diffusers 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +48 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/hooks/faster_cache.py +2 -2
- diffusers/hooks/group_offloading.py +128 -29
- diffusers/hooks/hooks.py +2 -2
- diffusers/hooks/layerwise_casting.py +3 -3
- diffusers/hooks/pyramid_attention_broadcast.py +1 -1
- diffusers/image_processor.py +7 -2
- diffusers/loaders/__init__.py +4 -0
- diffusers/loaders/ip_adapter.py +5 -14
- diffusers/loaders/lora_base.py +212 -111
- diffusers/loaders/lora_conversion_utils.py +275 -34
- diffusers/loaders/lora_pipeline.py +1554 -819
- diffusers/loaders/peft.py +52 -109
- diffusers/loaders/single_file.py +2 -2
- diffusers/loaders/single_file_model.py +20 -4
- diffusers/loaders/single_file_utils.py +225 -5
- diffusers/loaders/textual_inversion.py +3 -2
- diffusers/loaders/transformer_flux.py +1 -1
- diffusers/loaders/transformer_sd3.py +2 -2
- diffusers/loaders/unet.py +2 -16
- diffusers/loaders/unet_loader_utils.py +1 -1
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +15 -1
- diffusers/models/activations.py +5 -5
- diffusers/models/adapter.py +2 -3
- diffusers/models/attention.py +4 -4
- diffusers/models/attention_flax.py +10 -10
- diffusers/models/attention_processor.py +14 -10
- diffusers/models/auto_model.py +47 -10
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_dc.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +13 -2
- diffusers/models/autoencoders/vq_model.py +2 -2
- diffusers/models/cache_utils.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flux.py +1 -1
- diffusers/models/controlnet_sd3.py +1 -1
- diffusers/models/controlnet_sparsectrl.py +1 -1
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -3
- diffusers/models/controlnets/controlnet_flax.py +1 -1
- diffusers/models/controlnets/controlnet_flux.py +16 -15
- diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
- diffusers/models/controlnets/controlnet_sana.py +290 -0
- diffusers/models/controlnets/controlnet_sd3.py +1 -1
- diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
- diffusers/models/controlnets/controlnet_union.py +1 -1
- diffusers/models/controlnets/controlnet_xs.py +7 -7
- diffusers/models/controlnets/multicontrolnet.py +4 -5
- diffusers/models/controlnets/multicontrolnet_union.py +5 -6
- diffusers/models/downsampling.py +2 -2
- diffusers/models/embeddings.py +10 -12
- diffusers/models/embeddings_flax.py +2 -2
- diffusers/models/lora.py +3 -3
- diffusers/models/modeling_utils.py +44 -14
- diffusers/models/normalization.py +4 -4
- diffusers/models/resnet.py +2 -2
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
- diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
- diffusers/models/transformers/consisid_transformer_3d.py +1 -1
- diffusers/models/transformers/dit_transformer_2d.py +2 -2
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
- diffusers/models/transformers/latte_transformer_3d.py +4 -5
- diffusers/models/transformers/lumina_nextdit2d.py +2 -2
- diffusers/models/transformers/pixart_transformer_2d.py +3 -3
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/sana_transformer.py +8 -3
- diffusers/models/transformers/stable_audio_transformer.py +5 -9
- diffusers/models/transformers/t5_film_transformer.py +3 -3
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +1 -1
- diffusers/models/transformers/transformer_chroma.py +742 -0
- diffusers/models/transformers/transformer_cogview3plus.py +5 -10
- diffusers/models/transformers/transformer_cogview4.py +317 -25
- diffusers/models/transformers/transformer_cosmos.py +579 -0
- diffusers/models/transformers/transformer_flux.py +9 -11
- diffusers/models/transformers/transformer_hidream_image.py +942 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
- diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
- diffusers/models/transformers/transformer_ltx.py +2 -2
- diffusers/models/transformers/transformer_lumina2.py +1 -1
- diffusers/models/transformers/transformer_mochi.py +1 -1
- diffusers/models/transformers/transformer_omnigen.py +2 -2
- diffusers/models/transformers/transformer_sd3.py +7 -7
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/transformers/transformer_wan.py +24 -8
- diffusers/models/transformers/transformer_wan_vace.py +393 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +1 -1
- diffusers/models/unets/unet_2d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
- diffusers/models/unets/unet_2d_condition.py +2 -2
- diffusers/models/unets/unet_2d_condition_flax.py +2 -2
- diffusers/models/unets/unet_3d_blocks.py +1 -1
- diffusers/models/unets/unet_3d_condition.py +3 -3
- diffusers/models/unets/unet_i2vgen_xl.py +3 -3
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +2 -2
- diffusers/models/unets/unet_stable_cascade.py +1 -1
- diffusers/models/upsampling.py +2 -2
- diffusers/models/vae_flax.py +2 -2
- diffusers/models/vq_model.py +1 -1
- diffusers/pipelines/__init__.py +37 -6
- diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
- diffusers/pipelines/amused/pipeline_amused.py +7 -6
- diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
- diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
- diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
- diffusers/pipelines/auto_pipeline.py +6 -7
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
- diffusers/pipelines/chroma/__init__.py +49 -0
- diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
- diffusers/pipelines/chroma/pipeline_output.py +21 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
- diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
- diffusers/pipelines/consisid/consisid_utils.py +2 -2
- diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
- diffusers/pipelines/cosmos/__init__.py +54 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
- diffusers/pipelines/cosmos/pipeline_output.py +40 -0
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
- diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
- diffusers/pipelines/flux/modeling_flux.py +1 -1
- diffusers/pipelines/flux/pipeline_flux.py +10 -17
- diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/free_init_utils.py +2 -2
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hidream_image/__init__.py +47 -0
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
- diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
- diffusers/pipelines/hunyuan_video/__init__.py +2 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
- diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
- diffusers/pipelines/kolors/text_encoder.py +3 -3
- diffusers/pipelines/kolors/tokenizer.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
- diffusers/pipelines/latte/pipeline_latte.py +12 -12
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
- diffusers/pipelines/ltx/__init__.py +4 -0
- diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
- diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
- diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
- diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
- diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
- diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
- diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
- diffusers/pipelines/onnx_utils.py +15 -2
- diffusers/pipelines/pag/pag_utils.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
- diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
- diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
- diffusers/pipelines/pia/pipeline_pia.py +8 -6
- diffusers/pipelines/pipeline_flax_utils.py +3 -4
- diffusers/pipelines/pipeline_loading_utils.py +89 -13
- diffusers/pipelines/pipeline_utils.py +105 -33
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
- diffusers/pipelines/sana/__init__.py +4 -0
- diffusers/pipelines/sana/pipeline_sana.py +23 -21
- diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
- diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +3 -3
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
- diffusers/pipelines/stable_diffusion/__init__.py +0 -7
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
- diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
- diffusers/pipelines/unclip/text_proj.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
- diffusers/pipelines/visualcloze/__init__.py +52 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
- diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
- diffusers/pipelines/wan/__init__.py +2 -0
- diffusers/pipelines/wan/pipeline_wan.py +13 -10
- diffusers/pipelines/wan/pipeline_wan_i2v.py +38 -18
- diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
- diffusers/quantizers/__init__.py +179 -1
- diffusers/quantizers/base.py +6 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
- diffusers/quantizers/bitsandbytes/utils.py +10 -7
- diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
- diffusers/quantizers/gguf/utils.py +16 -13
- diffusers/quantizers/quantization_config.py +18 -16
- diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
- diffusers/schedulers/__init__.py +3 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -1
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
- diffusers/schedulers/scheduling_ddim.py +8 -8
- diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_ddim_flax.py +6 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
- diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
- diffusers/schedulers/scheduling_ddpm.py +9 -9
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
- diffusers/schedulers/scheduling_deis_multistep.py +8 -8
- diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
- diffusers/schedulers/scheduling_edm_euler.py +20 -11
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
- diffusers/schedulers/scheduling_heun_discrete.py +2 -2
- diffusers/schedulers/scheduling_ipndm.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
- diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
- diffusers/schedulers/scheduling_lcm.py +3 -3
- diffusers/schedulers/scheduling_lms_discrete.py +2 -2
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +4 -4
- diffusers/schedulers/scheduling_pndm_flax.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +9 -9
- diffusers/schedulers/scheduling_sasolver.py +15 -15
- diffusers/schedulers/scheduling_scm.py +1 -1
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
- diffusers/schedulers/scheduling_tcd.py +3 -3
- diffusers/schedulers/scheduling_unclip.py +5 -5
- diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
- diffusers/schedulers/scheduling_utils.py +1 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +13 -5
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +120 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
- diffusers/utils/dynamic_modules_utils.py +21 -3
- diffusers/utils/export_utils.py +1 -1
- diffusers/utils/import_utils.py +81 -18
- diffusers/utils/logging.py +1 -1
- diffusers/utils/outputs.py +2 -1
- diffusers/utils/peft_utils.py +91 -8
- diffusers/utils/state_dict_utils.py +20 -3
- diffusers/utils/testing_utils.py +59 -7
- diffusers/utils/torch_utils.py +25 -5
- diffusers/video_processor.py +2 -2
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/METADATA +70 -55
- diffusers-0.34.0.dist-info/RECORD +639 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/WHEEL +1 -1
- diffusers-0.33.1.dist-info/RECORD +0 -608
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,579 @@
|
|
1
|
+
# Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional, Tuple
|
16
|
+
|
17
|
+
import numpy as np
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...utils import is_torchvision_available
|
24
|
+
from ..attention import FeedForward
|
25
|
+
from ..attention_processor import Attention
|
26
|
+
from ..embeddings import Timesteps
|
27
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
28
|
+
from ..modeling_utils import ModelMixin
|
29
|
+
from ..normalization import RMSNorm
|
30
|
+
|
31
|
+
|
32
|
+
if is_torchvision_available():
|
33
|
+
from torchvision import transforms
|
34
|
+
|
35
|
+
|
36
|
+
class CosmosPatchEmbed(nn.Module):
|
37
|
+
def __init__(
|
38
|
+
self, in_channels: int, out_channels: int, patch_size: Tuple[int, int, int], bias: bool = True
|
39
|
+
) -> None:
|
40
|
+
super().__init__()
|
41
|
+
self.patch_size = patch_size
|
42
|
+
|
43
|
+
self.proj = nn.Linear(in_channels * patch_size[0] * patch_size[1] * patch_size[2], out_channels, bias=bias)
|
44
|
+
|
45
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
46
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
47
|
+
p_t, p_h, p_w = self.patch_size
|
48
|
+
hidden_states = hidden_states.reshape(
|
49
|
+
batch_size, num_channels, num_frames // p_t, p_t, height // p_h, p_h, width // p_w, p_w
|
50
|
+
)
|
51
|
+
hidden_states = hidden_states.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7)
|
52
|
+
hidden_states = self.proj(hidden_states)
|
53
|
+
return hidden_states
|
54
|
+
|
55
|
+
|
56
|
+
class CosmosTimestepEmbedding(nn.Module):
|
57
|
+
def __init__(self, in_features: int, out_features: int) -> None:
|
58
|
+
super().__init__()
|
59
|
+
self.linear_1 = nn.Linear(in_features, out_features, bias=False)
|
60
|
+
self.activation = nn.SiLU()
|
61
|
+
self.linear_2 = nn.Linear(out_features, 3 * out_features, bias=False)
|
62
|
+
|
63
|
+
def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
|
64
|
+
emb = self.linear_1(timesteps)
|
65
|
+
emb = self.activation(emb)
|
66
|
+
emb = self.linear_2(emb)
|
67
|
+
return emb
|
68
|
+
|
69
|
+
|
70
|
+
class CosmosEmbedding(nn.Module):
|
71
|
+
def __init__(self, embedding_dim: int, condition_dim: int) -> None:
|
72
|
+
super().__init__()
|
73
|
+
|
74
|
+
self.time_proj = Timesteps(embedding_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
|
75
|
+
self.t_embedder = CosmosTimestepEmbedding(embedding_dim, condition_dim)
|
76
|
+
self.norm = RMSNorm(embedding_dim, eps=1e-6, elementwise_affine=True)
|
77
|
+
|
78
|
+
def forward(self, hidden_states: torch.Tensor, timestep: torch.LongTensor) -> torch.Tensor:
|
79
|
+
timesteps_proj = self.time_proj(timestep).type_as(hidden_states)
|
80
|
+
temb = self.t_embedder(timesteps_proj)
|
81
|
+
embedded_timestep = self.norm(timesteps_proj)
|
82
|
+
return temb, embedded_timestep
|
83
|
+
|
84
|
+
|
85
|
+
class CosmosAdaLayerNorm(nn.Module):
|
86
|
+
def __init__(self, in_features: int, hidden_features: int) -> None:
|
87
|
+
super().__init__()
|
88
|
+
self.embedding_dim = in_features
|
89
|
+
|
90
|
+
self.activation = nn.SiLU()
|
91
|
+
self.norm = nn.LayerNorm(in_features, elementwise_affine=False, eps=1e-6)
|
92
|
+
self.linear_1 = nn.Linear(in_features, hidden_features, bias=False)
|
93
|
+
self.linear_2 = nn.Linear(hidden_features, 2 * in_features, bias=False)
|
94
|
+
|
95
|
+
def forward(
|
96
|
+
self, hidden_states: torch.Tensor, embedded_timestep: torch.Tensor, temb: Optional[torch.Tensor] = None
|
97
|
+
) -> torch.Tensor:
|
98
|
+
embedded_timestep = self.activation(embedded_timestep)
|
99
|
+
embedded_timestep = self.linear_1(embedded_timestep)
|
100
|
+
embedded_timestep = self.linear_2(embedded_timestep)
|
101
|
+
|
102
|
+
if temb is not None:
|
103
|
+
embedded_timestep = embedded_timestep + temb[..., : 2 * self.embedding_dim]
|
104
|
+
|
105
|
+
shift, scale = embedded_timestep.chunk(2, dim=-1)
|
106
|
+
hidden_states = self.norm(hidden_states)
|
107
|
+
|
108
|
+
if embedded_timestep.ndim == 2:
|
109
|
+
shift, scale = (x.unsqueeze(1) for x in (shift, scale))
|
110
|
+
|
111
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
112
|
+
return hidden_states
|
113
|
+
|
114
|
+
|
115
|
+
class CosmosAdaLayerNormZero(nn.Module):
|
116
|
+
def __init__(self, in_features: int, hidden_features: Optional[int] = None) -> None:
|
117
|
+
super().__init__()
|
118
|
+
|
119
|
+
self.norm = nn.LayerNorm(in_features, elementwise_affine=False, eps=1e-6)
|
120
|
+
self.activation = nn.SiLU()
|
121
|
+
|
122
|
+
if hidden_features is None:
|
123
|
+
self.linear_1 = nn.Identity()
|
124
|
+
else:
|
125
|
+
self.linear_1 = nn.Linear(in_features, hidden_features, bias=False)
|
126
|
+
|
127
|
+
self.linear_2 = nn.Linear(hidden_features, 3 * in_features, bias=False)
|
128
|
+
|
129
|
+
def forward(
|
130
|
+
self,
|
131
|
+
hidden_states: torch.Tensor,
|
132
|
+
embedded_timestep: torch.Tensor,
|
133
|
+
temb: Optional[torch.Tensor] = None,
|
134
|
+
) -> torch.Tensor:
|
135
|
+
embedded_timestep = self.activation(embedded_timestep)
|
136
|
+
embedded_timestep = self.linear_1(embedded_timestep)
|
137
|
+
embedded_timestep = self.linear_2(embedded_timestep)
|
138
|
+
|
139
|
+
if temb is not None:
|
140
|
+
embedded_timestep = embedded_timestep + temb
|
141
|
+
|
142
|
+
shift, scale, gate = embedded_timestep.chunk(3, dim=-1)
|
143
|
+
hidden_states = self.norm(hidden_states)
|
144
|
+
|
145
|
+
if embedded_timestep.ndim == 2:
|
146
|
+
shift, scale, gate = (x.unsqueeze(1) for x in (shift, scale, gate))
|
147
|
+
|
148
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
149
|
+
return hidden_states, gate
|
150
|
+
|
151
|
+
|
152
|
+
class CosmosAttnProcessor2_0:
|
153
|
+
def __init__(self):
|
154
|
+
if not hasattr(F, "scaled_dot_product_attention"):
|
155
|
+
raise ImportError("CosmosAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
156
|
+
|
157
|
+
def __call__(
|
158
|
+
self,
|
159
|
+
attn: Attention,
|
160
|
+
hidden_states: torch.Tensor,
|
161
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
162
|
+
attention_mask: Optional[torch.Tensor] = None,
|
163
|
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
164
|
+
) -> torch.Tensor:
|
165
|
+
# 1. QKV projections
|
166
|
+
if encoder_hidden_states is None:
|
167
|
+
encoder_hidden_states = hidden_states
|
168
|
+
|
169
|
+
query = attn.to_q(hidden_states)
|
170
|
+
key = attn.to_k(encoder_hidden_states)
|
171
|
+
value = attn.to_v(encoder_hidden_states)
|
172
|
+
|
173
|
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
174
|
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
175
|
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
176
|
+
|
177
|
+
# 2. QK normalization
|
178
|
+
query = attn.norm_q(query)
|
179
|
+
key = attn.norm_k(key)
|
180
|
+
|
181
|
+
# 3. Apply RoPE
|
182
|
+
if image_rotary_emb is not None:
|
183
|
+
from ..embeddings import apply_rotary_emb
|
184
|
+
|
185
|
+
query = apply_rotary_emb(query, image_rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
186
|
+
key = apply_rotary_emb(key, image_rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
187
|
+
|
188
|
+
# 4. Prepare for GQA
|
189
|
+
query_idx = torch.tensor(query.size(3), device=query.device)
|
190
|
+
key_idx = torch.tensor(key.size(3), device=key.device)
|
191
|
+
value_idx = torch.tensor(value.size(3), device=value.device)
|
192
|
+
key = key.repeat_interleave(query_idx // key_idx, dim=3)
|
193
|
+
value = value.repeat_interleave(query_idx // value_idx, dim=3)
|
194
|
+
|
195
|
+
# 5. Attention
|
196
|
+
hidden_states = F.scaled_dot_product_attention(
|
197
|
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
198
|
+
)
|
199
|
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3).type_as(query)
|
200
|
+
|
201
|
+
# 6. Output projection
|
202
|
+
hidden_states = attn.to_out[0](hidden_states)
|
203
|
+
hidden_states = attn.to_out[1](hidden_states)
|
204
|
+
|
205
|
+
return hidden_states
|
206
|
+
|
207
|
+
|
208
|
+
class CosmosTransformerBlock(nn.Module):
|
209
|
+
def __init__(
|
210
|
+
self,
|
211
|
+
num_attention_heads: int,
|
212
|
+
attention_head_dim: int,
|
213
|
+
cross_attention_dim: int,
|
214
|
+
mlp_ratio: float = 4.0,
|
215
|
+
adaln_lora_dim: int = 256,
|
216
|
+
qk_norm: str = "rms_norm",
|
217
|
+
out_bias: bool = False,
|
218
|
+
) -> None:
|
219
|
+
super().__init__()
|
220
|
+
|
221
|
+
hidden_size = num_attention_heads * attention_head_dim
|
222
|
+
|
223
|
+
self.norm1 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
224
|
+
self.attn1 = Attention(
|
225
|
+
query_dim=hidden_size,
|
226
|
+
cross_attention_dim=None,
|
227
|
+
heads=num_attention_heads,
|
228
|
+
dim_head=attention_head_dim,
|
229
|
+
qk_norm=qk_norm,
|
230
|
+
elementwise_affine=True,
|
231
|
+
out_bias=out_bias,
|
232
|
+
processor=CosmosAttnProcessor2_0(),
|
233
|
+
)
|
234
|
+
|
235
|
+
self.norm2 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
236
|
+
self.attn2 = Attention(
|
237
|
+
query_dim=hidden_size,
|
238
|
+
cross_attention_dim=cross_attention_dim,
|
239
|
+
heads=num_attention_heads,
|
240
|
+
dim_head=attention_head_dim,
|
241
|
+
qk_norm=qk_norm,
|
242
|
+
elementwise_affine=True,
|
243
|
+
out_bias=out_bias,
|
244
|
+
processor=CosmosAttnProcessor2_0(),
|
245
|
+
)
|
246
|
+
|
247
|
+
self.norm3 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
248
|
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu", bias=out_bias)
|
249
|
+
|
250
|
+
def forward(
|
251
|
+
self,
|
252
|
+
hidden_states: torch.Tensor,
|
253
|
+
encoder_hidden_states: torch.Tensor,
|
254
|
+
embedded_timestep: torch.Tensor,
|
255
|
+
temb: Optional[torch.Tensor] = None,
|
256
|
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
257
|
+
extra_pos_emb: Optional[torch.Tensor] = None,
|
258
|
+
attention_mask: Optional[torch.Tensor] = None,
|
259
|
+
) -> torch.Tensor:
|
260
|
+
if extra_pos_emb is not None:
|
261
|
+
hidden_states = hidden_states + extra_pos_emb
|
262
|
+
|
263
|
+
# 1. Self Attention
|
264
|
+
norm_hidden_states, gate = self.norm1(hidden_states, embedded_timestep, temb)
|
265
|
+
attn_output = self.attn1(norm_hidden_states, image_rotary_emb=image_rotary_emb)
|
266
|
+
hidden_states = hidden_states + gate * attn_output
|
267
|
+
|
268
|
+
# 2. Cross Attention
|
269
|
+
norm_hidden_states, gate = self.norm2(hidden_states, embedded_timestep, temb)
|
270
|
+
attn_output = self.attn2(
|
271
|
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
272
|
+
)
|
273
|
+
hidden_states = hidden_states + gate * attn_output
|
274
|
+
|
275
|
+
# 3. Feed Forward
|
276
|
+
norm_hidden_states, gate = self.norm3(hidden_states, embedded_timestep, temb)
|
277
|
+
ff_output = self.ff(norm_hidden_states)
|
278
|
+
hidden_states = hidden_states + gate * ff_output
|
279
|
+
|
280
|
+
return hidden_states
|
281
|
+
|
282
|
+
|
283
|
+
class CosmosRotaryPosEmbed(nn.Module):
|
284
|
+
def __init__(
|
285
|
+
self,
|
286
|
+
hidden_size: int,
|
287
|
+
max_size: Tuple[int, int, int] = (128, 240, 240),
|
288
|
+
patch_size: Tuple[int, int, int] = (1, 2, 2),
|
289
|
+
base_fps: int = 24,
|
290
|
+
rope_scale: Tuple[float, float, float] = (2.0, 1.0, 1.0),
|
291
|
+
) -> None:
|
292
|
+
super().__init__()
|
293
|
+
|
294
|
+
self.max_size = [size // patch for size, patch in zip(max_size, patch_size)]
|
295
|
+
self.patch_size = patch_size
|
296
|
+
self.base_fps = base_fps
|
297
|
+
|
298
|
+
self.dim_h = hidden_size // 6 * 2
|
299
|
+
self.dim_w = hidden_size // 6 * 2
|
300
|
+
self.dim_t = hidden_size - self.dim_h - self.dim_w
|
301
|
+
|
302
|
+
self.h_ntk_factor = rope_scale[1] ** (self.dim_h / (self.dim_h - 2))
|
303
|
+
self.w_ntk_factor = rope_scale[2] ** (self.dim_w / (self.dim_w - 2))
|
304
|
+
self.t_ntk_factor = rope_scale[0] ** (self.dim_t / (self.dim_t - 2))
|
305
|
+
|
306
|
+
def forward(self, hidden_states: torch.Tensor, fps: Optional[int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
307
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
308
|
+
pe_size = [num_frames // self.patch_size[0], height // self.patch_size[1], width // self.patch_size[2]]
|
309
|
+
device = hidden_states.device
|
310
|
+
|
311
|
+
h_theta = 10000.0 * self.h_ntk_factor
|
312
|
+
w_theta = 10000.0 * self.w_ntk_factor
|
313
|
+
t_theta = 10000.0 * self.t_ntk_factor
|
314
|
+
|
315
|
+
seq = torch.arange(max(self.max_size), device=device, dtype=torch.float32)
|
316
|
+
dim_h_range = (
|
317
|
+
torch.arange(0, self.dim_h, 2, device=device, dtype=torch.float32)[: (self.dim_h // 2)] / self.dim_h
|
318
|
+
)
|
319
|
+
dim_w_range = (
|
320
|
+
torch.arange(0, self.dim_w, 2, device=device, dtype=torch.float32)[: (self.dim_w // 2)] / self.dim_w
|
321
|
+
)
|
322
|
+
dim_t_range = (
|
323
|
+
torch.arange(0, self.dim_t, 2, device=device, dtype=torch.float32)[: (self.dim_t // 2)] / self.dim_t
|
324
|
+
)
|
325
|
+
h_spatial_freqs = 1.0 / (h_theta**dim_h_range)
|
326
|
+
w_spatial_freqs = 1.0 / (w_theta**dim_w_range)
|
327
|
+
temporal_freqs = 1.0 / (t_theta**dim_t_range)
|
328
|
+
|
329
|
+
emb_h = torch.outer(seq[: pe_size[1]], h_spatial_freqs)[None, :, None, :].repeat(pe_size[0], 1, pe_size[2], 1)
|
330
|
+
emb_w = torch.outer(seq[: pe_size[2]], w_spatial_freqs)[None, None, :, :].repeat(pe_size[0], pe_size[1], 1, 1)
|
331
|
+
|
332
|
+
# Apply sequence scaling in temporal dimension
|
333
|
+
if fps is None:
|
334
|
+
# Images
|
335
|
+
emb_t = torch.outer(seq[: pe_size[0]], temporal_freqs)
|
336
|
+
else:
|
337
|
+
# Videos
|
338
|
+
emb_t = torch.outer(seq[: pe_size[0]] / fps * self.base_fps, temporal_freqs)
|
339
|
+
|
340
|
+
emb_t = emb_t[:, None, None, :].repeat(1, pe_size[1], pe_size[2], 1)
|
341
|
+
freqs = torch.cat([emb_t, emb_h, emb_w] * 2, dim=-1).flatten(0, 2).float()
|
342
|
+
cos = torch.cos(freqs)
|
343
|
+
sin = torch.sin(freqs)
|
344
|
+
return cos, sin
|
345
|
+
|
346
|
+
|
347
|
+
class CosmosLearnablePositionalEmbed(nn.Module):
|
348
|
+
def __init__(
|
349
|
+
self,
|
350
|
+
hidden_size: int,
|
351
|
+
max_size: Tuple[int, int, int],
|
352
|
+
patch_size: Tuple[int, int, int],
|
353
|
+
eps: float = 1e-6,
|
354
|
+
) -> None:
|
355
|
+
super().__init__()
|
356
|
+
|
357
|
+
self.max_size = [size // patch for size, patch in zip(max_size, patch_size)]
|
358
|
+
self.patch_size = patch_size
|
359
|
+
self.eps = eps
|
360
|
+
|
361
|
+
self.pos_emb_t = nn.Parameter(torch.zeros(self.max_size[0], hidden_size))
|
362
|
+
self.pos_emb_h = nn.Parameter(torch.zeros(self.max_size[1], hidden_size))
|
363
|
+
self.pos_emb_w = nn.Parameter(torch.zeros(self.max_size[2], hidden_size))
|
364
|
+
|
365
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
366
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
367
|
+
pe_size = [num_frames // self.patch_size[0], height // self.patch_size[1], width // self.patch_size[2]]
|
368
|
+
|
369
|
+
emb_t = self.pos_emb_t[: pe_size[0]][None, :, None, None, :].repeat(batch_size, 1, pe_size[1], pe_size[2], 1)
|
370
|
+
emb_h = self.pos_emb_h[: pe_size[1]][None, None, :, None, :].repeat(batch_size, pe_size[0], 1, pe_size[2], 1)
|
371
|
+
emb_w = self.pos_emb_w[: pe_size[2]][None, None, None, :, :].repeat(batch_size, pe_size[0], pe_size[1], 1, 1)
|
372
|
+
emb = emb_t + emb_h + emb_w
|
373
|
+
emb = emb.flatten(1, 3)
|
374
|
+
|
375
|
+
norm = torch.linalg.vector_norm(emb, dim=-1, keepdim=True, dtype=torch.float32)
|
376
|
+
norm = torch.add(self.eps, norm, alpha=np.sqrt(norm.numel() / emb.numel()))
|
377
|
+
return (emb / norm).type_as(hidden_states)
|
378
|
+
|
379
|
+
|
380
|
+
class CosmosTransformer3DModel(ModelMixin, ConfigMixin):
|
381
|
+
r"""
|
382
|
+
A Transformer model for video-like data used in [Cosmos](https://github.com/NVIDIA/Cosmos).
|
383
|
+
|
384
|
+
Args:
|
385
|
+
in_channels (`int`, defaults to `16`):
|
386
|
+
The number of channels in the input.
|
387
|
+
out_channels (`int`, defaults to `16`):
|
388
|
+
The number of channels in the output.
|
389
|
+
num_attention_heads (`int`, defaults to `32`):
|
390
|
+
The number of heads to use for multi-head attention.
|
391
|
+
attention_head_dim (`int`, defaults to `128`):
|
392
|
+
The number of channels in each attention head.
|
393
|
+
num_layers (`int`, defaults to `28`):
|
394
|
+
The number of layers of transformer blocks to use.
|
395
|
+
mlp_ratio (`float`, defaults to `4.0`):
|
396
|
+
The ratio of the hidden layer size to the input size in the feedforward network.
|
397
|
+
text_embed_dim (`int`, defaults to `4096`):
|
398
|
+
Input dimension of text embeddings from the text encoder.
|
399
|
+
adaln_lora_dim (`int`, defaults to `256`):
|
400
|
+
The hidden dimension of the Adaptive LayerNorm LoRA layer.
|
401
|
+
max_size (`Tuple[int, int, int]`, defaults to `(128, 240, 240)`):
|
402
|
+
The maximum size of the input latent tensors in the temporal, height, and width dimensions.
|
403
|
+
patch_size (`Tuple[int, int, int]`, defaults to `(1, 2, 2)`):
|
404
|
+
The patch size to use for patchifying the input latent tensors in the temporal, height, and width
|
405
|
+
dimensions.
|
406
|
+
rope_scale (`Tuple[float, float, float]`, defaults to `(2.0, 1.0, 1.0)`):
|
407
|
+
The scaling factor to use for RoPE in the temporal, height, and width dimensions.
|
408
|
+
concat_padding_mask (`bool`, defaults to `True`):
|
409
|
+
Whether to concatenate the padding mask to the input latent tensors.
|
410
|
+
extra_pos_embed_type (`str`, *optional*, defaults to `learnable`):
|
411
|
+
The type of extra positional embeddings to use. Can be one of `None` or `learnable`.
|
412
|
+
"""
|
413
|
+
|
414
|
+
_supports_gradient_checkpointing = True
|
415
|
+
_skip_layerwise_casting_patterns = ["patch_embed", "final_layer", "norm"]
|
416
|
+
_no_split_modules = ["CosmosTransformerBlock"]
|
417
|
+
_keep_in_fp32_modules = ["learnable_pos_embed"]
|
418
|
+
|
419
|
+
@register_to_config
|
420
|
+
def __init__(
|
421
|
+
self,
|
422
|
+
in_channels: int = 16,
|
423
|
+
out_channels: int = 16,
|
424
|
+
num_attention_heads: int = 32,
|
425
|
+
attention_head_dim: int = 128,
|
426
|
+
num_layers: int = 28,
|
427
|
+
mlp_ratio: float = 4.0,
|
428
|
+
text_embed_dim: int = 1024,
|
429
|
+
adaln_lora_dim: int = 256,
|
430
|
+
max_size: Tuple[int, int, int] = (128, 240, 240),
|
431
|
+
patch_size: Tuple[int, int, int] = (1, 2, 2),
|
432
|
+
rope_scale: Tuple[float, float, float] = (2.0, 1.0, 1.0),
|
433
|
+
concat_padding_mask: bool = True,
|
434
|
+
extra_pos_embed_type: Optional[str] = "learnable",
|
435
|
+
) -> None:
|
436
|
+
super().__init__()
|
437
|
+
hidden_size = num_attention_heads * attention_head_dim
|
438
|
+
|
439
|
+
# 1. Patch Embedding
|
440
|
+
patch_embed_in_channels = in_channels + 1 if concat_padding_mask else in_channels
|
441
|
+
self.patch_embed = CosmosPatchEmbed(patch_embed_in_channels, hidden_size, patch_size, bias=False)
|
442
|
+
|
443
|
+
# 2. Positional Embedding
|
444
|
+
self.rope = CosmosRotaryPosEmbed(
|
445
|
+
hidden_size=attention_head_dim, max_size=max_size, patch_size=patch_size, rope_scale=rope_scale
|
446
|
+
)
|
447
|
+
|
448
|
+
self.learnable_pos_embed = None
|
449
|
+
if extra_pos_embed_type == "learnable":
|
450
|
+
self.learnable_pos_embed = CosmosLearnablePositionalEmbed(
|
451
|
+
hidden_size=hidden_size,
|
452
|
+
max_size=max_size,
|
453
|
+
patch_size=patch_size,
|
454
|
+
)
|
455
|
+
|
456
|
+
# 3. Time Embedding
|
457
|
+
self.time_embed = CosmosEmbedding(hidden_size, hidden_size)
|
458
|
+
|
459
|
+
# 4. Transformer Blocks
|
460
|
+
self.transformer_blocks = nn.ModuleList(
|
461
|
+
[
|
462
|
+
CosmosTransformerBlock(
|
463
|
+
num_attention_heads=num_attention_heads,
|
464
|
+
attention_head_dim=attention_head_dim,
|
465
|
+
cross_attention_dim=text_embed_dim,
|
466
|
+
mlp_ratio=mlp_ratio,
|
467
|
+
adaln_lora_dim=adaln_lora_dim,
|
468
|
+
qk_norm="rms_norm",
|
469
|
+
out_bias=False,
|
470
|
+
)
|
471
|
+
for _ in range(num_layers)
|
472
|
+
]
|
473
|
+
)
|
474
|
+
|
475
|
+
# 5. Output norm & projection
|
476
|
+
self.norm_out = CosmosAdaLayerNorm(hidden_size, adaln_lora_dim)
|
477
|
+
self.proj_out = nn.Linear(
|
478
|
+
hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels, bias=False
|
479
|
+
)
|
480
|
+
|
481
|
+
self.gradient_checkpointing = False
|
482
|
+
|
483
|
+
def forward(
|
484
|
+
self,
|
485
|
+
hidden_states: torch.Tensor,
|
486
|
+
timestep: torch.Tensor,
|
487
|
+
encoder_hidden_states: torch.Tensor,
|
488
|
+
attention_mask: Optional[torch.Tensor] = None,
|
489
|
+
fps: Optional[int] = None,
|
490
|
+
condition_mask: Optional[torch.Tensor] = None,
|
491
|
+
padding_mask: Optional[torch.Tensor] = None,
|
492
|
+
return_dict: bool = True,
|
493
|
+
) -> torch.Tensor:
|
494
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
495
|
+
|
496
|
+
# 1. Concatenate padding mask if needed & prepare attention mask
|
497
|
+
if condition_mask is not None:
|
498
|
+
hidden_states = torch.cat([hidden_states, condition_mask], dim=1)
|
499
|
+
|
500
|
+
if self.config.concat_padding_mask:
|
501
|
+
padding_mask = transforms.functional.resize(
|
502
|
+
padding_mask, list(hidden_states.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
|
503
|
+
)
|
504
|
+
hidden_states = torch.cat(
|
505
|
+
[hidden_states, padding_mask.unsqueeze(2).repeat(batch_size, 1, num_frames, 1, 1)], dim=1
|
506
|
+
)
|
507
|
+
|
508
|
+
if attention_mask is not None:
|
509
|
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # [B, 1, 1, S]
|
510
|
+
|
511
|
+
# 2. Generate positional embeddings
|
512
|
+
image_rotary_emb = self.rope(hidden_states, fps=fps)
|
513
|
+
extra_pos_emb = self.learnable_pos_embed(hidden_states) if self.config.extra_pos_embed_type else None
|
514
|
+
|
515
|
+
# 3. Patchify input
|
516
|
+
p_t, p_h, p_w = self.config.patch_size
|
517
|
+
post_patch_num_frames = num_frames // p_t
|
518
|
+
post_patch_height = height // p_h
|
519
|
+
post_patch_width = width // p_w
|
520
|
+
hidden_states = self.patch_embed(hidden_states)
|
521
|
+
hidden_states = hidden_states.flatten(1, 3) # [B, T, H, W, C] -> [B, THW, C]
|
522
|
+
|
523
|
+
# 4. Timestep embeddings
|
524
|
+
if timestep.ndim == 1:
|
525
|
+
temb, embedded_timestep = self.time_embed(hidden_states, timestep)
|
526
|
+
elif timestep.ndim == 5:
|
527
|
+
assert timestep.shape == (batch_size, 1, num_frames, 1, 1), (
|
528
|
+
f"Expected timestep to have shape [B, 1, T, 1, 1], but got {timestep.shape}"
|
529
|
+
)
|
530
|
+
timestep = timestep.flatten()
|
531
|
+
temb, embedded_timestep = self.time_embed(hidden_states, timestep)
|
532
|
+
# We can do this because num_frames == post_patch_num_frames, as p_t is 1
|
533
|
+
temb, embedded_timestep = (
|
534
|
+
x.view(batch_size, post_patch_num_frames, 1, 1, -1)
|
535
|
+
.expand(-1, -1, post_patch_height, post_patch_width, -1)
|
536
|
+
.flatten(1, 3)
|
537
|
+
for x in (temb, embedded_timestep)
|
538
|
+
) # [BT, C] -> [B, T, 1, 1, C] -> [B, T, H, W, C] -> [B, THW, C]
|
539
|
+
else:
|
540
|
+
assert False
|
541
|
+
|
542
|
+
# 5. Transformer blocks
|
543
|
+
for block in self.transformer_blocks:
|
544
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
545
|
+
hidden_states = self._gradient_checkpointing_func(
|
546
|
+
block,
|
547
|
+
hidden_states,
|
548
|
+
encoder_hidden_states,
|
549
|
+
embedded_timestep,
|
550
|
+
temb,
|
551
|
+
image_rotary_emb,
|
552
|
+
extra_pos_emb,
|
553
|
+
attention_mask,
|
554
|
+
)
|
555
|
+
else:
|
556
|
+
hidden_states = block(
|
557
|
+
hidden_states=hidden_states,
|
558
|
+
encoder_hidden_states=encoder_hidden_states,
|
559
|
+
embedded_timestep=embedded_timestep,
|
560
|
+
temb=temb,
|
561
|
+
image_rotary_emb=image_rotary_emb,
|
562
|
+
extra_pos_emb=extra_pos_emb,
|
563
|
+
attention_mask=attention_mask,
|
564
|
+
)
|
565
|
+
|
566
|
+
# 6. Output norm & projection & unpatchify
|
567
|
+
hidden_states = self.norm_out(hidden_states, embedded_timestep, temb)
|
568
|
+
hidden_states = self.proj_out(hidden_states)
|
569
|
+
hidden_states = hidden_states.unflatten(2, (p_h, p_w, p_t, -1))
|
570
|
+
hidden_states = hidden_states.unflatten(1, (post_patch_num_frames, post_patch_height, post_patch_width))
|
571
|
+
# NOTE: The permutation order here is not the inverse operation of what happens when patching as usually expected.
|
572
|
+
# It might be a source of confusion to the reader, but this is correct
|
573
|
+
hidden_states = hidden_states.permute(0, 7, 1, 6, 2, 4, 3, 5)
|
574
|
+
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
575
|
+
|
576
|
+
if not return_dict:
|
577
|
+
return (hidden_states,)
|
578
|
+
|
579
|
+
return Transformer2DModelOutput(sample=hidden_states)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -21,22 +21,22 @@ import torch.nn as nn
|
|
21
21
|
|
22
22
|
from ...configuration_utils import ConfigMixin, register_to_config
|
23
23
|
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
24
|
-
from ...
|
25
|
-
from ...
|
24
|
+
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25
|
+
from ...utils.import_utils import is_torch_npu_available
|
26
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
27
|
+
from ..attention import FeedForward
|
28
|
+
from ..attention_processor import (
|
26
29
|
Attention,
|
27
30
|
AttentionProcessor,
|
28
31
|
FluxAttnProcessor2_0,
|
29
32
|
FluxAttnProcessor2_0_NPU,
|
30
33
|
FusedFluxAttnProcessor2_0,
|
31
34
|
)
|
32
|
-
from ...models.modeling_utils import ModelMixin
|
33
|
-
from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
34
|
-
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
35
|
-
from ...utils.import_utils import is_torch_npu_available
|
36
|
-
from ...utils.torch_utils import maybe_allow_in_graph
|
37
35
|
from ..cache_utils import CacheMixin
|
38
36
|
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
39
37
|
from ..modeling_outputs import Transformer2DModelOutput
|
38
|
+
from ..modeling_utils import ModelMixin
|
39
|
+
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
40
40
|
|
41
41
|
|
42
42
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -241,7 +241,7 @@ class FluxTransformer2DModel(
|
|
241
241
|
joint_attention_dim: int = 4096,
|
242
242
|
pooled_projection_dim: int = 768,
|
243
243
|
guidance_embeds: bool = False,
|
244
|
-
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
244
|
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
245
245
|
):
|
246
246
|
super().__init__()
|
247
247
|
self.out_channels = out_channels or in_channels
|
@@ -447,8 +447,6 @@ class FluxTransformer2DModel(
|
|
447
447
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
448
448
|
if guidance is not None:
|
449
449
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
450
|
-
else:
|
451
|
-
guidance = None
|
452
450
|
|
453
451
|
temb = (
|
454
452
|
self.time_text_embed(timestep, pooled_projections)
|