_sasolver.py +15 -15
- diffusers/schedulers/scheduling_scm.py +1 -1
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
- diffusers/schedulers/scheduling_tcd.py +3 -3
- diffusers/schedulers/scheduling_unclip.py +5 -5
- diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
- diffusers/schedulers/scheduling_utils.py +1 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +13 -5
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +120 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
- diffusers/utils/dynamic_modules_utils.py +21 -3
- diffusers/utils/export_utils.py +1 -1
- diffusers/utils/import_utils.py +81 -18
- diffusers/utils/logging.py +1 -1
- diffusers/utils/outputs.py +2 -1
- diffusers/utils/peft_utils.py +91 -8
- diffusers/utils/state_dict_utils.py +20 -3
- diffusers/utils/testing_utils.py +59 -7
- diffusers/utils/torch_utils.py +25 -5
- diffusers/video_processor.py +2 -2
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/METADATA +70 -55
- diffusers-0.34.0.dist-info/RECORD +639 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/WHEEL +1 -1
- diffusers-0.33.1.dist-info/RECORD +0 -608
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,826 @@
|
|
1
|
+
# Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from typing import Callable, Dict, List, Optional, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
from transformers import T5EncoderModel, T5TokenizerFast
|
21
|
+
|
22
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
23
|
+
from ...image_processor import PipelineImageInput
|
24
|
+
from ...models import AutoencoderKLCosmos, CosmosTransformer3DModel
|
25
|
+
from ...schedulers import EDMEulerScheduler
|
26
|
+
from ...utils import is_cosmos_guardrail_available, is_torch_xla_available, logging, replace_example_docstring
|
27
|
+
from ...utils.torch_utils import randn_tensor
|
28
|
+
from ...video_processor import VideoProcessor
|
29
|
+
from ..pipeline_utils import DiffusionPipeline
|
30
|
+
from .pipeline_output import CosmosPipelineOutput
|
31
|
+
|
32
|
+
|
33
|
+
if is_cosmos_guardrail_available():
|
34
|
+
from cosmos_guardrail import CosmosSafetyChecker
|
35
|
+
else:
|
36
|
+
|
37
|
+
class CosmosSafetyChecker:
|
38
|
+
def __init__(self, *args, **kwargs):
|
39
|
+
raise ImportError(
|
40
|
+
"`cosmos_guardrail` is not installed. Please install it to use the safety checker for Cosmos: `pip install cosmos_guardrail`."
|
41
|
+
)
|
42
|
+
|
43
|
+
|
44
|
+
if is_torch_xla_available():
|
45
|
+
import torch_xla.core.xla_model as xm
|
46
|
+
|
47
|
+
XLA_AVAILABLE = True
|
48
|
+
else:
|
49
|
+
XLA_AVAILABLE = False
|
50
|
+
|
51
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52
|
+
|
53
|
+
|
54
|
+
EXAMPLE_DOC_STRING = """
|
55
|
+
Examples:
|
56
|
+
Image conditioning:
|
57
|
+
|
58
|
+
```python
|
59
|
+
>>> import torch
|
60
|
+
>>> from diffusers import CosmosVideoToWorldPipeline
|
61
|
+
>>> from diffusers.utils import export_to_video, load_image
|
62
|
+
|
63
|
+
>>> model_id = "nvidia/Cosmos-1.0-Diffusion-7B-Video2World"
|
64
|
+
>>> pipe = CosmosVideoToWorldPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
65
|
+
>>> pipe.to("cuda")
|
66
|
+
|
67
|
+
>>> prompt = "The video depicts a long, straight highway stretching into the distance, flanked by metal guardrails. The road is divided into multiple lanes, with a few vehicles visible in the far distance. The surrounding landscape features dry, grassy fields on one side and rolling hills on the other. The sky is mostly clear with a few scattered clouds, suggesting a bright, sunny day."
|
68
|
+
>>> image = load_image(
|
69
|
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input.jpg"
|
70
|
+
... )
|
71
|
+
|
72
|
+
>>> video = pipe(image=image, prompt=prompt).frames[0]
|
73
|
+
>>> export_to_video(video, "output.mp4", fps=30)
|
74
|
+
```
|
75
|
+
|
76
|
+
Video conditioning:
|
77
|
+
|
78
|
+
```python
|
79
|
+
>>> import torch
|
80
|
+
>>> from diffusers import CosmosVideoToWorldPipeline
|
81
|
+
>>> from diffusers.utils import export_to_video, load_video
|
82
|
+
|
83
|
+
>>> model_id = "nvidia/Cosmos-1.0-Diffusion-7B-Video2World"
|
84
|
+
>>> pipe = CosmosVideoToWorldPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
85
|
+
>>> pipe.transformer = torch.compile(pipe.transformer)
|
86
|
+
>>> pipe.to("cuda")
|
87
|
+
|
88
|
+
>>> prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
|
89
|
+
>>> video = load_video(
|
90
|
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
|
91
|
+
... )[
|
92
|
+
... :21
|
93
|
+
... ] # This example uses only the first 21 frames
|
94
|
+
|
95
|
+
>>> video = pipe(video=video, prompt=prompt).frames[0]
|
96
|
+
>>> export_to_video(video, "output.mp4", fps=30)
|
97
|
+
```
|
98
|
+
"""
|
99
|
+
|
100
|
+
|
101
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
102
|
+
def retrieve_timesteps(
|
103
|
+
scheduler,
|
104
|
+
num_inference_steps: Optional[int] = None,
|
105
|
+
device: Optional[Union[str, torch.device]] = None,
|
106
|
+
timesteps: Optional[List[int]] = None,
|
107
|
+
sigmas: Optional[List[float]] = None,
|
108
|
+
**kwargs,
|
109
|
+
):
|
110
|
+
r"""
|
111
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
112
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
113
|
+
|
114
|
+
Args:
|
115
|
+
scheduler (`SchedulerMixin`):
|
116
|
+
The scheduler to get timesteps from.
|
117
|
+
num_inference_steps (`int`):
|
118
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
119
|
+
must be `None`.
|
120
|
+
device (`str` or `torch.device`, *optional*):
|
121
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
122
|
+
timesteps (`List[int]`, *optional*):
|
123
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
124
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
125
|
+
sigmas (`List[float]`, *optional*):
|
126
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
127
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
128
|
+
|
129
|
+
Returns:
|
130
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
131
|
+
second element is the number of inference steps.
|
132
|
+
"""
|
133
|
+
if timesteps is not None and sigmas is not None:
|
134
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
135
|
+
if timesteps is not None:
|
136
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
137
|
+
if not accepts_timesteps:
|
138
|
+
raise ValueError(
|
139
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
140
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
141
|
+
)
|
142
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
143
|
+
timesteps = scheduler.timesteps
|
144
|
+
num_inference_steps = len(timesteps)
|
145
|
+
elif sigmas is not None:
|
146
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
147
|
+
if not accept_sigmas:
|
148
|
+
raise ValueError(
|
149
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
150
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
151
|
+
)
|
152
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
153
|
+
timesteps = scheduler.timesteps
|
154
|
+
num_inference_steps = len(timesteps)
|
155
|
+
else:
|
156
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
157
|
+
timesteps = scheduler.timesteps
|
158
|
+
return timesteps, num_inference_steps
|
159
|
+
|
160
|
+
|
161
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
162
|
+
def retrieve_latents(
|
163
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
164
|
+
):
|
165
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
166
|
+
return encoder_output.latent_dist.sample(generator)
|
167
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
168
|
+
return encoder_output.latent_dist.mode()
|
169
|
+
elif hasattr(encoder_output, "latents"):
|
170
|
+
return encoder_output.latents
|
171
|
+
else:
|
172
|
+
raise AttributeError("Could not access latents of provided encoder_output")
|
173
|
+
|
174
|
+
|
175
|
+
class CosmosVideoToWorldPipeline(DiffusionPipeline):
|
176
|
+
r"""
|
177
|
+
Pipeline for image-to-world and video-to-world generation using [Cosmos
|
178
|
+
Predict-1](https://github.com/nvidia-cosmos/cosmos-predict1).
|
179
|
+
|
180
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
181
|
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
182
|
+
|
183
|
+
Args:
|
184
|
+
text_encoder ([`T5EncoderModel`]):
|
185
|
+
Frozen text-encoder. Cosmos uses
|
186
|
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
187
|
+
[t5-11b](https://huggingface.co/google-t5/t5-11b) variant.
|
188
|
+
tokenizer (`T5TokenizerFast`):
|
189
|
+
Tokenizer of class
|
190
|
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
191
|
+
transformer ([`CosmosTransformer3DModel`]):
|
192
|
+
Conditional Transformer to denoise the encoded image latents.
|
193
|
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
194
|
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
195
|
+
vae ([`AutoencoderKLCosmos`]):
|
196
|
+
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
197
|
+
"""
|
198
|
+
|
199
|
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
200
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
201
|
+
# We mark safety_checker as optional here to get around some test failures, but it is not really optional
|
202
|
+
_optional_components = ["safety_checker"]
|
203
|
+
|
204
|
+
def __init__(
|
205
|
+
self,
|
206
|
+
text_encoder: T5EncoderModel,
|
207
|
+
tokenizer: T5TokenizerFast,
|
208
|
+
transformer: CosmosTransformer3DModel,
|
209
|
+
vae: AutoencoderKLCosmos,
|
210
|
+
scheduler: EDMEulerScheduler,
|
211
|
+
safety_checker: CosmosSafetyChecker = None,
|
212
|
+
):
|
213
|
+
super().__init__()
|
214
|
+
|
215
|
+
if safety_checker is None:
|
216
|
+
safety_checker = CosmosSafetyChecker()
|
217
|
+
|
218
|
+
self.register_modules(
|
219
|
+
vae=vae,
|
220
|
+
text_encoder=text_encoder,
|
221
|
+
tokenizer=tokenizer,
|
222
|
+
transformer=transformer,
|
223
|
+
scheduler=scheduler,
|
224
|
+
safety_checker=safety_checker,
|
225
|
+
)
|
226
|
+
|
227
|
+
self.vae_scale_factor_temporal = (
|
228
|
+
self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 8
|
229
|
+
)
|
230
|
+
self.vae_scale_factor_spatial = self.vae.config.spatial_compression_ratio if getattr(self, "vae", None) else 8
|
231
|
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
232
|
+
|
233
|
+
# Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline._get_t5_prompt_embeds
|
234
|
+
def _get_t5_prompt_embeds(
|
235
|
+
self,
|
236
|
+
prompt: Union[str, List[str]] = None,
|
237
|
+
max_sequence_length: int = 512,
|
238
|
+
device: Optional[torch.device] = None,
|
239
|
+
dtype: Optional[torch.dtype] = None,
|
240
|
+
):
|
241
|
+
device = device or self._execution_device
|
242
|
+
dtype = dtype or self.text_encoder.dtype
|
243
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
244
|
+
|
245
|
+
text_inputs = self.tokenizer(
|
246
|
+
prompt,
|
247
|
+
padding="max_length",
|
248
|
+
max_length=max_sequence_length,
|
249
|
+
truncation=True,
|
250
|
+
return_tensors="pt",
|
251
|
+
return_length=True,
|
252
|
+
return_offsets_mapping=False,
|
253
|
+
)
|
254
|
+
text_input_ids = text_inputs.input_ids
|
255
|
+
prompt_attention_mask = text_inputs.attention_mask.bool().to(device)
|
256
|
+
|
257
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
258
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
259
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
260
|
+
logger.warning(
|
261
|
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
262
|
+
f" {max_sequence_length} tokens: {removed_text}"
|
263
|
+
)
|
264
|
+
|
265
|
+
prompt_embeds = self.text_encoder(
|
266
|
+
text_input_ids.to(device), attention_mask=prompt_attention_mask
|
267
|
+
).last_hidden_state
|
268
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
269
|
+
|
270
|
+
lengths = prompt_attention_mask.sum(dim=1).cpu()
|
271
|
+
for i, length in enumerate(lengths):
|
272
|
+
prompt_embeds[i, length:] = 0
|
273
|
+
|
274
|
+
return prompt_embeds
|
275
|
+
|
276
|
+
# Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline.encode_prompt
|
277
|
+
def encode_prompt(
|
278
|
+
self,
|
279
|
+
prompt: Union[str, List[str]],
|
280
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
281
|
+
do_classifier_free_guidance: bool = True,
|
282
|
+
num_videos_per_prompt: int = 1,
|
283
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
284
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
285
|
+
max_sequence_length: int = 512,
|
286
|
+
device: Optional[torch.device] = None,
|
287
|
+
dtype: Optional[torch.dtype] = None,
|
288
|
+
):
|
289
|
+
r"""
|
290
|
+
Encodes the prompt into text encoder hidden states.
|
291
|
+
|
292
|
+
Args:
|
293
|
+
prompt (`str` or `List[str]`, *optional*):
|
294
|
+
prompt to be encoded
|
295
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
296
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
297
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
298
|
+
less than `1`).
|
299
|
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
300
|
+
Whether to use classifier free guidance or not.
|
301
|
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
302
|
+
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
303
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
304
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
305
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
306
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
307
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
308
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
309
|
+
argument.
|
310
|
+
device: (`torch.device`, *optional*):
|
311
|
+
torch device
|
312
|
+
dtype: (`torch.dtype`, *optional*):
|
313
|
+
torch dtype
|
314
|
+
"""
|
315
|
+
device = device or self._execution_device
|
316
|
+
|
317
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
318
|
+
if prompt is not None:
|
319
|
+
batch_size = len(prompt)
|
320
|
+
else:
|
321
|
+
batch_size = prompt_embeds.shape[0]
|
322
|
+
|
323
|
+
if prompt_embeds is None:
|
324
|
+
prompt_embeds = self._get_t5_prompt_embeds(
|
325
|
+
prompt=prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
|
326
|
+
)
|
327
|
+
|
328
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
329
|
+
_, seq_len, _ = prompt_embeds.shape
|
330
|
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
331
|
+
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
332
|
+
|
333
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
334
|
+
negative_prompt = negative_prompt or ""
|
335
|
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
336
|
+
|
337
|
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
338
|
+
raise TypeError(
|
339
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
340
|
+
f" {type(prompt)}."
|
341
|
+
)
|
342
|
+
elif batch_size != len(negative_prompt):
|
343
|
+
raise ValueError(
|
344
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
345
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
346
|
+
" the batch size of `prompt`."
|
347
|
+
)
|
348
|
+
|
349
|
+
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
350
|
+
prompt=negative_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
|
351
|
+
)
|
352
|
+
|
353
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
354
|
+
_, seq_len, _ = negative_prompt_embeds.shape
|
355
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
356
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
357
|
+
|
358
|
+
return prompt_embeds, negative_prompt_embeds
|
359
|
+
|
360
|
+
def prepare_latents(
|
361
|
+
self,
|
362
|
+
video: torch.Tensor,
|
363
|
+
batch_size: int,
|
364
|
+
num_channels_latents: 16,
|
365
|
+
height: int = 704,
|
366
|
+
width: int = 1280,
|
367
|
+
num_frames: int = 121,
|
368
|
+
do_classifier_free_guidance: bool = True,
|
369
|
+
input_frames_guidance: bool = False,
|
370
|
+
dtype: Optional[torch.dtype] = None,
|
371
|
+
device: Optional[torch.device] = None,
|
372
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
373
|
+
latents: Optional[torch.Tensor] = None,
|
374
|
+
) -> torch.Tensor:
|
375
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
376
|
+
raise ValueError(
|
377
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
378
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
379
|
+
)
|
380
|
+
|
381
|
+
num_cond_frames = video.size(2)
|
382
|
+
if num_cond_frames >= num_frames:
|
383
|
+
# Take the last `num_frames` frames for conditioning
|
384
|
+
num_cond_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
385
|
+
video = video[:, :, -num_frames:]
|
386
|
+
else:
|
387
|
+
num_cond_latent_frames = (num_cond_frames - 1) // self.vae_scale_factor_temporal + 1
|
388
|
+
num_padding_frames = num_frames - num_cond_frames
|
389
|
+
padding = video.new_zeros(video.size(0), video.size(1), num_padding_frames, video.size(3), video.size(4))
|
390
|
+
video = torch.cat([video, padding], dim=2)
|
391
|
+
|
392
|
+
if isinstance(generator, list):
|
393
|
+
init_latents = [
|
394
|
+
retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator=generator[i])
|
395
|
+
for i in range(batch_size)
|
396
|
+
]
|
397
|
+
else:
|
398
|
+
init_latents = [retrieve_latents(self.vae.encode(vid.unsqueeze(0)), generator) for vid in video]
|
399
|
+
|
400
|
+
init_latents = torch.cat(init_latents, dim=0).to(dtype)
|
401
|
+
|
402
|
+
if self.vae.config.latents_mean is not None:
|
403
|
+
latents_mean, latents_std = self.vae.config.latents_mean, self.vae.config.latents_std
|
404
|
+
latents_mean = (
|
405
|
+
torch.tensor(latents_mean)
|
406
|
+
.view(1, self.vae.config.latent_channels, -1, 1, 1)[:, :, : init_latents.size(2)]
|
407
|
+
.to(init_latents)
|
408
|
+
)
|
409
|
+
latents_std = (
|
410
|
+
torch.tensor(latents_std)
|
411
|
+
.view(1, self.vae.config.latent_channels, -1, 1, 1)[:, :, : init_latents.size(2)]
|
412
|
+
.to(init_latents)
|
413
|
+
)
|
414
|
+
init_latents = (init_latents - latents_mean) * self.scheduler.config.sigma_data / latents_std
|
415
|
+
else:
|
416
|
+
init_latents = init_latents * self.scheduler.config.sigma_data
|
417
|
+
|
418
|
+
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
419
|
+
latent_height = height // self.vae_scale_factor_spatial
|
420
|
+
latent_width = width // self.vae_scale_factor_spatial
|
421
|
+
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
|
422
|
+
|
423
|
+
if latents is None:
|
424
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
425
|
+
else:
|
426
|
+
latents = latents.to(device=device, dtype=dtype)
|
427
|
+
|
428
|
+
latents = latents * self.scheduler.config.sigma_max
|
429
|
+
|
430
|
+
padding_shape = (batch_size, 1, num_latent_frames, latent_height, latent_width)
|
431
|
+
ones_padding = latents.new_ones(padding_shape)
|
432
|
+
zeros_padding = latents.new_zeros(padding_shape)
|
433
|
+
|
434
|
+
cond_indicator = latents.new_zeros(1, 1, latents.size(2), 1, 1)
|
435
|
+
cond_indicator[:, :, :num_cond_latent_frames] = 1.0
|
436
|
+
cond_mask = cond_indicator * ones_padding + (1 - cond_indicator) * zeros_padding
|
437
|
+
|
438
|
+
uncond_indicator = uncond_mask = None
|
439
|
+
if do_classifier_free_guidance:
|
440
|
+
uncond_indicator = latents.new_zeros(1, 1, latents.size(2), 1, 1)
|
441
|
+
uncond_indicator[:, :, :num_cond_latent_frames] = 1.0
|
442
|
+
uncond_mask = zeros_padding
|
443
|
+
if not input_frames_guidance:
|
444
|
+
uncond_mask = uncond_indicator * ones_padding + (1 - uncond_indicator) * zeros_padding
|
445
|
+
|
446
|
+
return latents, init_latents, cond_indicator, uncond_indicator, cond_mask, uncond_mask
|
447
|
+
|
448
|
+
def check_inputs(
|
449
|
+
self,
|
450
|
+
prompt,
|
451
|
+
height,
|
452
|
+
width,
|
453
|
+
prompt_embeds=None,
|
454
|
+
callback_on_step_end_tensor_inputs=None,
|
455
|
+
image=None,
|
456
|
+
video=None,
|
457
|
+
):
|
458
|
+
if height % 16 != 0 or width % 16 != 0:
|
459
|
+
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
460
|
+
|
461
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
462
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
463
|
+
):
|
464
|
+
raise ValueError(
|
465
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
466
|
+
)
|
467
|
+
|
468
|
+
if prompt is not None and prompt_embeds is not None:
|
469
|
+
raise ValueError(
|
470
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
471
|
+
" only forward one of the two."
|
472
|
+
)
|
473
|
+
elif prompt is None and prompt_embeds is None:
|
474
|
+
raise ValueError(
|
475
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
476
|
+
)
|
477
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
478
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
479
|
+
|
480
|
+
if image is None and video is None:
|
481
|
+
raise ValueError("Either `image` or `video` has to be provided.")
|
482
|
+
if image is not None and video is not None:
|
483
|
+
raise ValueError("Only one of `image` or `video` has to be provided.")
|
484
|
+
|
485
|
+
@property
|
486
|
+
def guidance_scale(self):
|
487
|
+
return self._guidance_scale
|
488
|
+
|
489
|
+
@property
|
490
|
+
def do_classifier_free_guidance(self):
|
491
|
+
return self._guidance_scale > 1.0
|
492
|
+
|
493
|
+
@property
|
494
|
+
def num_timesteps(self):
|
495
|
+
return self._num_timesteps
|
496
|
+
|
497
|
+
@property
|
498
|
+
def current_timestep(self):
|
499
|
+
return self._current_timestep
|
500
|
+
|
501
|
+
@property
|
502
|
+
def interrupt(self):
|
503
|
+
return self._interrupt
|
504
|
+
|
505
|
+
@torch.no_grad()
|
506
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
507
|
+
def __call__(
|
508
|
+
self,
|
509
|
+
image: PipelineImageInput = None,
|
510
|
+
video: List[PipelineImageInput] = None,
|
511
|
+
prompt: Union[str, List[str]] = None,
|
512
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
513
|
+
height: int = 704,
|
514
|
+
width: int = 1280,
|
515
|
+
num_frames: int = 121,
|
516
|
+
num_inference_steps: int = 36,
|
517
|
+
guidance_scale: float = 7.0,
|
518
|
+
input_frames_guidance: bool = False,
|
519
|
+
augment_sigma: float = 0.001,
|
520
|
+
fps: int = 30,
|
521
|
+
num_videos_per_prompt: Optional[int] = 1,
|
522
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
523
|
+
latents: Optional[torch.Tensor] = None,
|
524
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
525
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
526
|
+
output_type: Optional[str] = "pil",
|
527
|
+
return_dict: bool = True,
|
528
|
+
callback_on_step_end: Optional[
|
529
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
530
|
+
] = None,
|
531
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
532
|
+
max_sequence_length: int = 512,
|
533
|
+
):
|
534
|
+
r"""
|
535
|
+
The call function to the pipeline for generation.
|
536
|
+
|
537
|
+
Args:
|
538
|
+
prompt (`str` or `List[str]`, *optional*):
|
539
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
540
|
+
instead.
|
541
|
+
height (`int`, defaults to `720`):
|
542
|
+
The height in pixels of the generated image.
|
543
|
+
width (`int`, defaults to `1280`):
|
544
|
+
The width in pixels of the generated image.
|
545
|
+
num_frames (`int`, defaults to `121`):
|
546
|
+
The number of frames in the generated video.
|
547
|
+
num_inference_steps (`int`, defaults to `36`):
|
548
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
549
|
+
expense of slower inference.
|
550
|
+
guidance_scale (`float`, defaults to `7.0`):
|
551
|
+
Guidance scale as defined in [Classifier-Free Diffusion
|
552
|
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
553
|
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
554
|
+
`guidance_scale > 1`.
|
555
|
+
fps (`int`, defaults to `30`):
|
556
|
+
The frames per second of the generated video.
|
557
|
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
558
|
+
The number of images to generate per prompt.
|
559
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
560
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
561
|
+
generation deterministic.
|
562
|
+
latents (`torch.Tensor`, *optional*):
|
563
|
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
564
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
565
|
+
tensor is generated by sampling using the supplied random `generator`.
|
566
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
567
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
568
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
569
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
570
|
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
571
|
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
572
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
573
|
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
574
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
575
|
+
Whether or not to return a [`CosmosPipelineOutput`] instead of a plain tuple.
|
576
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
577
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
578
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
579
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
580
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
581
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
582
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
583
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
584
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
585
|
+
|
586
|
+
Examples:
|
587
|
+
|
588
|
+
Returns:
|
589
|
+
[`~CosmosPipelineOutput`] or `tuple`:
|
590
|
+
If `return_dict` is `True`, [`CosmosPipelineOutput`] is returned, otherwise a `tuple` is returned where
|
591
|
+
the first element is a list with the generated images and the second element is a list of `bool`s
|
592
|
+
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
593
|
+
"""
|
594
|
+
|
595
|
+
if self.safety_checker is None:
|
596
|
+
raise ValueError(
|
597
|
+
f"You have disabled the safety checker for {self.__class__}. This is in violation of the "
|
598
|
+
"[NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). "
|
599
|
+
f"Please ensure that you are compliant with the license agreement."
|
600
|
+
)
|
601
|
+
|
602
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
603
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
604
|
+
|
605
|
+
# 1. Check inputs. Raise error if not correct
|
606
|
+
self.check_inputs(prompt, height, width, prompt_embeds, callback_on_step_end_tensor_inputs, image, video)
|
607
|
+
|
608
|
+
self._guidance_scale = guidance_scale
|
609
|
+
self._current_timestep = None
|
610
|
+
self._interrupt = False
|
611
|
+
|
612
|
+
device = self._execution_device
|
613
|
+
|
614
|
+
if self.safety_checker is not None:
|
615
|
+
self.safety_checker.to(device)
|
616
|
+
if prompt is not None:
|
617
|
+
prompt_list = [prompt] if isinstance(prompt, str) else prompt
|
618
|
+
for p in prompt_list:
|
619
|
+
if not self.safety_checker.check_text_safety(p):
|
620
|
+
raise ValueError(
|
621
|
+
f"Cosmos Guardrail detected unsafe text in the prompt: {p}. Please ensure that the "
|
622
|
+
f"prompt abides by the NVIDIA Open Model License Agreement."
|
623
|
+
)
|
624
|
+
self.safety_checker.to("cpu")
|
625
|
+
|
626
|
+
# 2. Define call parameters
|
627
|
+
if prompt is not None and isinstance(prompt, str):
|
628
|
+
batch_size = 1
|
629
|
+
elif prompt is not None and isinstance(prompt, list):
|
630
|
+
batch_size = len(prompt)
|
631
|
+
else:
|
632
|
+
batch_size = prompt_embeds.shape[0]
|
633
|
+
|
634
|
+
# 3. Encode input prompt
|
635
|
+
(
|
636
|
+
prompt_embeds,
|
637
|
+
negative_prompt_embeds,
|
638
|
+
) = self.encode_prompt(
|
639
|
+
prompt=prompt,
|
640
|
+
negative_prompt=negative_prompt,
|
641
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
642
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
643
|
+
prompt_embeds=prompt_embeds,
|
644
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
645
|
+
device=device,
|
646
|
+
max_sequence_length=max_sequence_length,
|
647
|
+
)
|
648
|
+
|
649
|
+
# 4. Prepare timesteps
|
650
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device)
|
651
|
+
|
652
|
+
# 5. Prepare latent variables
|
653
|
+
vae_dtype = self.vae.dtype
|
654
|
+
transformer_dtype = self.transformer.dtype
|
655
|
+
|
656
|
+
if image is not None:
|
657
|
+
video = self.video_processor.preprocess(image, height, width).unsqueeze(2)
|
658
|
+
else:
|
659
|
+
video = self.video_processor.preprocess_video(video, height, width)
|
660
|
+
video = video.to(device=device, dtype=vae_dtype)
|
661
|
+
|
662
|
+
num_channels_latents = self.transformer.config.in_channels - 1
|
663
|
+
latents, conditioning_latents, cond_indicator, uncond_indicator, cond_mask, uncond_mask = self.prepare_latents(
|
664
|
+
video,
|
665
|
+
batch_size * num_videos_per_prompt,
|
666
|
+
num_channels_latents,
|
667
|
+
height,
|
668
|
+
width,
|
669
|
+
num_frames,
|
670
|
+
self.do_classifier_free_guidance,
|
671
|
+
input_frames_guidance,
|
672
|
+
torch.float32,
|
673
|
+
device,
|
674
|
+
generator,
|
675
|
+
latents,
|
676
|
+
)
|
677
|
+
cond_mask = cond_mask.to(transformer_dtype)
|
678
|
+
if self.do_classifier_free_guidance:
|
679
|
+
uncond_mask = uncond_mask.to(transformer_dtype)
|
680
|
+
|
681
|
+
augment_sigma = torch.tensor([augment_sigma], device=device, dtype=torch.float32)
|
682
|
+
padding_mask = latents.new_zeros(1, 1, height, width, dtype=transformer_dtype)
|
683
|
+
|
684
|
+
# 6. Denoising loop
|
685
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
686
|
+
self._num_timesteps = len(timesteps)
|
687
|
+
|
688
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
689
|
+
for i, t in enumerate(timesteps):
|
690
|
+
if self.interrupt:
|
691
|
+
continue
|
692
|
+
|
693
|
+
self._current_timestep = t
|
694
|
+
timestep = t.expand(latents.shape[0]).to(transformer_dtype)
|
695
|
+
|
696
|
+
current_sigma = self.scheduler.sigmas[i]
|
697
|
+
is_augment_sigma_greater = augment_sigma >= current_sigma
|
698
|
+
|
699
|
+
c_in_augment = self.scheduler._get_conditioning_c_in(augment_sigma)
|
700
|
+
c_in_original = self.scheduler._get_conditioning_c_in(current_sigma)
|
701
|
+
|
702
|
+
current_cond_indicator = cond_indicator * 0 if is_augment_sigma_greater else cond_indicator
|
703
|
+
cond_noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=torch.float32)
|
704
|
+
cond_latent = conditioning_latents + cond_noise * augment_sigma[:, None, None, None, None]
|
705
|
+
cond_latent = cond_latent * c_in_augment / c_in_original
|
706
|
+
cond_latent = current_cond_indicator * cond_latent + (1 - current_cond_indicator) * latents
|
707
|
+
cond_latent = self.scheduler.scale_model_input(cond_latent, t)
|
708
|
+
cond_latent = cond_latent.to(transformer_dtype)
|
709
|
+
|
710
|
+
noise_pred = self.transformer(
|
711
|
+
hidden_states=cond_latent,
|
712
|
+
timestep=timestep,
|
713
|
+
encoder_hidden_states=prompt_embeds,
|
714
|
+
fps=fps,
|
715
|
+
condition_mask=cond_mask,
|
716
|
+
padding_mask=padding_mask,
|
717
|
+
return_dict=False,
|
718
|
+
)[0]
|
719
|
+
|
720
|
+
sample = latents
|
721
|
+
if self.do_classifier_free_guidance:
|
722
|
+
current_uncond_indicator = uncond_indicator * 0 if is_augment_sigma_greater else uncond_indicator
|
723
|
+
uncond_noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=torch.float32)
|
724
|
+
uncond_latent = conditioning_latents + uncond_noise * augment_sigma[:, None, None, None, None]
|
725
|
+
uncond_latent = uncond_latent * c_in_augment / c_in_original
|
726
|
+
uncond_latent = current_uncond_indicator * uncond_latent + (1 - current_uncond_indicator) * latents
|
727
|
+
uncond_latent = self.scheduler.scale_model_input(uncond_latent, t)
|
728
|
+
uncond_latent = uncond_latent.to(transformer_dtype)
|
729
|
+
|
730
|
+
noise_pred_uncond = self.transformer(
|
731
|
+
hidden_states=uncond_latent,
|
732
|
+
timestep=timestep,
|
733
|
+
encoder_hidden_states=negative_prompt_embeds,
|
734
|
+
fps=fps,
|
735
|
+
condition_mask=uncond_mask,
|
736
|
+
padding_mask=padding_mask,
|
737
|
+
return_dict=False,
|
738
|
+
)[0]
|
739
|
+
noise_pred = torch.cat([noise_pred_uncond, noise_pred])
|
740
|
+
sample = torch.cat([sample, sample])
|
741
|
+
|
742
|
+
# pred_original_sample (x0)
|
743
|
+
noise_pred = self.scheduler.step(noise_pred, t, sample, return_dict=False)[1]
|
744
|
+
self.scheduler._step_index -= 1
|
745
|
+
|
746
|
+
if self.do_classifier_free_guidance:
|
747
|
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2, dim=0)
|
748
|
+
noise_pred_uncond = (
|
749
|
+
current_uncond_indicator * conditioning_latents
|
750
|
+
+ (1 - current_uncond_indicator) * noise_pred_uncond
|
751
|
+
)
|
752
|
+
noise_pred_cond = (
|
753
|
+
current_cond_indicator * conditioning_latents + (1 - current_cond_indicator) * noise_pred_cond
|
754
|
+
)
|
755
|
+
noise_pred = noise_pred_cond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
756
|
+
else:
|
757
|
+
noise_pred = (
|
758
|
+
current_cond_indicator * conditioning_latents + (1 - current_cond_indicator) * noise_pred
|
759
|
+
)
|
760
|
+
|
761
|
+
# pred_sample (eps)
|
762
|
+
latents = self.scheduler.step(
|
763
|
+
noise_pred, t, latents, return_dict=False, pred_original_sample=noise_pred
|
764
|
+
)[0]
|
765
|
+
|
766
|
+
if callback_on_step_end is not None:
|
767
|
+
callback_kwargs = {}
|
768
|
+
for k in callback_on_step_end_tensor_inputs:
|
769
|
+
callback_kwargs[k] = locals()[k]
|
770
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
771
|
+
|
772
|
+
latents = callback_outputs.pop("latents", latents)
|
773
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
774
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
775
|
+
|
776
|
+
# call the callback, if provided
|
777
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
778
|
+
progress_bar.update()
|
779
|
+
|
780
|
+
if XLA_AVAILABLE:
|
781
|
+
xm.mark_step()
|
782
|
+
|
783
|
+
self._current_timestep = None
|
784
|
+
|
785
|
+
if not output_type == "latent":
|
786
|
+
if self.vae.config.latents_mean is not None:
|
787
|
+
latents_mean, latents_std = self.vae.config.latents_mean, self.vae.config.latents_std
|
788
|
+
latents_mean = (
|
789
|
+
torch.tensor(latents_mean)
|
790
|
+
.view(1, self.vae.config.latent_channels, -1, 1, 1)[:, :, : latents.size(2)]
|
791
|
+
.to(latents)
|
792
|
+
)
|
793
|
+
latents_std = (
|
794
|
+
torch.tensor(latents_std)
|
795
|
+
.view(1, self.vae.config.latent_channels, -1, 1, 1)[:, :, : latents.size(2)]
|
796
|
+
.to(latents)
|
797
|
+
)
|
798
|
+
latents = latents * latents_std / self.scheduler.config.sigma_data + latents_mean
|
799
|
+
else:
|
800
|
+
latents = latents / self.scheduler.config.sigma_data
|
801
|
+
video = self.vae.decode(latents.to(vae_dtype), return_dict=False)[0]
|
802
|
+
|
803
|
+
if self.safety_checker is not None:
|
804
|
+
self.safety_checker.to(device)
|
805
|
+
video = self.video_processor.postprocess_video(video, output_type="np")
|
806
|
+
video = (video * 255).astype(np.uint8)
|
807
|
+
video_batch = []
|
808
|
+
for vid in video:
|
809
|
+
vid = self.safety_checker.check_video_safety(vid)
|
810
|
+
video_batch.append(vid)
|
811
|
+
video = np.stack(video_batch).astype(np.float32) / 255.0 * 2 - 1
|
812
|
+
video = torch.from_numpy(video).permute(0, 4, 1, 2, 3)
|
813
|
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
814
|
+
self.safety_checker.to("cpu")
|
815
|
+
else:
|
816
|
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
817
|
+
else:
|
818
|
+
video = latents
|
819
|
+
|
820
|
+
# Offload all models
|
821
|
+
self.maybe_free_model_hooks()
|
822
|
+
|
823
|
+
if not return_dict:
|
824
|
+
return (video,)
|
825
|
+
|
826
|
+
return CosmosPipelineOutput(frames=video)
|