diffusers 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +13 -10
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +38 -18
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/METADATA +70 -55
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/WHEEL +1 -1
  475. diffusers-0.33.1.dist-info/RECORD +0 -608
  476. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  477. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1034 @@
1
+ # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models import AutoencoderKL, ChromaTransformer2DModel
25
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
26
+ from ...utils import (
27
+ USE_PEFT_BACKEND,
28
+ is_torch_xla_available,
29
+ logging,
30
+ replace_example_docstring,
31
+ scale_lora_layers,
32
+ unscale_lora_layers,
33
+ )
34
+ from ...utils.torch_utils import randn_tensor
35
+ from ..pipeline_utils import DiffusionPipeline
36
+ from .pipeline_output import ChromaPipelineOutput
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> import torch
53
+ >>> from diffusers import ChromaTransformer2DModel, ChromaImg2ImgPipeline
54
+
55
+ >>> model_id = "lodestones/Chroma"
56
+ >>> ckpt_path = "https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors"
57
+ >>> pipe = ChromaImg2ImgPipeline.from_pretrained(
58
+ ... model_id,
59
+ ... transformer=transformer,
60
+ ... torch_dtype=torch.bfloat16,
61
+ ... )
62
+ >>> pipe.enable_model_cpu_offload()
63
+ >>> init_image = load_image(
64
+ ... "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
65
+ ... )
66
+ >>> prompt = "a scenic fastasy landscape with a river and mountains in the background, vibrant colors, detailed, high resolution"
67
+ >>> negative_prompt = "low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"
68
+ >>> image = pipe(prompt, image=init_image, negative_prompt=negative_prompt).images[0]
69
+ >>> image.save("chroma-img2img.png")
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
75
+ def calculate_shift(
76
+ image_seq_len,
77
+ base_seq_len: int = 256,
78
+ max_seq_len: int = 4096,
79
+ base_shift: float = 0.5,
80
+ max_shift: float = 1.15,
81
+ ):
82
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
83
+ b = base_shift - m * base_seq_len
84
+ mu = image_seq_len * m + b
85
+ return mu
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
89
+ def retrieve_latents(
90
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
91
+ ):
92
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
93
+ return encoder_output.latent_dist.sample(generator)
94
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
95
+ return encoder_output.latent_dist.mode()
96
+ elif hasattr(encoder_output, "latents"):
97
+ return encoder_output.latents
98
+ else:
99
+ raise AttributeError("Could not access latents of provided encoder_output")
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class ChromaImg2ImgPipeline(
163
+ DiffusionPipeline,
164
+ FluxLoraLoaderMixin,
165
+ FromSingleFileMixin,
166
+ TextualInversionLoaderMixin,
167
+ FluxIPAdapterMixin,
168
+ ):
169
+ r"""
170
+ The Chroma pipeline for image-to-image generation.
171
+
172
+ Reference: https://huggingface.co/lodestones/Chroma/
173
+
174
+ Args:
175
+ transformer ([`ChromaTransformer2DModel`]):
176
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
177
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
178
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
179
+ vae ([`AutoencoderKL`]):
180
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation
181
+ text_encoder ([`T5EncoderModel`]):
182
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
183
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
184
+ tokenizer (`T5TokenizerFast`):
185
+ Second Tokenizer of class
186
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
187
+ """
188
+
189
+ model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
190
+ _optional_components = ["image_encoder", "feature_extractor"]
191
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
192
+
193
+ def __init__(
194
+ self,
195
+ scheduler: FlowMatchEulerDiscreteScheduler,
196
+ vae: AutoencoderKL,
197
+ text_encoder: T5EncoderModel,
198
+ tokenizer: T5TokenizerFast,
199
+ transformer: ChromaTransformer2DModel,
200
+ image_encoder: CLIPVisionModelWithProjection = None,
201
+ feature_extractor: CLIPImageProcessor = None,
202
+ ):
203
+ super().__init__()
204
+
205
+ self.register_modules(
206
+ vae=vae,
207
+ text_encoder=text_encoder,
208
+ tokenizer=tokenizer,
209
+ transformer=transformer,
210
+ scheduler=scheduler,
211
+ image_encoder=image_encoder,
212
+ feature_extractor=feature_extractor,
213
+ )
214
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
215
+ self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
216
+
217
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
218
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
219
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
220
+ self.default_sample_size = 128
221
+
222
+ def _get_t5_prompt_embeds(
223
+ self,
224
+ prompt: Union[str, List[str]] = None,
225
+ num_images_per_prompt: int = 1,
226
+ max_sequence_length: int = 512,
227
+ device: Optional[torch.device] = None,
228
+ dtype: Optional[torch.dtype] = None,
229
+ ):
230
+ device = device or self._execution_device
231
+ dtype = dtype or self.text_encoder.dtype
232
+
233
+ prompt = [prompt] if isinstance(prompt, str) else prompt
234
+ batch_size = len(prompt)
235
+
236
+ if isinstance(self, TextualInversionLoaderMixin):
237
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
238
+
239
+ text_inputs = self.tokenizer(
240
+ prompt,
241
+ padding="max_length",
242
+ max_length=max_sequence_length,
243
+ truncation=True,
244
+ return_length=False,
245
+ return_overflowing_tokens=False,
246
+ return_tensors="pt",
247
+ )
248
+ text_input_ids = text_inputs.input_ids
249
+ attention_mask = text_inputs.attention_mask.clone()
250
+
251
+ # Chroma requires the attention mask to include one padding token
252
+ seq_lengths = attention_mask.sum(dim=1)
253
+ mask_indices = torch.arange(attention_mask.size(1)).unsqueeze(0).expand(batch_size, -1)
254
+ attention_mask = (mask_indices <= seq_lengths.unsqueeze(1)).long()
255
+
256
+ prompt_embeds = self.text_encoder(
257
+ text_input_ids.to(device), output_hidden_states=False, attention_mask=attention_mask.to(device)
258
+ )[0]
259
+
260
+ dtype = self.text_encoder.dtype
261
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
262
+ attention_mask = attention_mask.to(dtype=dtype, device=device)
263
+
264
+ _, seq_len, _ = prompt_embeds.shape
265
+
266
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
267
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
268
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
269
+
270
+ attention_mask = attention_mask.repeat(1, num_images_per_prompt)
271
+ attention_mask = attention_mask.view(batch_size * num_images_per_prompt, seq_len)
272
+
273
+ return prompt_embeds, attention_mask
274
+
275
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
276
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
277
+ if isinstance(generator, list):
278
+ image_latents = [
279
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
280
+ for i in range(image.shape[0])
281
+ ]
282
+ image_latents = torch.cat(image_latents, dim=0)
283
+ else:
284
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
285
+
286
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
287
+
288
+ return image_latents
289
+
290
+ def encode_prompt(
291
+ self,
292
+ prompt: Union[str, List[str]],
293
+ negative_prompt: Union[str, List[str]] = None,
294
+ device: Optional[torch.device] = None,
295
+ num_images_per_prompt: int = 1,
296
+ prompt_embeds: Optional[torch.Tensor] = None,
297
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
298
+ prompt_attention_mask: Optional[torch.Tensor] = None,
299
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
300
+ do_classifier_free_guidance: bool = True,
301
+ max_sequence_length: int = 512,
302
+ lora_scale: Optional[float] = None,
303
+ ):
304
+ r"""
305
+
306
+ Args:
307
+ prompt (`str` or `List[str]`, *optional*):
308
+ prompt to be encoded
309
+ negative_prompt (`str` or `List[str]`, *optional*):
310
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
311
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
312
+ device: (`torch.device`):
313
+ torch device
314
+ num_images_per_prompt (`int`):
315
+ number of images that should be generated per prompt
316
+ prompt_embeds (`torch.Tensor`, *optional*):
317
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
318
+ provided, text embeddings will be generated from `prompt` input argument.
319
+ lora_scale (`float`, *optional*):
320
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
321
+ """
322
+ device = device or self._execution_device
323
+
324
+ # set lora scale so that monkey patched LoRA
325
+ # function of text encoder can correctly access it
326
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
327
+ self._lora_scale = lora_scale
328
+
329
+ # dynamically adjust the LoRA scale
330
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
331
+ scale_lora_layers(self.text_encoder, lora_scale)
332
+
333
+ prompt = [prompt] if isinstance(prompt, str) else prompt
334
+
335
+ if prompt is not None:
336
+ batch_size = len(prompt)
337
+ else:
338
+ batch_size = prompt_embeds.shape[0]
339
+
340
+ if prompt_embeds is None:
341
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
342
+ prompt=prompt,
343
+ num_images_per_prompt=num_images_per_prompt,
344
+ max_sequence_length=max_sequence_length,
345
+ device=device,
346
+ )
347
+
348
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
349
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
350
+ negative_text_ids = None
351
+
352
+ if do_classifier_free_guidance:
353
+ if negative_prompt_embeds is None:
354
+ negative_prompt = negative_prompt or ""
355
+ negative_prompt = (
356
+ batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
357
+ )
358
+
359
+ if prompt is not None and type(prompt) is not type(negative_prompt):
360
+ raise TypeError(
361
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
362
+ f" {type(prompt)}."
363
+ )
364
+ elif batch_size != len(negative_prompt):
365
+ raise ValueError(
366
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
367
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
368
+ " the batch size of `prompt`."
369
+ )
370
+
371
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
372
+ prompt=negative_prompt,
373
+ num_images_per_prompt=num_images_per_prompt,
374
+ max_sequence_length=max_sequence_length,
375
+ device=device,
376
+ )
377
+
378
+ negative_text_ids = torch.zeros(negative_prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
379
+
380
+ if self.text_encoder is not None:
381
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
382
+ # Retrieve the original scale by scaling back the LoRA layers
383
+ unscale_lora_layers(self.text_encoder, lora_scale)
384
+
385
+ return (
386
+ prompt_embeds,
387
+ text_ids,
388
+ prompt_attention_mask,
389
+ negative_prompt_embeds,
390
+ negative_text_ids,
391
+ negative_prompt_attention_mask,
392
+ )
393
+
394
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
395
+ def encode_image(self, image, device, num_images_per_prompt):
396
+ dtype = next(self.image_encoder.parameters()).dtype
397
+
398
+ if not isinstance(image, torch.Tensor):
399
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
400
+
401
+ image = image.to(device=device, dtype=dtype)
402
+ image_embeds = self.image_encoder(image).image_embeds
403
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
404
+ return image_embeds
405
+
406
+ def prepare_ip_adapter_image_embeds(
407
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
408
+ ):
409
+ device = device or self._execution_device
410
+
411
+ image_embeds = []
412
+ if ip_adapter_image_embeds is None:
413
+ if not isinstance(ip_adapter_image, list):
414
+ ip_adapter_image = [ip_adapter_image]
415
+
416
+ if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
417
+ raise ValueError(
418
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
419
+ )
420
+
421
+ for single_ip_adapter_image in ip_adapter_image:
422
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
423
+ image_embeds.append(single_image_embeds[None, :])
424
+ else:
425
+ if not isinstance(ip_adapter_image_embeds, list):
426
+ ip_adapter_image_embeds = [ip_adapter_image_embeds]
427
+
428
+ if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
429
+ raise ValueError(
430
+ f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
431
+ )
432
+
433
+ for single_image_embeds in ip_adapter_image_embeds:
434
+ image_embeds.append(single_image_embeds)
435
+
436
+ ip_adapter_image_embeds = []
437
+ for single_image_embeds in image_embeds:
438
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
439
+ single_image_embeds = single_image_embeds.to(device=device)
440
+ ip_adapter_image_embeds.append(single_image_embeds)
441
+
442
+ return ip_adapter_image_embeds
443
+
444
+ def check_inputs(
445
+ self,
446
+ prompt,
447
+ height,
448
+ width,
449
+ strength,
450
+ negative_prompt=None,
451
+ prompt_embeds=None,
452
+ negative_prompt_embeds=None,
453
+ prompt_attention_mask=None,
454
+ negative_prompt_attention_mask=None,
455
+ callback_on_step_end_tensor_inputs=None,
456
+ max_sequence_length=None,
457
+ ):
458
+ if strength < 0 or strength > 1:
459
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
460
+
461
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
462
+ logger.warning(
463
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
464
+ )
465
+
466
+ if callback_on_step_end_tensor_inputs is not None and not all(
467
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
468
+ ):
469
+ raise ValueError(
470
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
471
+ )
472
+
473
+ if prompt is not None and prompt_embeds is not None:
474
+ raise ValueError(
475
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
476
+ " only forward one of the two."
477
+ )
478
+ elif prompt is None and prompt_embeds is None:
479
+ raise ValueError(
480
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
481
+ )
482
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
483
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
484
+
485
+ if negative_prompt is not None and negative_prompt_embeds is not None:
486
+ raise ValueError(
487
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
488
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
489
+ )
490
+
491
+ if prompt_embeds is not None and prompt_attention_mask is None:
492
+ raise ValueError("Cannot provide `prompt_embeds` without also providing `prompt_attention_mask")
493
+
494
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
495
+ raise ValueError(
496
+ "Cannot provide `negative_prompt_embeds` without also providing `negative_prompt_attention_mask"
497
+ )
498
+
499
+ if max_sequence_length is not None and max_sequence_length > 512:
500
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
501
+
502
+ @staticmethod
503
+ def _prepare_latent_image_ids(height, width, device, dtype):
504
+ latent_image_ids = torch.zeros(height, width, 3)
505
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
506
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
507
+
508
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
509
+
510
+ latent_image_ids = latent_image_ids.reshape(
511
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
512
+ )
513
+
514
+ return latent_image_ids.to(device=device, dtype=dtype)
515
+
516
+ @staticmethod
517
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
518
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
519
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
520
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
521
+
522
+ return latents
523
+
524
+ @staticmethod
525
+ def _unpack_latents(latents, height, width, vae_scale_factor):
526
+ batch_size, num_patches, channels = latents.shape
527
+
528
+ # VAE applies 8x compression on images but we must also account for packing which requires
529
+ # latent height and width to be divisible by 2.
530
+ height = 2 * (int(height) // (vae_scale_factor * 2))
531
+ width = 2 * (int(width) // (vae_scale_factor * 2))
532
+
533
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
534
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
535
+
536
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
537
+
538
+ return latents
539
+
540
+ def enable_vae_slicing(self):
541
+ r"""
542
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
543
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
544
+ """
545
+ self.vae.enable_slicing()
546
+
547
+ def disable_vae_slicing(self):
548
+ r"""
549
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
550
+ computing decoding in one step.
551
+ """
552
+ self.vae.disable_slicing()
553
+
554
+ def enable_vae_tiling(self):
555
+ r"""
556
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
557
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
558
+ processing larger images.
559
+ """
560
+ self.vae.enable_tiling()
561
+
562
+ def disable_vae_tiling(self):
563
+ r"""
564
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
565
+ computing decoding in one step.
566
+ """
567
+ self.vae.disable_tiling()
568
+
569
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
570
+ def get_timesteps(self, num_inference_steps, strength, device):
571
+ # get the original timestep using init_timestep
572
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
573
+
574
+ t_start = int(max(num_inference_steps - init_timestep, 0))
575
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
576
+ if hasattr(self.scheduler, "set_begin_index"):
577
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
578
+
579
+ return timesteps, num_inference_steps - t_start
580
+
581
+ def prepare_latents(
582
+ self,
583
+ image,
584
+ timestep,
585
+ batch_size,
586
+ num_channels_latents,
587
+ height,
588
+ width,
589
+ dtype,
590
+ device,
591
+ generator,
592
+ latents=None,
593
+ ):
594
+ if isinstance(generator, list) and len(generator) != batch_size:
595
+ raise ValueError(
596
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
597
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
598
+ )
599
+
600
+ # VAE applies 8x compression on images but we must also account for packing which requires
601
+ # latent height and width to be divisible by 2.
602
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
603
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
604
+ shape = (batch_size, num_channels_latents, height, width)
605
+ latent_image_ids = self._prepare_latent_image_ids(height // 2, width // 2, device, dtype)
606
+
607
+ if latents is not None:
608
+ return latents.to(device=device, dtype=dtype), latent_image_ids
609
+
610
+ image = image.to(device=device, dtype=dtype)
611
+ if image.shape[1] != self.latent_channels:
612
+ image_latents = self._encode_vae_image(image=image, generator=generator)
613
+ else:
614
+ image_latents = image
615
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
616
+ # expand init_latents for batch_size
617
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
618
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
619
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
620
+ raise ValueError(
621
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
622
+ )
623
+ else:
624
+ image_latents = torch.cat([image_latents], dim=0)
625
+
626
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
627
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
628
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
629
+ return latents, latent_image_ids
630
+
631
+ def _prepare_attention_mask(
632
+ self,
633
+ batch_size,
634
+ sequence_length,
635
+ dtype,
636
+ attention_mask=None,
637
+ ):
638
+ if attention_mask is None:
639
+ return attention_mask
640
+
641
+ # Extend the prompt attention mask to account for image tokens in the final sequence
642
+ attention_mask = torch.cat(
643
+ [attention_mask, torch.ones(batch_size, sequence_length, device=attention_mask.device)],
644
+ dim=1,
645
+ )
646
+ attention_mask = attention_mask.to(dtype)
647
+
648
+ return attention_mask
649
+
650
+ @property
651
+ def guidance_scale(self):
652
+ return self._guidance_scale
653
+
654
+ @property
655
+ def joint_attention_kwargs(self):
656
+ return self._joint_attention_kwargs
657
+
658
+ @property
659
+ def do_classifier_free_guidance(self):
660
+ return self._guidance_scale > 1
661
+
662
+ @property
663
+ def num_timesteps(self):
664
+ return self._num_timesteps
665
+
666
+ @property
667
+ def current_timestep(self):
668
+ return self._current_timestep
669
+
670
+ @property
671
+ def interrupt(self):
672
+ return self._interrupt
673
+
674
+ @torch.no_grad()
675
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
676
+ def __call__(
677
+ self,
678
+ prompt: Union[str, List[str]] = None,
679
+ negative_prompt: Union[str, List[str]] = None,
680
+ image: PipelineImageInput = None,
681
+ height: Optional[int] = None,
682
+ width: Optional[int] = None,
683
+ num_inference_steps: int = 35,
684
+ sigmas: Optional[List[float]] = None,
685
+ guidance_scale: float = 5.0,
686
+ strength: float = 0.9,
687
+ num_images_per_prompt: Optional[int] = 1,
688
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
689
+ latents: Optional[torch.Tensor] = None,
690
+ prompt_embeds: Optional[torch.Tensor] = None,
691
+ ip_adapter_image: Optional[PipelineImageInput] = None,
692
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
693
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
694
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
695
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
696
+ prompt_attention_mask: Optional[torch.Tensor] = None,
697
+ negative_prompt_attention_mask: Optional[torch.tensor] = None,
698
+ output_type: Optional[str] = "pil",
699
+ return_dict: bool = True,
700
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
701
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
702
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
703
+ max_sequence_length: int = 512,
704
+ ):
705
+ r"""
706
+ Function invoked when calling the pipeline for generation.
707
+
708
+ Args:
709
+ prompt (`str` or `List[str]`, *optional*):
710
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
711
+ instead.
712
+ negative_prompt (`str` or `List[str]`, *optional*):
713
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
714
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
715
+ not greater than `1`).
716
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
717
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
718
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
719
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
720
+ num_inference_steps (`int`, *optional*, defaults to 35):
721
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
722
+ expense of slower inference.
723
+ sigmas (`List[float]`, *optional*):
724
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
725
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
726
+ will be used.
727
+ guidance_scale (`float`, *optional*, defaults to 5.0):
728
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
729
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
730
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
731
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
732
+ usually at the expense of lower image quality.
733
+ strength (`float, *optional*, defaults to 0.9):
734
+ Conceptually, indicates how much to transform the reference image. Must be between 0 and 1. image will
735
+ be used as a starting point, adding more noise to it the larger the strength. The number of denoising
736
+ steps depends on the amount of noise initially added. When strength is 1, added noise will be maximum
737
+ and the denoising process will run for the full number of iterations specified in num_inference_steps.
738
+ A value of 1, therefore, essentially ignores image.
739
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
740
+ The number of images to generate per prompt.
741
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
742
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
743
+ to make generation deterministic.
744
+ latents (`torch.Tensor`, *optional*):
745
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
746
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
747
+ tensor will ge generated by sampling using the supplied random `generator`.
748
+ prompt_embeds (`torch.Tensor`, *optional*):
749
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
750
+ provided, text embeddings will be generated from `prompt` input argument.
751
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
752
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
753
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
754
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
755
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
756
+ negative_ip_adapter_image:
757
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
758
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
759
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
760
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
761
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
762
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
763
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
764
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
765
+ argument.
766
+ prompt_attention_mask (torch.Tensor, *optional*):
767
+ Attention mask for the prompt embeddings. Used to mask out padding tokens in the prompt sequence.
768
+ Chroma requires a single padding token remain unmasked. Please refer to
769
+ https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training
770
+ negative_prompt_attention_mask (torch.Tensor, *optional*):
771
+ Attention mask for the negative prompt embeddings. Used to mask out padding tokens in the negative
772
+ prompt sequence. Chroma requires a single padding token remain unmasked. PLease refer to
773
+ https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training
774
+ output_type (`str`, *optional*, defaults to `"pil"`):
775
+ The output format of the generate image. Choose between
776
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
777
+ return_dict (`bool`, *optional*, defaults to `True`):
778
+ Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple.
779
+ joint_attention_kwargs (`dict`, *optional*):
780
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
781
+ `self.processor` in
782
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
783
+ callback_on_step_end (`Callable`, *optional*):
784
+ A function that calls at the end of each denoising steps during the inference. The function is called
785
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
786
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
787
+ `callback_on_step_end_tensor_inputs`.
788
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
789
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
790
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
791
+ `._callback_tensor_inputs` attribute of your pipeline class.
792
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
793
+
794
+ Examples:
795
+
796
+ Returns:
797
+ [`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if
798
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
799
+ generated images.
800
+ """
801
+
802
+ height = height or self.default_sample_size * self.vae_scale_factor
803
+ width = width or self.default_sample_size * self.vae_scale_factor
804
+
805
+ # 1. Check inputs. Raise error if not correct
806
+ self.check_inputs(
807
+ prompt,
808
+ height,
809
+ width,
810
+ strength,
811
+ negative_prompt=negative_prompt,
812
+ prompt_embeds=prompt_embeds,
813
+ negative_prompt_embeds=negative_prompt_embeds,
814
+ prompt_attention_mask=prompt_attention_mask,
815
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
816
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
817
+ max_sequence_length=max_sequence_length,
818
+ )
819
+
820
+ self._guidance_scale = guidance_scale
821
+ self._joint_attention_kwargs = joint_attention_kwargs
822
+ self._current_timestep = None
823
+ self._interrupt = False
824
+
825
+ # 2. Preprocess image
826
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
827
+ init_image = init_image.to(dtype=torch.float32)
828
+
829
+ # 3. Define call parameters
830
+ if prompt is not None and isinstance(prompt, str):
831
+ batch_size = 1
832
+ elif prompt is not None and isinstance(prompt, list):
833
+ batch_size = len(prompt)
834
+ else:
835
+ batch_size = prompt_embeds.shape[0]
836
+
837
+ device = self._execution_device
838
+ lora_scale = (
839
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
840
+ )
841
+
842
+ (
843
+ prompt_embeds,
844
+ text_ids,
845
+ prompt_attention_mask,
846
+ negative_prompt_embeds,
847
+ negative_text_ids,
848
+ negative_prompt_attention_mask,
849
+ ) = self.encode_prompt(
850
+ prompt=prompt,
851
+ negative_prompt=negative_prompt,
852
+ prompt_embeds=prompt_embeds,
853
+ negative_prompt_embeds=negative_prompt_embeds,
854
+ prompt_attention_mask=prompt_attention_mask,
855
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
856
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
857
+ device=device,
858
+ num_images_per_prompt=num_images_per_prompt,
859
+ max_sequence_length=max_sequence_length,
860
+ lora_scale=lora_scale,
861
+ )
862
+
863
+ # 4. Prepare timesteps
864
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
865
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
866
+ mu = calculate_shift(
867
+ image_seq_len,
868
+ self.scheduler.config.get("base_image_seq_len", 256),
869
+ self.scheduler.config.get("max_image_seq_len", 4096),
870
+ self.scheduler.config.get("base_shift", 0.5),
871
+ self.scheduler.config.get("max_shift", 1.15),
872
+ )
873
+ timesteps, num_inference_steps = retrieve_timesteps(
874
+ self.scheduler,
875
+ num_inference_steps,
876
+ device,
877
+ sigmas=sigmas,
878
+ mu=mu,
879
+ )
880
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
881
+
882
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
883
+ self._num_timesteps = len(timesteps)
884
+
885
+ if num_inference_steps < 1:
886
+ raise ValueError(
887
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
888
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
889
+ )
890
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
891
+
892
+ # 5. Prepare latent variables
893
+ num_channels_latents = self.transformer.config.in_channels // 4
894
+ latents, latent_image_ids = self.prepare_latents(
895
+ init_image,
896
+ latent_timestep,
897
+ batch_size * num_images_per_prompt,
898
+ num_channels_latents,
899
+ height,
900
+ width,
901
+ prompt_embeds.dtype,
902
+ device,
903
+ generator,
904
+ latents,
905
+ )
906
+
907
+ attention_mask = self._prepare_attention_mask(
908
+ batch_size=latents.shape[0],
909
+ sequence_length=image_seq_len,
910
+ dtype=latents.dtype,
911
+ attention_mask=prompt_attention_mask,
912
+ )
913
+ negative_attention_mask = self._prepare_attention_mask(
914
+ batch_size=latents.shape[0],
915
+ sequence_length=image_seq_len,
916
+ dtype=latents.dtype,
917
+ attention_mask=negative_prompt_attention_mask,
918
+ )
919
+
920
+ # 6. Prepare image embeddings
921
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
922
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
923
+ ):
924
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
925
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
926
+
927
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
928
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
929
+ ):
930
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
931
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
932
+
933
+ if self.joint_attention_kwargs is None:
934
+ self._joint_attention_kwargs = {}
935
+
936
+ image_embeds = None
937
+ negative_image_embeds = None
938
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
939
+ image_embeds = self.prepare_ip_adapter_image_embeds(
940
+ ip_adapter_image,
941
+ ip_adapter_image_embeds,
942
+ device,
943
+ batch_size * num_images_per_prompt,
944
+ )
945
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
946
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
947
+ negative_ip_adapter_image,
948
+ negative_ip_adapter_image_embeds,
949
+ device,
950
+ batch_size * num_images_per_prompt,
951
+ )
952
+
953
+ # 6. Denoising loop
954
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
955
+ for i, t in enumerate(timesteps):
956
+ if self.interrupt:
957
+ continue
958
+
959
+ self._current_timestep = t
960
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
961
+ timestep = t.expand(latents.shape[0])
962
+
963
+ if image_embeds is not None:
964
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
965
+
966
+ noise_pred = self.transformer(
967
+ hidden_states=latents,
968
+ timestep=timestep / 1000,
969
+ encoder_hidden_states=prompt_embeds,
970
+ txt_ids=text_ids,
971
+ img_ids=latent_image_ids,
972
+ attention_mask=attention_mask,
973
+ joint_attention_kwargs=self.joint_attention_kwargs,
974
+ return_dict=False,
975
+ )[0]
976
+
977
+ if self.do_classifier_free_guidance:
978
+ if negative_image_embeds is not None:
979
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
980
+
981
+ noise_pred_uncond = self.transformer(
982
+ hidden_states=latents,
983
+ timestep=timestep / 1000,
984
+ encoder_hidden_states=negative_prompt_embeds,
985
+ txt_ids=negative_text_ids,
986
+ img_ids=latent_image_ids,
987
+ attention_mask=negative_attention_mask,
988
+ joint_attention_kwargs=self.joint_attention_kwargs,
989
+ return_dict=False,
990
+ )[0]
991
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
992
+
993
+ # compute the previous noisy sample x_t -> x_t-1
994
+ latents_dtype = latents.dtype
995
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
996
+
997
+ if latents.dtype != latents_dtype:
998
+ if torch.backends.mps.is_available():
999
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1000
+ latents = latents.to(latents_dtype)
1001
+
1002
+ if callback_on_step_end is not None:
1003
+ callback_kwargs = {}
1004
+ for k in callback_on_step_end_tensor_inputs:
1005
+ callback_kwargs[k] = locals()[k]
1006
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1007
+
1008
+ latents = callback_outputs.pop("latents", latents)
1009
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1010
+
1011
+ # call the callback, if provided
1012
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1013
+ progress_bar.update()
1014
+
1015
+ if XLA_AVAILABLE:
1016
+ xm.mark_step()
1017
+
1018
+ self._current_timestep = None
1019
+
1020
+ if output_type == "latent":
1021
+ image = latents
1022
+ else:
1023
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1024
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1025
+ image = self.vae.decode(latents, return_dict=False)[0]
1026
+ image = self.image_processor.postprocess(image, output_type=output_type)
1027
+
1028
+ # Offload all models
1029
+ self.maybe_free_model_hooks()
1030
+
1031
+ if not return_dict:
1032
+ return (image,)
1033
+
1034
+ return ChromaPipelineOutput(images=image)