diffusers 0.32.2__py3-none-any.whl → 0.33.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +595 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +724 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +727 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/METADATA +21 -4
  384. diffusers-0.33.1.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,595 @@
1
+ # Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import regex as re
19
+ import torch
20
+ from transformers import AutoTokenizer, UMT5EncoderModel
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...loaders import WanLoraLoaderMixin
24
+ from ...models import AutoencoderKLWan, WanTransformer3DModel
25
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
26
+ from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ...video_processor import VideoProcessor
29
+ from ..pipeline_utils import DiffusionPipeline
30
+ from .pipeline_output import WanPipelineOutput
31
+
32
+
33
+ if is_torch_xla_available():
34
+ import torch_xla.core.xla_model as xm
35
+
36
+ XLA_AVAILABLE = True
37
+ else:
38
+ XLA_AVAILABLE = False
39
+
40
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
41
+
42
+ if is_ftfy_available():
43
+ import ftfy
44
+
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```python
49
+ >>> import torch
50
+ >>> from diffusers.utils import export_to_video
51
+ >>> from diffusers import AutoencoderKLWan, WanPipeline
52
+ >>> from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
53
+
54
+ >>> # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
55
+ >>> model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
56
+ >>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
57
+ >>> pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
58
+ >>> flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
59
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
63
+ >>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
64
+
65
+ >>> output = pipe(
66
+ ... prompt=prompt,
67
+ ... negative_prompt=negative_prompt,
68
+ ... height=720,
69
+ ... width=1280,
70
+ ... num_frames=81,
71
+ ... guidance_scale=5.0,
72
+ ... ).frames[0]
73
+ >>> export_to_video(output, "output.mp4", fps=16)
74
+ ```
75
+ """
76
+
77
+
78
+ def basic_clean(text):
79
+ text = ftfy.fix_text(text)
80
+ text = html.unescape(html.unescape(text))
81
+ return text.strip()
82
+
83
+
84
+ def whitespace_clean(text):
85
+ text = re.sub(r"\s+", " ", text)
86
+ text = text.strip()
87
+ return text
88
+
89
+
90
+ def prompt_clean(text):
91
+ text = whitespace_clean(basic_clean(text))
92
+ return text
93
+
94
+
95
+ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
96
+ r"""
97
+ Pipeline for text-to-video generation using Wan.
98
+
99
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
100
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
101
+
102
+ Args:
103
+ tokenizer ([`T5Tokenizer`]):
104
+ Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
105
+ specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
106
+ text_encoder ([`T5EncoderModel`]):
107
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
108
+ the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
109
+ transformer ([`WanTransformer3DModel`]):
110
+ Conditional Transformer to denoise the input latents.
111
+ scheduler ([`UniPCMultistepScheduler`]):
112
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
113
+ vae ([`AutoencoderKLWan`]):
114
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
115
+ """
116
+
117
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
118
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
119
+
120
+ def __init__(
121
+ self,
122
+ tokenizer: AutoTokenizer,
123
+ text_encoder: UMT5EncoderModel,
124
+ transformer: WanTransformer3DModel,
125
+ vae: AutoencoderKLWan,
126
+ scheduler: FlowMatchEulerDiscreteScheduler,
127
+ ):
128
+ super().__init__()
129
+
130
+ self.register_modules(
131
+ vae=vae,
132
+ text_encoder=text_encoder,
133
+ tokenizer=tokenizer,
134
+ transformer=transformer,
135
+ scheduler=scheduler,
136
+ )
137
+
138
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
139
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
140
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
141
+
142
+ def _get_t5_prompt_embeds(
143
+ self,
144
+ prompt: Union[str, List[str]] = None,
145
+ num_videos_per_prompt: int = 1,
146
+ max_sequence_length: int = 226,
147
+ device: Optional[torch.device] = None,
148
+ dtype: Optional[torch.dtype] = None,
149
+ ):
150
+ device = device or self._execution_device
151
+ dtype = dtype or self.text_encoder.dtype
152
+
153
+ prompt = [prompt] if isinstance(prompt, str) else prompt
154
+ prompt = [prompt_clean(u) for u in prompt]
155
+ batch_size = len(prompt)
156
+
157
+ text_inputs = self.tokenizer(
158
+ prompt,
159
+ padding="max_length",
160
+ max_length=max_sequence_length,
161
+ truncation=True,
162
+ add_special_tokens=True,
163
+ return_attention_mask=True,
164
+ return_tensors="pt",
165
+ )
166
+ text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
167
+ seq_lens = mask.gt(0).sum(dim=1).long()
168
+
169
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
170
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
171
+ prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
172
+ prompt_embeds = torch.stack(
173
+ [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
174
+ )
175
+
176
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
177
+ _, seq_len, _ = prompt_embeds.shape
178
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
179
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
180
+
181
+ return prompt_embeds
182
+
183
+ def encode_prompt(
184
+ self,
185
+ prompt: Union[str, List[str]],
186
+ negative_prompt: Optional[Union[str, List[str]]] = None,
187
+ do_classifier_free_guidance: bool = True,
188
+ num_videos_per_prompt: int = 1,
189
+ prompt_embeds: Optional[torch.Tensor] = None,
190
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
191
+ max_sequence_length: int = 226,
192
+ device: Optional[torch.device] = None,
193
+ dtype: Optional[torch.dtype] = None,
194
+ ):
195
+ r"""
196
+ Encodes the prompt into text encoder hidden states.
197
+
198
+ Args:
199
+ prompt (`str` or `List[str]`, *optional*):
200
+ prompt to be encoded
201
+ negative_prompt (`str` or `List[str]`, *optional*):
202
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
203
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
204
+ less than `1`).
205
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
206
+ Whether to use classifier free guidance or not.
207
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
208
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
209
+ prompt_embeds (`torch.Tensor`, *optional*):
210
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
211
+ provided, text embeddings will be generated from `prompt` input argument.
212
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
213
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
214
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
215
+ argument.
216
+ device: (`torch.device`, *optional*):
217
+ torch device
218
+ dtype: (`torch.dtype`, *optional*):
219
+ torch dtype
220
+ """
221
+ device = device or self._execution_device
222
+
223
+ prompt = [prompt] if isinstance(prompt, str) else prompt
224
+ if prompt is not None:
225
+ batch_size = len(prompt)
226
+ else:
227
+ batch_size = prompt_embeds.shape[0]
228
+
229
+ if prompt_embeds is None:
230
+ prompt_embeds = self._get_t5_prompt_embeds(
231
+ prompt=prompt,
232
+ num_videos_per_prompt=num_videos_per_prompt,
233
+ max_sequence_length=max_sequence_length,
234
+ device=device,
235
+ dtype=dtype,
236
+ )
237
+
238
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
239
+ negative_prompt = negative_prompt or ""
240
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
241
+
242
+ if prompt is not None and type(prompt) is not type(negative_prompt):
243
+ raise TypeError(
244
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
245
+ f" {type(prompt)}."
246
+ )
247
+ elif batch_size != len(negative_prompt):
248
+ raise ValueError(
249
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
250
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
251
+ " the batch size of `prompt`."
252
+ )
253
+
254
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
255
+ prompt=negative_prompt,
256
+ num_videos_per_prompt=num_videos_per_prompt,
257
+ max_sequence_length=max_sequence_length,
258
+ device=device,
259
+ dtype=dtype,
260
+ )
261
+
262
+ return prompt_embeds, negative_prompt_embeds
263
+
264
+ def check_inputs(
265
+ self,
266
+ prompt,
267
+ negative_prompt,
268
+ height,
269
+ width,
270
+ prompt_embeds=None,
271
+ negative_prompt_embeds=None,
272
+ callback_on_step_end_tensor_inputs=None,
273
+ ):
274
+ if height % 16 != 0 or width % 16 != 0:
275
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
276
+
277
+ if callback_on_step_end_tensor_inputs is not None and not all(
278
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
279
+ ):
280
+ raise ValueError(
281
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
282
+ )
283
+
284
+ if prompt is not None and prompt_embeds is not None:
285
+ raise ValueError(
286
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
287
+ " only forward one of the two."
288
+ )
289
+ elif negative_prompt is not None and negative_prompt_embeds is not None:
290
+ raise ValueError(
291
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
292
+ " only forward one of the two."
293
+ )
294
+ elif prompt is None and prompt_embeds is None:
295
+ raise ValueError(
296
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
297
+ )
298
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
299
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
300
+ elif negative_prompt is not None and (
301
+ not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
302
+ ):
303
+ raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
304
+
305
+ def prepare_latents(
306
+ self,
307
+ batch_size: int,
308
+ num_channels_latents: int = 16,
309
+ height: int = 480,
310
+ width: int = 832,
311
+ num_frames: int = 81,
312
+ dtype: Optional[torch.dtype] = None,
313
+ device: Optional[torch.device] = None,
314
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
315
+ latents: Optional[torch.Tensor] = None,
316
+ ) -> torch.Tensor:
317
+ if latents is not None:
318
+ return latents.to(device=device, dtype=dtype)
319
+
320
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
321
+ shape = (
322
+ batch_size,
323
+ num_channels_latents,
324
+ num_latent_frames,
325
+ int(height) // self.vae_scale_factor_spatial,
326
+ int(width) // self.vae_scale_factor_spatial,
327
+ )
328
+ if isinstance(generator, list) and len(generator) != batch_size:
329
+ raise ValueError(
330
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
331
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
332
+ )
333
+
334
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
335
+ return latents
336
+
337
+ @property
338
+ def guidance_scale(self):
339
+ return self._guidance_scale
340
+
341
+ @property
342
+ def do_classifier_free_guidance(self):
343
+ return self._guidance_scale > 1.0
344
+
345
+ @property
346
+ def num_timesteps(self):
347
+ return self._num_timesteps
348
+
349
+ @property
350
+ def current_timestep(self):
351
+ return self._current_timestep
352
+
353
+ @property
354
+ def interrupt(self):
355
+ return self._interrupt
356
+
357
+ @property
358
+ def attention_kwargs(self):
359
+ return self._attention_kwargs
360
+
361
+ @torch.no_grad()
362
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
363
+ def __call__(
364
+ self,
365
+ prompt: Union[str, List[str]] = None,
366
+ negative_prompt: Union[str, List[str]] = None,
367
+ height: int = 480,
368
+ width: int = 832,
369
+ num_frames: int = 81,
370
+ num_inference_steps: int = 50,
371
+ guidance_scale: float = 5.0,
372
+ num_videos_per_prompt: Optional[int] = 1,
373
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
374
+ latents: Optional[torch.Tensor] = None,
375
+ prompt_embeds: Optional[torch.Tensor] = None,
376
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
377
+ output_type: Optional[str] = "np",
378
+ return_dict: bool = True,
379
+ attention_kwargs: Optional[Dict[str, Any]] = None,
380
+ callback_on_step_end: Optional[
381
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
382
+ ] = None,
383
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
384
+ max_sequence_length: int = 512,
385
+ ):
386
+ r"""
387
+ The call function to the pipeline for generation.
388
+
389
+ Args:
390
+ prompt (`str` or `List[str]`, *optional*):
391
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
392
+ instead.
393
+ height (`int`, defaults to `480`):
394
+ The height in pixels of the generated image.
395
+ width (`int`, defaults to `832`):
396
+ The width in pixels of the generated image.
397
+ num_frames (`int`, defaults to `81`):
398
+ The number of frames in the generated video.
399
+ num_inference_steps (`int`, defaults to `50`):
400
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
401
+ expense of slower inference.
402
+ guidance_scale (`float`, defaults to `5.0`):
403
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
404
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
405
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
406
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
407
+ usually at the expense of lower image quality.
408
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
409
+ The number of images to generate per prompt.
410
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
411
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
412
+ generation deterministic.
413
+ latents (`torch.Tensor`, *optional*):
414
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
415
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
416
+ tensor is generated by sampling using the supplied random `generator`.
417
+ prompt_embeds (`torch.Tensor`, *optional*):
418
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
419
+ provided, text embeddings are generated from the `prompt` input argument.
420
+ output_type (`str`, *optional*, defaults to `"pil"`):
421
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
422
+ return_dict (`bool`, *optional*, defaults to `True`):
423
+ Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
424
+ attention_kwargs (`dict`, *optional*):
425
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
426
+ `self.processor` in
427
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
428
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
429
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
430
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
431
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
432
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
433
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
434
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
435
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
436
+ `._callback_tensor_inputs` attribute of your pipeline class.
437
+ autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
438
+ The dtype to use for the torch.amp.autocast.
439
+
440
+ Examples:
441
+
442
+ Returns:
443
+ [`~WanPipelineOutput`] or `tuple`:
444
+ If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
445
+ the first element is a list with the generated images and the second element is a list of `bool`s
446
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
447
+ """
448
+
449
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
450
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
451
+
452
+ # 1. Check inputs. Raise error if not correct
453
+ self.check_inputs(
454
+ prompt,
455
+ negative_prompt,
456
+ height,
457
+ width,
458
+ prompt_embeds,
459
+ negative_prompt_embeds,
460
+ callback_on_step_end_tensor_inputs,
461
+ )
462
+
463
+ if num_frames % self.vae_scale_factor_temporal != 1:
464
+ logger.warning(
465
+ f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
466
+ )
467
+ num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
468
+ num_frames = max(num_frames, 1)
469
+
470
+ self._guidance_scale = guidance_scale
471
+ self._attention_kwargs = attention_kwargs
472
+ self._current_timestep = None
473
+ self._interrupt = False
474
+
475
+ device = self._execution_device
476
+
477
+ # 2. Define call parameters
478
+ if prompt is not None and isinstance(prompt, str):
479
+ batch_size = 1
480
+ elif prompt is not None and isinstance(prompt, list):
481
+ batch_size = len(prompt)
482
+ else:
483
+ batch_size = prompt_embeds.shape[0]
484
+
485
+ # 3. Encode input prompt
486
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
487
+ prompt=prompt,
488
+ negative_prompt=negative_prompt,
489
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
490
+ num_videos_per_prompt=num_videos_per_prompt,
491
+ prompt_embeds=prompt_embeds,
492
+ negative_prompt_embeds=negative_prompt_embeds,
493
+ max_sequence_length=max_sequence_length,
494
+ device=device,
495
+ )
496
+
497
+ transformer_dtype = self.transformer.dtype
498
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
499
+ if negative_prompt_embeds is not None:
500
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
501
+
502
+ # 4. Prepare timesteps
503
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
504
+ timesteps = self.scheduler.timesteps
505
+
506
+ # 5. Prepare latent variables
507
+ num_channels_latents = self.transformer.config.in_channels
508
+ latents = self.prepare_latents(
509
+ batch_size * num_videos_per_prompt,
510
+ num_channels_latents,
511
+ height,
512
+ width,
513
+ num_frames,
514
+ torch.float32,
515
+ device,
516
+ generator,
517
+ latents,
518
+ )
519
+
520
+ # 6. Denoising loop
521
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
522
+ self._num_timesteps = len(timesteps)
523
+
524
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
525
+ for i, t in enumerate(timesteps):
526
+ if self.interrupt:
527
+ continue
528
+
529
+ self._current_timestep = t
530
+ latent_model_input = latents.to(transformer_dtype)
531
+ timestep = t.expand(latents.shape[0])
532
+
533
+ noise_pred = self.transformer(
534
+ hidden_states=latent_model_input,
535
+ timestep=timestep,
536
+ encoder_hidden_states=prompt_embeds,
537
+ attention_kwargs=attention_kwargs,
538
+ return_dict=False,
539
+ )[0]
540
+
541
+ if self.do_classifier_free_guidance:
542
+ noise_uncond = self.transformer(
543
+ hidden_states=latent_model_input,
544
+ timestep=timestep,
545
+ encoder_hidden_states=negative_prompt_embeds,
546
+ attention_kwargs=attention_kwargs,
547
+ return_dict=False,
548
+ )[0]
549
+ noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
550
+
551
+ # compute the previous noisy sample x_t -> x_t-1
552
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
553
+
554
+ if callback_on_step_end is not None:
555
+ callback_kwargs = {}
556
+ for k in callback_on_step_end_tensor_inputs:
557
+ callback_kwargs[k] = locals()[k]
558
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
559
+
560
+ latents = callback_outputs.pop("latents", latents)
561
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
562
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
563
+
564
+ # call the callback, if provided
565
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
566
+ progress_bar.update()
567
+
568
+ if XLA_AVAILABLE:
569
+ xm.mark_step()
570
+
571
+ self._current_timestep = None
572
+
573
+ if not output_type == "latent":
574
+ latents = latents.to(self.vae.dtype)
575
+ latents_mean = (
576
+ torch.tensor(self.vae.config.latents_mean)
577
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
578
+ .to(latents.device, latents.dtype)
579
+ )
580
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
581
+ latents.device, latents.dtype
582
+ )
583
+ latents = latents / latents_std + latents_mean
584
+ video = self.vae.decode(latents, return_dict=False)[0]
585
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
586
+ else:
587
+ video = latents
588
+
589
+ # Offload all models
590
+ self.maybe_free_model_hooks()
591
+
592
+ if not return_dict:
593
+ return (video,)
594
+
595
+ return WanPipelineOutput(frames=video)