diffusers 0.32.2__py3-none-any.whl → 0.33.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +595 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +724 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +727 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/METADATA +21 -4
  384. diffusers-0.33.1.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,855 @@
1
+ # Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+ import torch.utils.checkpoint
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...loaders import FromOriginalModelMixin
24
+ from ...utils import logging
25
+ from ...utils.accelerate_utils import apply_forward_hook
26
+ from ..activations import get_activation
27
+ from ..modeling_outputs import AutoencoderKLOutput
28
+ from ..modeling_utils import ModelMixin
29
+ from .vae import DecoderOutput, DiagonalGaussianDistribution
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+ CACHE_T = 2
35
+
36
+
37
+ class WanCausalConv3d(nn.Conv3d):
38
+ r"""
39
+ A custom 3D causal convolution layer with feature caching support.
40
+
41
+ This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
42
+ caching for efficient inference.
43
+
44
+ Args:
45
+ in_channels (int): Number of channels in the input image
46
+ out_channels (int): Number of channels produced by the convolution
47
+ kernel_size (int or tuple): Size of the convolving kernel
48
+ stride (int or tuple, optional): Stride of the convolution. Default: 1
49
+ padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ in_channels: int,
55
+ out_channels: int,
56
+ kernel_size: Union[int, Tuple[int, int, int]],
57
+ stride: Union[int, Tuple[int, int, int]] = 1,
58
+ padding: Union[int, Tuple[int, int, int]] = 0,
59
+ ) -> None:
60
+ super().__init__(
61
+ in_channels=in_channels,
62
+ out_channels=out_channels,
63
+ kernel_size=kernel_size,
64
+ stride=stride,
65
+ padding=padding,
66
+ )
67
+
68
+ # Set up causal padding
69
+ self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
70
+ self.padding = (0, 0, 0)
71
+
72
+ def forward(self, x, cache_x=None):
73
+ padding = list(self._padding)
74
+ if cache_x is not None and self._padding[4] > 0:
75
+ cache_x = cache_x.to(x.device)
76
+ x = torch.cat([cache_x, x], dim=2)
77
+ padding[4] -= cache_x.shape[2]
78
+ x = F.pad(x, padding)
79
+ return super().forward(x)
80
+
81
+
82
+ class WanRMS_norm(nn.Module):
83
+ r"""
84
+ A custom RMS normalization layer.
85
+
86
+ Args:
87
+ dim (int): The number of dimensions to normalize over.
88
+ channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
89
+ Default is True.
90
+ images (bool, optional): Whether the input represents image data. Default is True.
91
+ bias (bool, optional): Whether to include a learnable bias term. Default is False.
92
+ """
93
+
94
+ def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
95
+ super().__init__()
96
+ broadcastable_dims = (1, 1, 1) if not images else (1, 1)
97
+ shape = (dim, *broadcastable_dims) if channel_first else (dim,)
98
+
99
+ self.channel_first = channel_first
100
+ self.scale = dim**0.5
101
+ self.gamma = nn.Parameter(torch.ones(shape))
102
+ self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
103
+
104
+ def forward(self, x):
105
+ return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
106
+
107
+
108
+ class WanUpsample(nn.Upsample):
109
+ r"""
110
+ Perform upsampling while ensuring the output tensor has the same data type as the input.
111
+
112
+ Args:
113
+ x (torch.Tensor): Input tensor to be upsampled.
114
+
115
+ Returns:
116
+ torch.Tensor: Upsampled tensor with the same data type as the input.
117
+ """
118
+
119
+ def forward(self, x):
120
+ return super().forward(x.float()).type_as(x)
121
+
122
+
123
+ class WanResample(nn.Module):
124
+ r"""
125
+ A custom resampling module for 2D and 3D data.
126
+
127
+ Args:
128
+ dim (int): The number of input/output channels.
129
+ mode (str): The resampling mode. Must be one of:
130
+ - 'none': No resampling (identity operation).
131
+ - 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
132
+ - 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
133
+ - 'downsample2d': 2D downsampling with zero-padding and convolution.
134
+ - 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
135
+ """
136
+
137
+ def __init__(self, dim: int, mode: str) -> None:
138
+ super().__init__()
139
+ self.dim = dim
140
+ self.mode = mode
141
+
142
+ # layers
143
+ if mode == "upsample2d":
144
+ self.resample = nn.Sequential(
145
+ WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
146
+ )
147
+ elif mode == "upsample3d":
148
+ self.resample = nn.Sequential(
149
+ WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
150
+ )
151
+ self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
152
+
153
+ elif mode == "downsample2d":
154
+ self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
155
+ elif mode == "downsample3d":
156
+ self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
157
+ self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
158
+
159
+ else:
160
+ self.resample = nn.Identity()
161
+
162
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
163
+ b, c, t, h, w = x.size()
164
+ if self.mode == "upsample3d":
165
+ if feat_cache is not None:
166
+ idx = feat_idx[0]
167
+ if feat_cache[idx] is None:
168
+ feat_cache[idx] = "Rep"
169
+ feat_idx[0] += 1
170
+ else:
171
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
172
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
173
+ # cache last frame of last two chunk
174
+ cache_x = torch.cat(
175
+ [feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
176
+ )
177
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
178
+ cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
179
+ if feat_cache[idx] == "Rep":
180
+ x = self.time_conv(x)
181
+ else:
182
+ x = self.time_conv(x, feat_cache[idx])
183
+ feat_cache[idx] = cache_x
184
+ feat_idx[0] += 1
185
+
186
+ x = x.reshape(b, 2, c, t, h, w)
187
+ x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
188
+ x = x.reshape(b, c, t * 2, h, w)
189
+ t = x.shape[2]
190
+ x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
191
+ x = self.resample(x)
192
+ x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
193
+
194
+ if self.mode == "downsample3d":
195
+ if feat_cache is not None:
196
+ idx = feat_idx[0]
197
+ if feat_cache[idx] is None:
198
+ feat_cache[idx] = x.clone()
199
+ feat_idx[0] += 1
200
+ else:
201
+ cache_x = x[:, :, -1:, :, :].clone()
202
+ x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
203
+ feat_cache[idx] = cache_x
204
+ feat_idx[0] += 1
205
+ return x
206
+
207
+
208
+ class WanResidualBlock(nn.Module):
209
+ r"""
210
+ A custom residual block module.
211
+
212
+ Args:
213
+ in_dim (int): Number of input channels.
214
+ out_dim (int): Number of output channels.
215
+ dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
216
+ non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
217
+ """
218
+
219
+ def __init__(
220
+ self,
221
+ in_dim: int,
222
+ out_dim: int,
223
+ dropout: float = 0.0,
224
+ non_linearity: str = "silu",
225
+ ) -> None:
226
+ super().__init__()
227
+ self.in_dim = in_dim
228
+ self.out_dim = out_dim
229
+ self.nonlinearity = get_activation(non_linearity)
230
+
231
+ # layers
232
+ self.norm1 = WanRMS_norm(in_dim, images=False)
233
+ self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
234
+ self.norm2 = WanRMS_norm(out_dim, images=False)
235
+ self.dropout = nn.Dropout(dropout)
236
+ self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
237
+ self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
238
+
239
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
240
+ # Apply shortcut connection
241
+ h = self.conv_shortcut(x)
242
+
243
+ # First normalization and activation
244
+ x = self.norm1(x)
245
+ x = self.nonlinearity(x)
246
+
247
+ if feat_cache is not None:
248
+ idx = feat_idx[0]
249
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
250
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
251
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
252
+
253
+ x = self.conv1(x, feat_cache[idx])
254
+ feat_cache[idx] = cache_x
255
+ feat_idx[0] += 1
256
+ else:
257
+ x = self.conv1(x)
258
+
259
+ # Second normalization and activation
260
+ x = self.norm2(x)
261
+ x = self.nonlinearity(x)
262
+
263
+ # Dropout
264
+ x = self.dropout(x)
265
+
266
+ if feat_cache is not None:
267
+ idx = feat_idx[0]
268
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
269
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
270
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
271
+
272
+ x = self.conv2(x, feat_cache[idx])
273
+ feat_cache[idx] = cache_x
274
+ feat_idx[0] += 1
275
+ else:
276
+ x = self.conv2(x)
277
+
278
+ # Add residual connection
279
+ return x + h
280
+
281
+
282
+ class WanAttentionBlock(nn.Module):
283
+ r"""
284
+ Causal self-attention with a single head.
285
+
286
+ Args:
287
+ dim (int): The number of channels in the input tensor.
288
+ """
289
+
290
+ def __init__(self, dim):
291
+ super().__init__()
292
+ self.dim = dim
293
+
294
+ # layers
295
+ self.norm = WanRMS_norm(dim)
296
+ self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
297
+ self.proj = nn.Conv2d(dim, dim, 1)
298
+
299
+ def forward(self, x):
300
+ identity = x
301
+ batch_size, channels, time, height, width = x.size()
302
+
303
+ x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
304
+ x = self.norm(x)
305
+
306
+ # compute query, key, value
307
+ qkv = self.to_qkv(x)
308
+ qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
309
+ qkv = qkv.permute(0, 1, 3, 2).contiguous()
310
+ q, k, v = qkv.chunk(3, dim=-1)
311
+
312
+ # apply attention
313
+ x = F.scaled_dot_product_attention(q, k, v)
314
+
315
+ x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
316
+
317
+ # output projection
318
+ x = self.proj(x)
319
+
320
+ # Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
321
+ x = x.view(batch_size, time, channels, height, width)
322
+ x = x.permute(0, 2, 1, 3, 4)
323
+
324
+ return x + identity
325
+
326
+
327
+ class WanMidBlock(nn.Module):
328
+ """
329
+ Middle block for WanVAE encoder and decoder.
330
+
331
+ Args:
332
+ dim (int): Number of input/output channels.
333
+ dropout (float): Dropout rate.
334
+ non_linearity (str): Type of non-linearity to use.
335
+ """
336
+
337
+ def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
338
+ super().__init__()
339
+ self.dim = dim
340
+
341
+ # Create the components
342
+ resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
343
+ attentions = []
344
+ for _ in range(num_layers):
345
+ attentions.append(WanAttentionBlock(dim))
346
+ resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
347
+ self.attentions = nn.ModuleList(attentions)
348
+ self.resnets = nn.ModuleList(resnets)
349
+
350
+ self.gradient_checkpointing = False
351
+
352
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
353
+ # First residual block
354
+ x = self.resnets[0](x, feat_cache, feat_idx)
355
+
356
+ # Process through attention and residual blocks
357
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
358
+ if attn is not None:
359
+ x = attn(x)
360
+
361
+ x = resnet(x, feat_cache, feat_idx)
362
+
363
+ return x
364
+
365
+
366
+ class WanEncoder3d(nn.Module):
367
+ r"""
368
+ A 3D encoder module.
369
+
370
+ Args:
371
+ dim (int): The base number of channels in the first layer.
372
+ z_dim (int): The dimensionality of the latent space.
373
+ dim_mult (list of int): Multipliers for the number of channels in each block.
374
+ num_res_blocks (int): Number of residual blocks in each block.
375
+ attn_scales (list of float): Scales at which to apply attention mechanisms.
376
+ temperal_downsample (list of bool): Whether to downsample temporally in each block.
377
+ dropout (float): Dropout rate for the dropout layers.
378
+ non_linearity (str): Type of non-linearity to use.
379
+ """
380
+
381
+ def __init__(
382
+ self,
383
+ dim=128,
384
+ z_dim=4,
385
+ dim_mult=[1, 2, 4, 4],
386
+ num_res_blocks=2,
387
+ attn_scales=[],
388
+ temperal_downsample=[True, True, False],
389
+ dropout=0.0,
390
+ non_linearity: str = "silu",
391
+ ):
392
+ super().__init__()
393
+ self.dim = dim
394
+ self.z_dim = z_dim
395
+ self.dim_mult = dim_mult
396
+ self.num_res_blocks = num_res_blocks
397
+ self.attn_scales = attn_scales
398
+ self.temperal_downsample = temperal_downsample
399
+ self.nonlinearity = get_activation(non_linearity)
400
+
401
+ # dimensions
402
+ dims = [dim * u for u in [1] + dim_mult]
403
+ scale = 1.0
404
+
405
+ # init block
406
+ self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
407
+
408
+ # downsample blocks
409
+ self.down_blocks = nn.ModuleList([])
410
+ for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
411
+ # residual (+attention) blocks
412
+ for _ in range(num_res_blocks):
413
+ self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
414
+ if scale in attn_scales:
415
+ self.down_blocks.append(WanAttentionBlock(out_dim))
416
+ in_dim = out_dim
417
+
418
+ # downsample block
419
+ if i != len(dim_mult) - 1:
420
+ mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
421
+ self.down_blocks.append(WanResample(out_dim, mode=mode))
422
+ scale /= 2.0
423
+
424
+ # middle blocks
425
+ self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
426
+
427
+ # output blocks
428
+ self.norm_out = WanRMS_norm(out_dim, images=False)
429
+ self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
430
+
431
+ self.gradient_checkpointing = False
432
+
433
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
434
+ if feat_cache is not None:
435
+ idx = feat_idx[0]
436
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
437
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
438
+ # cache last frame of last two chunk
439
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
440
+ x = self.conv_in(x, feat_cache[idx])
441
+ feat_cache[idx] = cache_x
442
+ feat_idx[0] += 1
443
+ else:
444
+ x = self.conv_in(x)
445
+
446
+ ## downsamples
447
+ for layer in self.down_blocks:
448
+ if feat_cache is not None:
449
+ x = layer(x, feat_cache, feat_idx)
450
+ else:
451
+ x = layer(x)
452
+
453
+ ## middle
454
+ x = self.mid_block(x, feat_cache, feat_idx)
455
+
456
+ ## head
457
+ x = self.norm_out(x)
458
+ x = self.nonlinearity(x)
459
+ if feat_cache is not None:
460
+ idx = feat_idx[0]
461
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
462
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
463
+ # cache last frame of last two chunk
464
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
465
+ x = self.conv_out(x, feat_cache[idx])
466
+ feat_cache[idx] = cache_x
467
+ feat_idx[0] += 1
468
+ else:
469
+ x = self.conv_out(x)
470
+ return x
471
+
472
+
473
+ class WanUpBlock(nn.Module):
474
+ """
475
+ A block that handles upsampling for the WanVAE decoder.
476
+
477
+ Args:
478
+ in_dim (int): Input dimension
479
+ out_dim (int): Output dimension
480
+ num_res_blocks (int): Number of residual blocks
481
+ dropout (float): Dropout rate
482
+ upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
483
+ non_linearity (str): Type of non-linearity to use
484
+ """
485
+
486
+ def __init__(
487
+ self,
488
+ in_dim: int,
489
+ out_dim: int,
490
+ num_res_blocks: int,
491
+ dropout: float = 0.0,
492
+ upsample_mode: Optional[str] = None,
493
+ non_linearity: str = "silu",
494
+ ):
495
+ super().__init__()
496
+ self.in_dim = in_dim
497
+ self.out_dim = out_dim
498
+
499
+ # Create layers list
500
+ resnets = []
501
+ # Add residual blocks and attention if needed
502
+ current_dim = in_dim
503
+ for _ in range(num_res_blocks + 1):
504
+ resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
505
+ current_dim = out_dim
506
+
507
+ self.resnets = nn.ModuleList(resnets)
508
+
509
+ # Add upsampling layer if needed
510
+ self.upsamplers = None
511
+ if upsample_mode is not None:
512
+ self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
513
+
514
+ self.gradient_checkpointing = False
515
+
516
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
517
+ """
518
+ Forward pass through the upsampling block.
519
+
520
+ Args:
521
+ x (torch.Tensor): Input tensor
522
+ feat_cache (list, optional): Feature cache for causal convolutions
523
+ feat_idx (list, optional): Feature index for cache management
524
+
525
+ Returns:
526
+ torch.Tensor: Output tensor
527
+ """
528
+ for resnet in self.resnets:
529
+ if feat_cache is not None:
530
+ x = resnet(x, feat_cache, feat_idx)
531
+ else:
532
+ x = resnet(x)
533
+
534
+ if self.upsamplers is not None:
535
+ if feat_cache is not None:
536
+ x = self.upsamplers[0](x, feat_cache, feat_idx)
537
+ else:
538
+ x = self.upsamplers[0](x)
539
+ return x
540
+
541
+
542
+ class WanDecoder3d(nn.Module):
543
+ r"""
544
+ A 3D decoder module.
545
+
546
+ Args:
547
+ dim (int): The base number of channels in the first layer.
548
+ z_dim (int): The dimensionality of the latent space.
549
+ dim_mult (list of int): Multipliers for the number of channels in each block.
550
+ num_res_blocks (int): Number of residual blocks in each block.
551
+ attn_scales (list of float): Scales at which to apply attention mechanisms.
552
+ temperal_upsample (list of bool): Whether to upsample temporally in each block.
553
+ dropout (float): Dropout rate for the dropout layers.
554
+ non_linearity (str): Type of non-linearity to use.
555
+ """
556
+
557
+ def __init__(
558
+ self,
559
+ dim=128,
560
+ z_dim=4,
561
+ dim_mult=[1, 2, 4, 4],
562
+ num_res_blocks=2,
563
+ attn_scales=[],
564
+ temperal_upsample=[False, True, True],
565
+ dropout=0.0,
566
+ non_linearity: str = "silu",
567
+ ):
568
+ super().__init__()
569
+ self.dim = dim
570
+ self.z_dim = z_dim
571
+ self.dim_mult = dim_mult
572
+ self.num_res_blocks = num_res_blocks
573
+ self.attn_scales = attn_scales
574
+ self.temperal_upsample = temperal_upsample
575
+
576
+ self.nonlinearity = get_activation(non_linearity)
577
+
578
+ # dimensions
579
+ dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
580
+ scale = 1.0 / 2 ** (len(dim_mult) - 2)
581
+
582
+ # init block
583
+ self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
584
+
585
+ # middle blocks
586
+ self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
587
+
588
+ # upsample blocks
589
+ self.up_blocks = nn.ModuleList([])
590
+ for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
591
+ # residual (+attention) blocks
592
+ if i > 0:
593
+ in_dim = in_dim // 2
594
+
595
+ # Determine if we need upsampling
596
+ upsample_mode = None
597
+ if i != len(dim_mult) - 1:
598
+ upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
599
+
600
+ # Create and add the upsampling block
601
+ up_block = WanUpBlock(
602
+ in_dim=in_dim,
603
+ out_dim=out_dim,
604
+ num_res_blocks=num_res_blocks,
605
+ dropout=dropout,
606
+ upsample_mode=upsample_mode,
607
+ non_linearity=non_linearity,
608
+ )
609
+ self.up_blocks.append(up_block)
610
+
611
+ # Update scale for next iteration
612
+ if upsample_mode is not None:
613
+ scale *= 2.0
614
+
615
+ # output blocks
616
+ self.norm_out = WanRMS_norm(out_dim, images=False)
617
+ self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
618
+
619
+ self.gradient_checkpointing = False
620
+
621
+ def forward(self, x, feat_cache=None, feat_idx=[0]):
622
+ ## conv1
623
+ if feat_cache is not None:
624
+ idx = feat_idx[0]
625
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
626
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
627
+ # cache last frame of last two chunk
628
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
629
+ x = self.conv_in(x, feat_cache[idx])
630
+ feat_cache[idx] = cache_x
631
+ feat_idx[0] += 1
632
+ else:
633
+ x = self.conv_in(x)
634
+
635
+ ## middle
636
+ x = self.mid_block(x, feat_cache, feat_idx)
637
+
638
+ ## upsamples
639
+ for up_block in self.up_blocks:
640
+ x = up_block(x, feat_cache, feat_idx)
641
+
642
+ ## head
643
+ x = self.norm_out(x)
644
+ x = self.nonlinearity(x)
645
+ if feat_cache is not None:
646
+ idx = feat_idx[0]
647
+ cache_x = x[:, :, -CACHE_T:, :, :].clone()
648
+ if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
649
+ # cache last frame of last two chunk
650
+ cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
651
+ x = self.conv_out(x, feat_cache[idx])
652
+ feat_cache[idx] = cache_x
653
+ feat_idx[0] += 1
654
+ else:
655
+ x = self.conv_out(x)
656
+ return x
657
+
658
+
659
+ class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin):
660
+ r"""
661
+ A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
662
+ Introduced in [Wan 2.1].
663
+
664
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
665
+ for all models (such as downloading or saving).
666
+ """
667
+
668
+ _supports_gradient_checkpointing = False
669
+
670
+ @register_to_config
671
+ def __init__(
672
+ self,
673
+ base_dim: int = 96,
674
+ z_dim: int = 16,
675
+ dim_mult: Tuple[int] = [1, 2, 4, 4],
676
+ num_res_blocks: int = 2,
677
+ attn_scales: List[float] = [],
678
+ temperal_downsample: List[bool] = [False, True, True],
679
+ dropout: float = 0.0,
680
+ latents_mean: List[float] = [
681
+ -0.7571,
682
+ -0.7089,
683
+ -0.9113,
684
+ 0.1075,
685
+ -0.1745,
686
+ 0.9653,
687
+ -0.1517,
688
+ 1.5508,
689
+ 0.4134,
690
+ -0.0715,
691
+ 0.5517,
692
+ -0.3632,
693
+ -0.1922,
694
+ -0.9497,
695
+ 0.2503,
696
+ -0.2921,
697
+ ],
698
+ latents_std: List[float] = [
699
+ 2.8184,
700
+ 1.4541,
701
+ 2.3275,
702
+ 2.6558,
703
+ 1.2196,
704
+ 1.7708,
705
+ 2.6052,
706
+ 2.0743,
707
+ 3.2687,
708
+ 2.1526,
709
+ 2.8652,
710
+ 1.5579,
711
+ 1.6382,
712
+ 1.1253,
713
+ 2.8251,
714
+ 1.9160,
715
+ ],
716
+ ) -> None:
717
+ super().__init__()
718
+
719
+ self.z_dim = z_dim
720
+ self.temperal_downsample = temperal_downsample
721
+ self.temperal_upsample = temperal_downsample[::-1]
722
+
723
+ self.encoder = WanEncoder3d(
724
+ base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
725
+ )
726
+ self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
727
+ self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
728
+
729
+ self.decoder = WanDecoder3d(
730
+ base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
731
+ )
732
+
733
+ def clear_cache(self):
734
+ def _count_conv3d(model):
735
+ count = 0
736
+ for m in model.modules():
737
+ if isinstance(m, WanCausalConv3d):
738
+ count += 1
739
+ return count
740
+
741
+ self._conv_num = _count_conv3d(self.decoder)
742
+ self._conv_idx = [0]
743
+ self._feat_map = [None] * self._conv_num
744
+ # cache encode
745
+ self._enc_conv_num = _count_conv3d(self.encoder)
746
+ self._enc_conv_idx = [0]
747
+ self._enc_feat_map = [None] * self._enc_conv_num
748
+
749
+ def _encode(self, x: torch.Tensor) -> torch.Tensor:
750
+ self.clear_cache()
751
+ ## cache
752
+ t = x.shape[2]
753
+ iter_ = 1 + (t - 1) // 4
754
+ for i in range(iter_):
755
+ self._enc_conv_idx = [0]
756
+ if i == 0:
757
+ out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
758
+ else:
759
+ out_ = self.encoder(
760
+ x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
761
+ feat_cache=self._enc_feat_map,
762
+ feat_idx=self._enc_conv_idx,
763
+ )
764
+ out = torch.cat([out, out_], 2)
765
+
766
+ enc = self.quant_conv(out)
767
+ mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :]
768
+ enc = torch.cat([mu, logvar], dim=1)
769
+ self.clear_cache()
770
+ return enc
771
+
772
+ @apply_forward_hook
773
+ def encode(
774
+ self, x: torch.Tensor, return_dict: bool = True
775
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
776
+ r"""
777
+ Encode a batch of images into latents.
778
+
779
+ Args:
780
+ x (`torch.Tensor`): Input batch of images.
781
+ return_dict (`bool`, *optional*, defaults to `True`):
782
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
783
+
784
+ Returns:
785
+ The latent representations of the encoded videos. If `return_dict` is True, a
786
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
787
+ """
788
+ h = self._encode(x)
789
+ posterior = DiagonalGaussianDistribution(h)
790
+ if not return_dict:
791
+ return (posterior,)
792
+ return AutoencoderKLOutput(latent_dist=posterior)
793
+
794
+ def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
795
+ self.clear_cache()
796
+
797
+ iter_ = z.shape[2]
798
+ x = self.post_quant_conv(z)
799
+ for i in range(iter_):
800
+ self._conv_idx = [0]
801
+ if i == 0:
802
+ out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
803
+ else:
804
+ out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
805
+ out = torch.cat([out, out_], 2)
806
+
807
+ out = torch.clamp(out, min=-1.0, max=1.0)
808
+ self.clear_cache()
809
+ if not return_dict:
810
+ return (out,)
811
+
812
+ return DecoderOutput(sample=out)
813
+
814
+ @apply_forward_hook
815
+ def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
816
+ r"""
817
+ Decode a batch of images.
818
+
819
+ Args:
820
+ z (`torch.Tensor`): Input batch of latent vectors.
821
+ return_dict (`bool`, *optional*, defaults to `True`):
822
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
823
+
824
+ Returns:
825
+ [`~models.vae.DecoderOutput`] or `tuple`:
826
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
827
+ returned.
828
+ """
829
+ decoded = self._decode(z).sample
830
+ if not return_dict:
831
+ return (decoded,)
832
+
833
+ return DecoderOutput(sample=decoded)
834
+
835
+ def forward(
836
+ self,
837
+ sample: torch.Tensor,
838
+ sample_posterior: bool = False,
839
+ return_dict: bool = True,
840
+ generator: Optional[torch.Generator] = None,
841
+ ) -> Union[DecoderOutput, torch.Tensor]:
842
+ """
843
+ Args:
844
+ sample (`torch.Tensor`): Input sample.
845
+ return_dict (`bool`, *optional*, defaults to `True`):
846
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
847
+ """
848
+ x = sample
849
+ posterior = self.encode(x).latent_dist
850
+ if sample_posterior:
851
+ z = posterior.sample(generator=generator)
852
+ else:
853
+ z = posterior.mode()
854
+ dec = self.decode(z, return_dict=return_dict)
855
+ return dec