diffusers 0.32.2__py3-none-any.whl → 0.33.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +595 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +724 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +727 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/METADATA +21 -4
  384. diffusers-0.33.1.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,793 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from contextlib import contextmanager, nullcontext
16
+ from typing import Dict, List, Optional, Set, Tuple
17
+
18
+ import torch
19
+
20
+ from ..utils import get_logger, is_accelerate_available
21
+ from .hooks import HookRegistry, ModelHook
22
+
23
+
24
+ if is_accelerate_available():
25
+ from accelerate.hooks import AlignDevicesHook, CpuOffload
26
+ from accelerate.utils import send_to_device
27
+
28
+
29
+ logger = get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ # fmt: off
33
+ _GROUP_OFFLOADING = "group_offloading"
34
+ _LAYER_EXECUTION_TRACKER = "layer_execution_tracker"
35
+ _LAZY_PREFETCH_GROUP_OFFLOADING = "lazy_prefetch_group_offloading"
36
+
37
+ _SUPPORTED_PYTORCH_LAYERS = (
38
+ torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d,
39
+ torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d,
40
+ torch.nn.Linear,
41
+ # TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
42
+ # because of double invocation of the same norm layer in CogVideoXLayerNorm
43
+ )
44
+ # fmt: on
45
+
46
+
47
+ class ModuleGroup:
48
+ def __init__(
49
+ self,
50
+ modules: List[torch.nn.Module],
51
+ offload_device: torch.device,
52
+ onload_device: torch.device,
53
+ offload_leader: torch.nn.Module,
54
+ onload_leader: Optional[torch.nn.Module] = None,
55
+ parameters: Optional[List[torch.nn.Parameter]] = None,
56
+ buffers: Optional[List[torch.Tensor]] = None,
57
+ non_blocking: bool = False,
58
+ stream: Optional[torch.cuda.Stream] = None,
59
+ record_stream: Optional[bool] = False,
60
+ low_cpu_mem_usage=False,
61
+ onload_self: bool = True,
62
+ ) -> None:
63
+ self.modules = modules
64
+ self.offload_device = offload_device
65
+ self.onload_device = onload_device
66
+ self.offload_leader = offload_leader
67
+ self.onload_leader = onload_leader
68
+ self.parameters = parameters or []
69
+ self.buffers = buffers or []
70
+ self.non_blocking = non_blocking or stream is not None
71
+ self.stream = stream
72
+ self.record_stream = record_stream
73
+ self.onload_self = onload_self
74
+ self.low_cpu_mem_usage = low_cpu_mem_usage
75
+ self.cpu_param_dict = self._init_cpu_param_dict()
76
+
77
+ if self.stream is None and self.record_stream:
78
+ raise ValueError("`record_stream` cannot be True when `stream` is None.")
79
+
80
+ def _init_cpu_param_dict(self):
81
+ cpu_param_dict = {}
82
+ if self.stream is None:
83
+ return cpu_param_dict
84
+
85
+ for module in self.modules:
86
+ for param in module.parameters():
87
+ cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
88
+ for buffer in module.buffers():
89
+ cpu_param_dict[buffer] = (
90
+ buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
91
+ )
92
+
93
+ for param in self.parameters:
94
+ cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
95
+
96
+ for buffer in self.buffers:
97
+ cpu_param_dict[buffer] = buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
98
+
99
+ return cpu_param_dict
100
+
101
+ @contextmanager
102
+ def _pinned_memory_tensors(self):
103
+ pinned_dict = {}
104
+ try:
105
+ for param, tensor in self.cpu_param_dict.items():
106
+ if not tensor.is_pinned():
107
+ pinned_dict[param] = tensor.pin_memory()
108
+ else:
109
+ pinned_dict[param] = tensor
110
+
111
+ yield pinned_dict
112
+
113
+ finally:
114
+ pinned_dict = None
115
+
116
+ def onload_(self):
117
+ r"""Onloads the group of modules to the onload_device."""
118
+ context = nullcontext() if self.stream is None else torch.cuda.stream(self.stream)
119
+ current_stream = torch.cuda.current_stream() if self.record_stream else None
120
+
121
+ if self.stream is not None:
122
+ # Wait for previous Host->Device transfer to complete
123
+ self.stream.synchronize()
124
+
125
+ with context:
126
+ if self.stream is not None:
127
+ with self._pinned_memory_tensors() as pinned_memory:
128
+ for group_module in self.modules:
129
+ for param in group_module.parameters():
130
+ param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)
131
+ if self.record_stream:
132
+ param.data.record_stream(current_stream)
133
+ for buffer in group_module.buffers():
134
+ buffer.data = pinned_memory[buffer].to(self.onload_device, non_blocking=self.non_blocking)
135
+ if self.record_stream:
136
+ buffer.data.record_stream(current_stream)
137
+
138
+ for param in self.parameters:
139
+ param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)
140
+ if self.record_stream:
141
+ param.data.record_stream(current_stream)
142
+
143
+ for buffer in self.buffers:
144
+ buffer.data = pinned_memory[buffer].to(self.onload_device, non_blocking=self.non_blocking)
145
+ if self.record_stream:
146
+ buffer.data.record_stream(current_stream)
147
+
148
+ else:
149
+ for group_module in self.modules:
150
+ for param in group_module.parameters():
151
+ param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
152
+ for buffer in group_module.buffers():
153
+ buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)
154
+
155
+ for param in self.parameters:
156
+ param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
157
+
158
+ for buffer in self.buffers:
159
+ buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)
160
+ if self.record_stream:
161
+ buffer.data.record_stream(current_stream)
162
+
163
+ def offload_(self):
164
+ r"""Offloads the group of modules to the offload_device."""
165
+ if self.stream is not None:
166
+ if not self.record_stream:
167
+ torch.cuda.current_stream().synchronize()
168
+ for group_module in self.modules:
169
+ for param in group_module.parameters():
170
+ param.data = self.cpu_param_dict[param]
171
+ for param in self.parameters:
172
+ param.data = self.cpu_param_dict[param]
173
+ for buffer in self.buffers:
174
+ buffer.data = self.cpu_param_dict[buffer]
175
+
176
+ else:
177
+ for group_module in self.modules:
178
+ group_module.to(self.offload_device, non_blocking=self.non_blocking)
179
+ for param in self.parameters:
180
+ param.data = param.data.to(self.offload_device, non_blocking=self.non_blocking)
181
+ for buffer in self.buffers:
182
+ buffer.data = buffer.data.to(self.offload_device, non_blocking=self.non_blocking)
183
+
184
+
185
+ class GroupOffloadingHook(ModelHook):
186
+ r"""
187
+ A hook that offloads groups of torch.nn.Module to the CPU for storage and onloads to accelerator device for
188
+ computation. Each group has one "onload leader" module that is responsible for onloading, and an "offload leader"
189
+ module that is responsible for offloading. If prefetching is enabled, the onload leader of the previous module
190
+ group is responsible for onloading the current module group.
191
+ """
192
+
193
+ _is_stateful = False
194
+
195
+ def __init__(
196
+ self,
197
+ group: ModuleGroup,
198
+ next_group: Optional[ModuleGroup] = None,
199
+ ) -> None:
200
+ self.group = group
201
+ self.next_group = next_group
202
+
203
+ def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
204
+ if self.group.offload_leader == module:
205
+ self.group.offload_()
206
+ return module
207
+
208
+ def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
209
+ # If there wasn't an onload_leader assigned, we assume that the submodule that first called its forward
210
+ # method is the onload_leader of the group.
211
+ if self.group.onload_leader is None:
212
+ self.group.onload_leader = module
213
+
214
+ # If the current module is the onload_leader of the group, we onload the group if it is supposed
215
+ # to onload itself. In the case of using prefetching with streams, we onload the next group if
216
+ # it is not supposed to onload itself.
217
+ if self.group.onload_leader == module:
218
+ if self.group.onload_self:
219
+ self.group.onload_()
220
+ if self.next_group is not None and not self.next_group.onload_self:
221
+ self.next_group.onload_()
222
+
223
+ args = send_to_device(args, self.group.onload_device, non_blocking=self.group.non_blocking)
224
+ kwargs = send_to_device(kwargs, self.group.onload_device, non_blocking=self.group.non_blocking)
225
+ return args, kwargs
226
+
227
+ def post_forward(self, module: torch.nn.Module, output):
228
+ if self.group.offload_leader == module:
229
+ self.group.offload_()
230
+ return output
231
+
232
+
233
+ class LazyPrefetchGroupOffloadingHook(ModelHook):
234
+ r"""
235
+ A hook, used in conjuction with GroupOffloadingHook, that applies lazy prefetching to groups of torch.nn.Module.
236
+ This hook is used to determine the order in which the layers are executed during the forward pass. Once the layer
237
+ invocation order is known, assignments of the next_group attribute for prefetching can be made, which allows
238
+ prefetching groups in the correct order.
239
+ """
240
+
241
+ _is_stateful = False
242
+
243
+ def __init__(self):
244
+ self.execution_order: List[Tuple[str, torch.nn.Module]] = []
245
+ self._layer_execution_tracker_module_names = set()
246
+
247
+ def initialize_hook(self, module):
248
+ def make_execution_order_update_callback(current_name, current_submodule):
249
+ def callback():
250
+ logger.debug(f"Adding {current_name} to the execution order")
251
+ self.execution_order.append((current_name, current_submodule))
252
+
253
+ return callback
254
+
255
+ # To every submodule that contains a group offloading hook (at this point, no prefetching is enabled for any
256
+ # of the groups), we add a layer execution tracker hook that will be used to determine the order in which the
257
+ # layers are executed during the forward pass.
258
+ for name, submodule in module.named_modules():
259
+ if name == "" or not hasattr(submodule, "_diffusers_hook"):
260
+ continue
261
+
262
+ registry = HookRegistry.check_if_exists_or_initialize(submodule)
263
+ group_offloading_hook = registry.get_hook(_GROUP_OFFLOADING)
264
+
265
+ if group_offloading_hook is not None:
266
+ # For the first forward pass, we have to load in a blocking manner
267
+ group_offloading_hook.group.non_blocking = False
268
+ layer_tracker_hook = LayerExecutionTrackerHook(make_execution_order_update_callback(name, submodule))
269
+ registry.register_hook(layer_tracker_hook, _LAYER_EXECUTION_TRACKER)
270
+ self._layer_execution_tracker_module_names.add(name)
271
+
272
+ return module
273
+
274
+ def post_forward(self, module, output):
275
+ # At this point, for the current modules' submodules, we know the execution order of the layers. We can now
276
+ # remove the layer execution tracker hooks and apply prefetching by setting the next_group attribute for each
277
+ # group offloading hook.
278
+ num_executed = len(self.execution_order)
279
+ execution_order_module_names = {name for name, _ in self.execution_order}
280
+
281
+ # It may be possible that some layers were not executed during the forward pass. This can happen if the layer
282
+ # is not used in the forward pass, or if the layer is not executed due to some other reason. In such cases, we
283
+ # may not be able to apply prefetching in the correct order, which can lead to device-mismatch related errors
284
+ # if the missing layers end up being executed in the future.
285
+ if execution_order_module_names != self._layer_execution_tracker_module_names:
286
+ unexecuted_layers = list(self._layer_execution_tracker_module_names - execution_order_module_names)
287
+ logger.warning(
288
+ "It seems like some layers were not executed during the forward pass. This may lead to problems when "
289
+ "applying lazy prefetching with automatic tracing and lead to device-mismatch related errors. Please "
290
+ "make sure that all layers are executed during the forward pass. The following layers were not executed:\n"
291
+ f"{unexecuted_layers=}"
292
+ )
293
+
294
+ # Remove the layer execution tracker hooks from the submodules
295
+ base_module_registry = module._diffusers_hook
296
+ registries = [submodule._diffusers_hook for _, submodule in self.execution_order]
297
+ group_offloading_hooks = [registry.get_hook(_GROUP_OFFLOADING) for registry in registries]
298
+
299
+ for i in range(num_executed):
300
+ registries[i].remove_hook(_LAYER_EXECUTION_TRACKER, recurse=False)
301
+
302
+ # Remove the current lazy prefetch group offloading hook so that it doesn't interfere with the next forward pass
303
+ base_module_registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=False)
304
+
305
+ # LazyPrefetchGroupOffloadingHook is only used with streams, so we know that non_blocking should be True.
306
+ # We disable non_blocking for the first forward pass, but need to enable it for the subsequent passes to
307
+ # see the benefits of prefetching.
308
+ for hook in group_offloading_hooks:
309
+ hook.group.non_blocking = True
310
+
311
+ # Set required attributes for prefetching
312
+ if num_executed > 0:
313
+ base_module_group_offloading_hook = base_module_registry.get_hook(_GROUP_OFFLOADING)
314
+ base_module_group_offloading_hook.next_group = group_offloading_hooks[0].group
315
+ base_module_group_offloading_hook.next_group.onload_self = False
316
+
317
+ for i in range(num_executed - 1):
318
+ name1, _ = self.execution_order[i]
319
+ name2, _ = self.execution_order[i + 1]
320
+ logger.debug(f"Applying lazy prefetch group offloading from {name1} to {name2}")
321
+ group_offloading_hooks[i].next_group = group_offloading_hooks[i + 1].group
322
+ group_offloading_hooks[i].next_group.onload_self = False
323
+
324
+ return output
325
+
326
+
327
+ class LayerExecutionTrackerHook(ModelHook):
328
+ r"""
329
+ A hook that tracks the order in which the layers are executed during the forward pass by calling back to the
330
+ LazyPrefetchGroupOffloadingHook to update the execution order.
331
+ """
332
+
333
+ _is_stateful = False
334
+
335
+ def __init__(self, execution_order_update_callback):
336
+ self.execution_order_update_callback = execution_order_update_callback
337
+
338
+ def pre_forward(self, module, *args, **kwargs):
339
+ self.execution_order_update_callback()
340
+ return args, kwargs
341
+
342
+
343
+ def apply_group_offloading(
344
+ module: torch.nn.Module,
345
+ onload_device: torch.device,
346
+ offload_device: torch.device = torch.device("cpu"),
347
+ offload_type: str = "block_level",
348
+ num_blocks_per_group: Optional[int] = None,
349
+ non_blocking: bool = False,
350
+ use_stream: bool = False,
351
+ record_stream: bool = False,
352
+ low_cpu_mem_usage: bool = False,
353
+ ) -> None:
354
+ r"""
355
+ Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
356
+ where it is beneficial, we need to first provide some context on how other supported offloading methods work.
357
+
358
+ Typically, offloading is done at two levels:
359
+ - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
360
+ works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator device
361
+ when needed for computation. This method is more memory-efficient than keeping all components on the accelerator,
362
+ but the memory requirements are still quite high. For this method to work, one needs memory equivalent to size of
363
+ the model in runtime dtype + size of largest intermediate activation tensors to be able to complete the forward
364
+ pass.
365
+ - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method. It
366
+ works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
367
+ onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
368
+ memory, but can be slower due to the excessive number of device synchronizations.
369
+
370
+ Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
371
+ (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
372
+ offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations is
373
+ reduced.
374
+
375
+ Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability to
376
+ overlap data transfer and computation to reduce the overall execution time compared to sequential offloading. This
377
+ is enabled using layer prefetching with streams, i.e., the layer that is to be executed next starts onloading to
378
+ the accelerator device while the current layer is being executed - this increases the memory requirements slightly.
379
+ Note that this implementation also supports leaf-level offloading but can be made much faster when using streams.
380
+
381
+ Args:
382
+ module (`torch.nn.Module`):
383
+ The module to which group offloading is applied.
384
+ onload_device (`torch.device`):
385
+ The device to which the group of modules are onloaded.
386
+ offload_device (`torch.device`, defaults to `torch.device("cpu")`):
387
+ The device to which the group of modules are offloaded. This should typically be the CPU. Default is CPU.
388
+ offload_type (`str`, defaults to "block_level"):
389
+ The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
390
+ "block_level".
391
+ num_blocks_per_group (`int`, *optional*):
392
+ The number of blocks per group when using offload_type="block_level". This is required when using
393
+ offload_type="block_level".
394
+ non_blocking (`bool`, defaults to `False`):
395
+ If True, offloading and onloading is done with non-blocking data transfer.
396
+ use_stream (`bool`, defaults to `False`):
397
+ If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
398
+ overlapping computation and data transfer.
399
+ record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
400
+ as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to the
401
+ [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html) more
402
+ details.
403
+ low_cpu_mem_usage (`bool`, defaults to `False`):
404
+ If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
405
+ option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
406
+ the CPU memory is a bottleneck but may counteract the benefits of using streams.
407
+
408
+ Example:
409
+ ```python
410
+ >>> from diffusers import CogVideoXTransformer3DModel
411
+ >>> from diffusers.hooks import apply_group_offloading
412
+
413
+ >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
414
+ ... "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
415
+ ... )
416
+
417
+ >>> apply_group_offloading(
418
+ ... transformer,
419
+ ... onload_device=torch.device("cuda"),
420
+ ... offload_device=torch.device("cpu"),
421
+ ... offload_type="block_level",
422
+ ... num_blocks_per_group=2,
423
+ ... use_stream=True,
424
+ ... )
425
+ ```
426
+ """
427
+
428
+ stream = None
429
+ if use_stream:
430
+ if torch.cuda.is_available():
431
+ stream = torch.cuda.Stream()
432
+ else:
433
+ raise ValueError("Using streams for data transfer requires a CUDA device.")
434
+
435
+ _raise_error_if_accelerate_model_or_sequential_hook_present(module)
436
+
437
+ if offload_type == "block_level":
438
+ if num_blocks_per_group is None:
439
+ raise ValueError("num_blocks_per_group must be provided when using offload_type='block_level'.")
440
+
441
+ _apply_group_offloading_block_level(
442
+ module=module,
443
+ num_blocks_per_group=num_blocks_per_group,
444
+ offload_device=offload_device,
445
+ onload_device=onload_device,
446
+ non_blocking=non_blocking,
447
+ stream=stream,
448
+ record_stream=record_stream,
449
+ low_cpu_mem_usage=low_cpu_mem_usage,
450
+ )
451
+ elif offload_type == "leaf_level":
452
+ _apply_group_offloading_leaf_level(
453
+ module=module,
454
+ offload_device=offload_device,
455
+ onload_device=onload_device,
456
+ non_blocking=non_blocking,
457
+ stream=stream,
458
+ record_stream=record_stream,
459
+ low_cpu_mem_usage=low_cpu_mem_usage,
460
+ )
461
+ else:
462
+ raise ValueError(f"Unsupported offload_type: {offload_type}")
463
+
464
+
465
+ def _apply_group_offloading_block_level(
466
+ module: torch.nn.Module,
467
+ num_blocks_per_group: int,
468
+ offload_device: torch.device,
469
+ onload_device: torch.device,
470
+ non_blocking: bool,
471
+ stream: Optional[torch.cuda.Stream] = None,
472
+ record_stream: Optional[bool] = False,
473
+ low_cpu_mem_usage: bool = False,
474
+ ) -> None:
475
+ r"""
476
+ This function applies offloading to groups of torch.nn.ModuleList or torch.nn.Sequential blocks. In comparison to
477
+ the "leaf_level" offloading, which is more fine-grained, this offloading is done at the top-level blocks.
478
+
479
+ Args:
480
+ module (`torch.nn.Module`):
481
+ The module to which group offloading is applied.
482
+ offload_device (`torch.device`):
483
+ The device to which the group of modules are offloaded. This should typically be the CPU.
484
+ onload_device (`torch.device`):
485
+ The device to which the group of modules are onloaded.
486
+ non_blocking (`bool`):
487
+ If True, offloading and onloading is done asynchronously. This can be useful for overlapping computation
488
+ and data transfer.
489
+ stream (`torch.cuda.Stream`, *optional*):
490
+ If provided, offloading and onloading is done asynchronously using the provided stream. This can be useful
491
+ for overlapping computation and data transfer.
492
+ record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
493
+ as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to the
494
+ [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html) more
495
+ details.
496
+ low_cpu_mem_usage (`bool`, defaults to `False`):
497
+ If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
498
+ option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
499
+ the CPU memory is a bottleneck but may counteract the benefits of using streams.
500
+ """
501
+
502
+ # Create module groups for ModuleList and Sequential blocks
503
+ modules_with_group_offloading = set()
504
+ unmatched_modules = []
505
+ matched_module_groups = []
506
+ for name, submodule in module.named_children():
507
+ if not isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
508
+ unmatched_modules.append((name, submodule))
509
+ modules_with_group_offloading.add(name)
510
+ continue
511
+
512
+ for i in range(0, len(submodule), num_blocks_per_group):
513
+ current_modules = submodule[i : i + num_blocks_per_group]
514
+ group = ModuleGroup(
515
+ modules=current_modules,
516
+ offload_device=offload_device,
517
+ onload_device=onload_device,
518
+ offload_leader=current_modules[-1],
519
+ onload_leader=current_modules[0],
520
+ non_blocking=non_blocking,
521
+ stream=stream,
522
+ record_stream=record_stream,
523
+ low_cpu_mem_usage=low_cpu_mem_usage,
524
+ onload_self=stream is None,
525
+ )
526
+ matched_module_groups.append(group)
527
+ for j in range(i, i + len(current_modules)):
528
+ modules_with_group_offloading.add(f"{name}.{j}")
529
+
530
+ # Apply group offloading hooks to the module groups
531
+ for i, group in enumerate(matched_module_groups):
532
+ next_group = (
533
+ matched_module_groups[i + 1] if i + 1 < len(matched_module_groups) and stream is not None else None
534
+ )
535
+
536
+ for group_module in group.modules:
537
+ _apply_group_offloading_hook(group_module, group, next_group)
538
+
539
+ # Parameters and Buffers of the top-level module need to be offloaded/onloaded separately
540
+ # when the forward pass of this module is called. This is because the top-level module is not
541
+ # part of any group (as doing so would lead to no VRAM savings).
542
+ parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
543
+ buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
544
+ parameters = [param for _, param in parameters]
545
+ buffers = [buffer for _, buffer in buffers]
546
+
547
+ # Create a group for the unmatched submodules of the top-level module so that they are on the correct
548
+ # device when the forward pass is called.
549
+ unmatched_modules = [unmatched_module for _, unmatched_module in unmatched_modules]
550
+ unmatched_group = ModuleGroup(
551
+ modules=unmatched_modules,
552
+ offload_device=offload_device,
553
+ onload_device=onload_device,
554
+ offload_leader=module,
555
+ onload_leader=module,
556
+ parameters=parameters,
557
+ buffers=buffers,
558
+ non_blocking=False,
559
+ stream=None,
560
+ record_stream=False,
561
+ onload_self=True,
562
+ )
563
+ next_group = matched_module_groups[0] if len(matched_module_groups) > 0 else None
564
+ _apply_group_offloading_hook(module, unmatched_group, next_group)
565
+
566
+
567
+ def _apply_group_offloading_leaf_level(
568
+ module: torch.nn.Module,
569
+ offload_device: torch.device,
570
+ onload_device: torch.device,
571
+ non_blocking: bool,
572
+ stream: Optional[torch.cuda.Stream] = None,
573
+ record_stream: Optional[bool] = False,
574
+ low_cpu_mem_usage: bool = False,
575
+ ) -> None:
576
+ r"""
577
+ This function applies offloading to groups of leaf modules in a torch.nn.Module. This method has minimal memory
578
+ requirements. However, it can be slower compared to other offloading methods due to the excessive number of device
579
+ synchronizations. When using devices that support streams to overlap data transfer and computation, this method can
580
+ reduce memory usage without any performance degradation.
581
+
582
+ Args:
583
+ module (`torch.nn.Module`):
584
+ The module to which group offloading is applied.
585
+ offload_device (`torch.device`):
586
+ The device to which the group of modules are offloaded. This should typically be the CPU.
587
+ onload_device (`torch.device`):
588
+ The device to which the group of modules are onloaded.
589
+ non_blocking (`bool`):
590
+ If True, offloading and onloading is done asynchronously. This can be useful for overlapping computation
591
+ and data transfer.
592
+ stream (`torch.cuda.Stream`, *optional*):
593
+ If provided, offloading and onloading is done asynchronously using the provided stream. This can be useful
594
+ for overlapping computation and data transfer.
595
+ record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
596
+ as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to the
597
+ [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html) more
598
+ details.
599
+ low_cpu_mem_usage (`bool`, defaults to `False`):
600
+ If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
601
+ option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
602
+ the CPU memory is a bottleneck but may counteract the benefits of using streams.
603
+ """
604
+
605
+ # Create module groups for leaf modules and apply group offloading hooks
606
+ modules_with_group_offloading = set()
607
+ for name, submodule in module.named_modules():
608
+ if not isinstance(submodule, _SUPPORTED_PYTORCH_LAYERS):
609
+ continue
610
+ group = ModuleGroup(
611
+ modules=[submodule],
612
+ offload_device=offload_device,
613
+ onload_device=onload_device,
614
+ offload_leader=submodule,
615
+ onload_leader=submodule,
616
+ non_blocking=non_blocking,
617
+ stream=stream,
618
+ record_stream=record_stream,
619
+ low_cpu_mem_usage=low_cpu_mem_usage,
620
+ onload_self=True,
621
+ )
622
+ _apply_group_offloading_hook(submodule, group, None)
623
+ modules_with_group_offloading.add(name)
624
+
625
+ # Parameters and Buffers at all non-leaf levels need to be offloaded/onloaded separately when the forward pass
626
+ # of the module is called
627
+ module_dict = dict(module.named_modules())
628
+ parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
629
+ buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
630
+
631
+ # Find closest module parent for each parameter and buffer, and attach group hooks
632
+ parent_to_parameters = {}
633
+ for name, param in parameters:
634
+ parent_name = _find_parent_module_in_module_dict(name, module_dict)
635
+ if parent_name in parent_to_parameters:
636
+ parent_to_parameters[parent_name].append(param)
637
+ else:
638
+ parent_to_parameters[parent_name] = [param]
639
+
640
+ parent_to_buffers = {}
641
+ for name, buffer in buffers:
642
+ parent_name = _find_parent_module_in_module_dict(name, module_dict)
643
+ if parent_name in parent_to_buffers:
644
+ parent_to_buffers[parent_name].append(buffer)
645
+ else:
646
+ parent_to_buffers[parent_name] = [buffer]
647
+
648
+ parent_names = set(parent_to_parameters.keys()) | set(parent_to_buffers.keys())
649
+ for name in parent_names:
650
+ parameters = parent_to_parameters.get(name, [])
651
+ buffers = parent_to_buffers.get(name, [])
652
+ parent_module = module_dict[name]
653
+ assert getattr(parent_module, "_diffusers_hook", None) is None
654
+ group = ModuleGroup(
655
+ modules=[],
656
+ offload_device=offload_device,
657
+ onload_device=onload_device,
658
+ offload_leader=parent_module,
659
+ onload_leader=parent_module,
660
+ parameters=parameters,
661
+ buffers=buffers,
662
+ non_blocking=non_blocking,
663
+ stream=stream,
664
+ record_stream=record_stream,
665
+ low_cpu_mem_usage=low_cpu_mem_usage,
666
+ onload_self=True,
667
+ )
668
+ _apply_group_offloading_hook(parent_module, group, None)
669
+
670
+ if stream is not None:
671
+ # When using streams, we need to know the layer execution order for applying prefetching (to overlap data transfer
672
+ # and computation). Since we don't know the order beforehand, we apply a lazy prefetching hook that will find the
673
+ # execution order and apply prefetching in the correct order.
674
+ unmatched_group = ModuleGroup(
675
+ modules=[],
676
+ offload_device=offload_device,
677
+ onload_device=onload_device,
678
+ offload_leader=module,
679
+ onload_leader=module,
680
+ parameters=None,
681
+ buffers=None,
682
+ non_blocking=False,
683
+ stream=None,
684
+ record_stream=False,
685
+ low_cpu_mem_usage=low_cpu_mem_usage,
686
+ onload_self=True,
687
+ )
688
+ _apply_lazy_group_offloading_hook(module, unmatched_group, None)
689
+
690
+
691
+ def _apply_group_offloading_hook(
692
+ module: torch.nn.Module,
693
+ group: ModuleGroup,
694
+ next_group: Optional[ModuleGroup] = None,
695
+ ) -> None:
696
+ registry = HookRegistry.check_if_exists_or_initialize(module)
697
+
698
+ # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
699
+ # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
700
+ if registry.get_hook(_GROUP_OFFLOADING) is None:
701
+ hook = GroupOffloadingHook(group, next_group)
702
+ registry.register_hook(hook, _GROUP_OFFLOADING)
703
+
704
+
705
+ def _apply_lazy_group_offloading_hook(
706
+ module: torch.nn.Module,
707
+ group: ModuleGroup,
708
+ next_group: Optional[ModuleGroup] = None,
709
+ ) -> None:
710
+ registry = HookRegistry.check_if_exists_or_initialize(module)
711
+
712
+ # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
713
+ # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
714
+ if registry.get_hook(_GROUP_OFFLOADING) is None:
715
+ hook = GroupOffloadingHook(group, next_group)
716
+ registry.register_hook(hook, _GROUP_OFFLOADING)
717
+
718
+ lazy_prefetch_hook = LazyPrefetchGroupOffloadingHook()
719
+ registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)
720
+
721
+
722
+ def _gather_parameters_with_no_group_offloading_parent(
723
+ module: torch.nn.Module, modules_with_group_offloading: Set[str]
724
+ ) -> List[torch.nn.Parameter]:
725
+ parameters = []
726
+ for name, parameter in module.named_parameters():
727
+ has_parent_with_group_offloading = False
728
+ atoms = name.split(".")
729
+ while len(atoms) > 0:
730
+ parent_name = ".".join(atoms)
731
+ if parent_name in modules_with_group_offloading:
732
+ has_parent_with_group_offloading = True
733
+ break
734
+ atoms.pop()
735
+ if not has_parent_with_group_offloading:
736
+ parameters.append((name, parameter))
737
+ return parameters
738
+
739
+
740
+ def _gather_buffers_with_no_group_offloading_parent(
741
+ module: torch.nn.Module, modules_with_group_offloading: Set[str]
742
+ ) -> List[torch.Tensor]:
743
+ buffers = []
744
+ for name, buffer in module.named_buffers():
745
+ has_parent_with_group_offloading = False
746
+ atoms = name.split(".")
747
+ while len(atoms) > 0:
748
+ parent_name = ".".join(atoms)
749
+ if parent_name in modules_with_group_offloading:
750
+ has_parent_with_group_offloading = True
751
+ break
752
+ atoms.pop()
753
+ if not has_parent_with_group_offloading:
754
+ buffers.append((name, buffer))
755
+ return buffers
756
+
757
+
758
+ def _find_parent_module_in_module_dict(name: str, module_dict: Dict[str, torch.nn.Module]) -> str:
759
+ atoms = name.split(".")
760
+ while len(atoms) > 0:
761
+ parent_name = ".".join(atoms)
762
+ if parent_name in module_dict:
763
+ return parent_name
764
+ atoms.pop()
765
+ return ""
766
+
767
+
768
+ def _raise_error_if_accelerate_model_or_sequential_hook_present(module: torch.nn.Module) -> None:
769
+ if not is_accelerate_available():
770
+ return
771
+ for name, submodule in module.named_modules():
772
+ if not hasattr(submodule, "_hf_hook"):
773
+ continue
774
+ if isinstance(submodule._hf_hook, (AlignDevicesHook, CpuOffload)):
775
+ raise ValueError(
776
+ f"Cannot apply group offloading to a module that is already applying an alternative "
777
+ f"offloading strategy from Accelerate. If you want to apply group offloading, please "
778
+ f"disable the existing offloading strategy first. Offending module: {name} ({type(submodule)})"
779
+ )
780
+
781
+
782
+ def _is_group_offload_enabled(module: torch.nn.Module) -> bool:
783
+ for submodule in module.modules():
784
+ if hasattr(submodule, "_diffusers_hook") and submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING) is not None:
785
+ return True
786
+ return False
787
+
788
+
789
+ def _get_group_onload_device(module: torch.nn.Module) -> torch.device:
790
+ for submodule in module.modules():
791
+ if hasattr(submodule, "_diffusers_hook") and submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING) is not None:
792
+ return submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING).group.onload_device
793
+ raise ValueError("Group offloading is not enabled for the provided module.")