diffusers 0.32.2__py3-none-any.whl → 0.33.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +186 -3
- diffusers/configuration_utils.py +40 -12
- diffusers/dependency_versions_table.py +9 -2
- diffusers/hooks/__init__.py +9 -0
- diffusers/hooks/faster_cache.py +653 -0
- diffusers/hooks/group_offloading.py +793 -0
- diffusers/hooks/hooks.py +236 -0
- diffusers/hooks/layerwise_casting.py +245 -0
- diffusers/hooks/pyramid_attention_broadcast.py +311 -0
- diffusers/loaders/__init__.py +6 -0
- diffusers/loaders/ip_adapter.py +38 -30
- diffusers/loaders/lora_base.py +121 -86
- diffusers/loaders/lora_conversion_utils.py +504 -44
- diffusers/loaders/lora_pipeline.py +1769 -181
- diffusers/loaders/peft.py +167 -57
- diffusers/loaders/single_file.py +17 -2
- diffusers/loaders/single_file_model.py +53 -5
- diffusers/loaders/single_file_utils.py +646 -72
- diffusers/loaders/textual_inversion.py +9 -9
- diffusers/loaders/transformer_flux.py +8 -9
- diffusers/loaders/transformer_sd3.py +120 -39
- diffusers/loaders/unet.py +20 -7
- diffusers/models/__init__.py +22 -0
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +0 -1
- diffusers/models/attention_processor.py +163 -25
- diffusers/models/auto_model.py +169 -0
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
- diffusers/models/autoencoders/autoencoder_dc.py +106 -4
- diffusers/models/autoencoders/autoencoder_kl.py +0 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
- diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
- diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
- diffusers/models/autoencoders/vae.py +31 -141
- diffusers/models/autoencoders/vq_model.py +3 -0
- diffusers/models/cache_utils.py +108 -0
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -8
- diffusers/models/controlnets/controlnet_flux.py +14 -42
- diffusers/models/controlnets/controlnet_sd3.py +58 -34
- diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
- diffusers/models/controlnets/controlnet_union.py +27 -18
- diffusers/models/controlnets/controlnet_xs.py +7 -46
- diffusers/models/controlnets/multicontrolnet_union.py +196 -0
- diffusers/models/embeddings.py +18 -7
- diffusers/models/model_loading_utils.py +122 -80
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +617 -272
- diffusers/models/normalization.py +67 -14
- diffusers/models/resnet.py +1 -1
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
- diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
- diffusers/models/transformers/consisid_transformer_3d.py +789 -0
- diffusers/models/transformers/dit_transformer_2d.py +5 -19
- diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
- diffusers/models/transformers/latte_transformer_3d.py +20 -15
- diffusers/models/transformers/lumina_nextdit2d.py +3 -1
- diffusers/models/transformers/pixart_transformer_2d.py +4 -19
- diffusers/models/transformers/prior_transformer.py +5 -1
- diffusers/models/transformers/sana_transformer.py +144 -40
- diffusers/models/transformers/stable_audio_transformer.py +5 -20
- diffusers/models/transformers/transformer_2d.py +7 -22
- diffusers/models/transformers/transformer_allegro.py +9 -17
- diffusers/models/transformers/transformer_cogview3plus.py +6 -17
- diffusers/models/transformers/transformer_cogview4.py +462 -0
- diffusers/models/transformers/transformer_easyanimate.py +527 -0
- diffusers/models/transformers/transformer_flux.py +68 -110
- diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
- diffusers/models/transformers/transformer_ltx.py +53 -35
- diffusers/models/transformers/transformer_lumina2.py +548 -0
- diffusers/models/transformers/transformer_mochi.py +6 -17
- diffusers/models/transformers/transformer_omnigen.py +469 -0
- diffusers/models/transformers/transformer_sd3.py +56 -86
- diffusers/models/transformers/transformer_temporal.py +5 -11
- diffusers/models/transformers/transformer_wan.py +469 -0
- diffusers/models/unets/unet_1d.py +3 -1
- diffusers/models/unets/unet_2d.py +21 -20
- diffusers/models/unets/unet_2d_blocks.py +19 -243
- diffusers/models/unets/unet_2d_condition.py +4 -6
- diffusers/models/unets/unet_3d_blocks.py +14 -127
- diffusers/models/unets/unet_3d_condition.py +8 -12
- diffusers/models/unets/unet_i2vgen_xl.py +5 -13
- diffusers/models/unets/unet_kandinsky3.py +0 -4
- diffusers/models/unets/unet_motion_model.py +20 -114
- diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
- diffusers/models/unets/unet_stable_cascade.py +8 -35
- diffusers/models/unets/uvit_2d.py +1 -4
- diffusers/optimization.py +2 -2
- diffusers/pipelines/__init__.py +57 -8
- diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
- diffusers/pipelines/amused/pipeline_amused.py +15 -2
- diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
- diffusers/pipelines/auto_pipeline.py +35 -14
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
- diffusers/pipelines/cogview4/__init__.py +49 -0
- diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
- diffusers/pipelines/cogview4/pipeline_output.py +21 -0
- diffusers/pipelines/consisid/__init__.py +49 -0
- diffusers/pipelines/consisid/consisid_utils.py +357 -0
- diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
- diffusers/pipelines/consisid/pipeline_output.py +20 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
- diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +15 -2
- diffusers/pipelines/easyanimate/__init__.py +52 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
- diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
- diffusers/pipelines/flux/pipeline_flux.py +53 -21
- diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
- diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
- diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hunyuan_video/__init__.py +4 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
- diffusers/pipelines/kolors/text_encoder.py +7 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
- diffusers/pipelines/latte/pipeline_latte.py +36 -7
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
- diffusers/pipelines/ltx/__init__.py +2 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
- diffusers/pipelines/lumina/__init__.py +2 -2
- diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
- diffusers/pipelines/lumina2/__init__.py +48 -0
- diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
- diffusers/pipelines/marigold/__init__.py +2 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
- diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
- diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
- diffusers/pipelines/omnigen/__init__.py +50 -0
- diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
- diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
- diffusers/pipelines/onnx_utils.py +5 -3
- diffusers/pipelines/pag/pag_utils.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
- diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
- diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
- diffusers/pipelines/pia/pipeline_pia.py +13 -1
- diffusers/pipelines/pipeline_flax_utils.py +7 -7
- diffusers/pipelines/pipeline_loading_utils.py +193 -83
- diffusers/pipelines/pipeline_utils.py +221 -106
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
- diffusers/pipelines/sana/__init__.py +2 -0
- diffusers/pipelines/sana/pipeline_sana.py +183 -58
- diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
- diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
- diffusers/pipelines/shap_e/renderer.py +6 -6
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
- diffusers/pipelines/transformers_loading_utils.py +121 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
- diffusers/pipelines/wan/__init__.py +51 -0
- diffusers/pipelines/wan/pipeline_output.py +20 -0
- diffusers/pipelines/wan/pipeline_wan.py +595 -0
- diffusers/pipelines/wan/pipeline_wan_i2v.py +724 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +727 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
- diffusers/quantizers/auto.py +5 -1
- diffusers/quantizers/base.py +5 -9
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
- diffusers/quantizers/bitsandbytes/utils.py +30 -20
- diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
- diffusers/quantizers/gguf/utils.py +4 -2
- diffusers/quantizers/quantization_config.py +59 -4
- diffusers/quantizers/quanto/__init__.py +1 -0
- diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
- diffusers/quantizers/quanto/utils.py +60 -0
- diffusers/quantizers/torchao/__init__.py +1 -1
- diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
- diffusers/schedulers/__init__.py +2 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -2
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
- diffusers/schedulers/scheduling_ddpm.py +2 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
- diffusers/schedulers/scheduling_edm_euler.py +45 -10
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
- diffusers/schedulers/scheduling_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +1 -2
- diffusers/schedulers/scheduling_lms_discrete.py +1 -1
- diffusers/schedulers/scheduling_repaint.py +5 -1
- diffusers/schedulers/scheduling_scm.py +265 -0
- diffusers/schedulers/scheduling_tcd.py +1 -2
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/training_utils.py +14 -7
- diffusers/utils/__init__.py +9 -1
- diffusers/utils/constants.py +13 -1
- diffusers/utils/deprecation_utils.py +1 -1
- diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
- diffusers/utils/dummy_gguf_objects.py +17 -0
- diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
- diffusers/utils/dummy_pt_objects.py +233 -0
- diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
- diffusers/utils/dummy_torchao_objects.py +17 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +28 -3
- diffusers/utils/hub_utils.py +52 -102
- diffusers/utils/import_utils.py +121 -221
- diffusers/utils/loading_utils.py +2 -1
- diffusers/utils/logging.py +1 -2
- diffusers/utils/peft_utils.py +6 -14
- diffusers/utils/remote_utils.py +425 -0
- diffusers/utils/source_code_parsing_utils.py +52 -0
- diffusers/utils/state_dict_utils.py +15 -1
- diffusers/utils/testing_utils.py +243 -13
- diffusers/utils/torch_utils.py +10 -0
- diffusers/utils/typing_utils.py +91 -0
- diffusers/video_processor.py +1 -1
- {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/METADATA +21 -4
- diffusers-0.33.1.dist-info/RECORD +608 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/WHEEL +1 -1
- diffusers-0.32.2.dist-info/RECORD +0 -550
- {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/LICENSE +0 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,469 @@
|
|
1
|
+
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
24
|
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
25
|
+
from ..attention import FeedForward
|
26
|
+
from ..attention_processor import Attention
|
27
|
+
from ..cache_utils import CacheMixin
|
28
|
+
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
|
29
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
30
|
+
from ..modeling_utils import ModelMixin
|
31
|
+
from ..normalization import FP32LayerNorm
|
32
|
+
|
33
|
+
|
34
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35
|
+
|
36
|
+
|
37
|
+
class WanAttnProcessor2_0:
|
38
|
+
def __init__(self):
|
39
|
+
if not hasattr(F, "scaled_dot_product_attention"):
|
40
|
+
raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
41
|
+
|
42
|
+
def __call__(
|
43
|
+
self,
|
44
|
+
attn: Attention,
|
45
|
+
hidden_states: torch.Tensor,
|
46
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
47
|
+
attention_mask: Optional[torch.Tensor] = None,
|
48
|
+
rotary_emb: Optional[torch.Tensor] = None,
|
49
|
+
) -> torch.Tensor:
|
50
|
+
encoder_hidden_states_img = None
|
51
|
+
if attn.add_k_proj is not None:
|
52
|
+
encoder_hidden_states_img = encoder_hidden_states[:, :257]
|
53
|
+
encoder_hidden_states = encoder_hidden_states[:, 257:]
|
54
|
+
if encoder_hidden_states is None:
|
55
|
+
encoder_hidden_states = hidden_states
|
56
|
+
|
57
|
+
query = attn.to_q(hidden_states)
|
58
|
+
key = attn.to_k(encoder_hidden_states)
|
59
|
+
value = attn.to_v(encoder_hidden_states)
|
60
|
+
|
61
|
+
if attn.norm_q is not None:
|
62
|
+
query = attn.norm_q(query)
|
63
|
+
if attn.norm_k is not None:
|
64
|
+
key = attn.norm_k(key)
|
65
|
+
|
66
|
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
67
|
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
68
|
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
69
|
+
|
70
|
+
if rotary_emb is not None:
|
71
|
+
|
72
|
+
def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor):
|
73
|
+
x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2)))
|
74
|
+
x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4)
|
75
|
+
return x_out.type_as(hidden_states)
|
76
|
+
|
77
|
+
query = apply_rotary_emb(query, rotary_emb)
|
78
|
+
key = apply_rotary_emb(key, rotary_emb)
|
79
|
+
|
80
|
+
# I2V task
|
81
|
+
hidden_states_img = None
|
82
|
+
if encoder_hidden_states_img is not None:
|
83
|
+
key_img = attn.add_k_proj(encoder_hidden_states_img)
|
84
|
+
key_img = attn.norm_added_k(key_img)
|
85
|
+
value_img = attn.add_v_proj(encoder_hidden_states_img)
|
86
|
+
|
87
|
+
key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
88
|
+
value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
89
|
+
|
90
|
+
hidden_states_img = F.scaled_dot_product_attention(
|
91
|
+
query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False
|
92
|
+
)
|
93
|
+
hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3)
|
94
|
+
hidden_states_img = hidden_states_img.type_as(query)
|
95
|
+
|
96
|
+
hidden_states = F.scaled_dot_product_attention(
|
97
|
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
98
|
+
)
|
99
|
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
100
|
+
hidden_states = hidden_states.type_as(query)
|
101
|
+
|
102
|
+
if hidden_states_img is not None:
|
103
|
+
hidden_states = hidden_states + hidden_states_img
|
104
|
+
|
105
|
+
hidden_states = attn.to_out[0](hidden_states)
|
106
|
+
hidden_states = attn.to_out[1](hidden_states)
|
107
|
+
return hidden_states
|
108
|
+
|
109
|
+
|
110
|
+
class WanImageEmbedding(torch.nn.Module):
|
111
|
+
def __init__(self, in_features: int, out_features: int):
|
112
|
+
super().__init__()
|
113
|
+
|
114
|
+
self.norm1 = FP32LayerNorm(in_features)
|
115
|
+
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
|
116
|
+
self.norm2 = FP32LayerNorm(out_features)
|
117
|
+
|
118
|
+
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
|
119
|
+
hidden_states = self.norm1(encoder_hidden_states_image)
|
120
|
+
hidden_states = self.ff(hidden_states)
|
121
|
+
hidden_states = self.norm2(hidden_states)
|
122
|
+
return hidden_states
|
123
|
+
|
124
|
+
|
125
|
+
class WanTimeTextImageEmbedding(nn.Module):
|
126
|
+
def __init__(
|
127
|
+
self,
|
128
|
+
dim: int,
|
129
|
+
time_freq_dim: int,
|
130
|
+
time_proj_dim: int,
|
131
|
+
text_embed_dim: int,
|
132
|
+
image_embed_dim: Optional[int] = None,
|
133
|
+
):
|
134
|
+
super().__init__()
|
135
|
+
|
136
|
+
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
|
137
|
+
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
|
138
|
+
self.act_fn = nn.SiLU()
|
139
|
+
self.time_proj = nn.Linear(dim, time_proj_dim)
|
140
|
+
self.text_embedder = PixArtAlphaTextProjection(text_embed_dim, dim, act_fn="gelu_tanh")
|
141
|
+
|
142
|
+
self.image_embedder = None
|
143
|
+
if image_embed_dim is not None:
|
144
|
+
self.image_embedder = WanImageEmbedding(image_embed_dim, dim)
|
145
|
+
|
146
|
+
def forward(
|
147
|
+
self,
|
148
|
+
timestep: torch.Tensor,
|
149
|
+
encoder_hidden_states: torch.Tensor,
|
150
|
+
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
151
|
+
):
|
152
|
+
timestep = self.timesteps_proj(timestep)
|
153
|
+
|
154
|
+
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
|
155
|
+
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
|
156
|
+
timestep = timestep.to(time_embedder_dtype)
|
157
|
+
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
|
158
|
+
timestep_proj = self.time_proj(self.act_fn(temb))
|
159
|
+
|
160
|
+
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
|
161
|
+
if encoder_hidden_states_image is not None:
|
162
|
+
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
|
163
|
+
|
164
|
+
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
|
165
|
+
|
166
|
+
|
167
|
+
class WanRotaryPosEmbed(nn.Module):
|
168
|
+
def __init__(
|
169
|
+
self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0
|
170
|
+
):
|
171
|
+
super().__init__()
|
172
|
+
|
173
|
+
self.attention_head_dim = attention_head_dim
|
174
|
+
self.patch_size = patch_size
|
175
|
+
self.max_seq_len = max_seq_len
|
176
|
+
|
177
|
+
h_dim = w_dim = 2 * (attention_head_dim // 6)
|
178
|
+
t_dim = attention_head_dim - h_dim - w_dim
|
179
|
+
|
180
|
+
freqs = []
|
181
|
+
for dim in [t_dim, h_dim, w_dim]:
|
182
|
+
freq = get_1d_rotary_pos_embed(
|
183
|
+
dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64
|
184
|
+
)
|
185
|
+
freqs.append(freq)
|
186
|
+
self.freqs = torch.cat(freqs, dim=1)
|
187
|
+
|
188
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
189
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
190
|
+
p_t, p_h, p_w = self.patch_size
|
191
|
+
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
|
192
|
+
|
193
|
+
self.freqs = self.freqs.to(hidden_states.device)
|
194
|
+
freqs = self.freqs.split_with_sizes(
|
195
|
+
[
|
196
|
+
self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6),
|
197
|
+
self.attention_head_dim // 6,
|
198
|
+
self.attention_head_dim // 6,
|
199
|
+
],
|
200
|
+
dim=1,
|
201
|
+
)
|
202
|
+
|
203
|
+
freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
204
|
+
freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
|
205
|
+
freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
|
206
|
+
freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1)
|
207
|
+
return freqs
|
208
|
+
|
209
|
+
|
210
|
+
class WanTransformerBlock(nn.Module):
|
211
|
+
def __init__(
|
212
|
+
self,
|
213
|
+
dim: int,
|
214
|
+
ffn_dim: int,
|
215
|
+
num_heads: int,
|
216
|
+
qk_norm: str = "rms_norm_across_heads",
|
217
|
+
cross_attn_norm: bool = False,
|
218
|
+
eps: float = 1e-6,
|
219
|
+
added_kv_proj_dim: Optional[int] = None,
|
220
|
+
):
|
221
|
+
super().__init__()
|
222
|
+
|
223
|
+
# 1. Self-attention
|
224
|
+
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
|
225
|
+
self.attn1 = Attention(
|
226
|
+
query_dim=dim,
|
227
|
+
heads=num_heads,
|
228
|
+
kv_heads=num_heads,
|
229
|
+
dim_head=dim // num_heads,
|
230
|
+
qk_norm=qk_norm,
|
231
|
+
eps=eps,
|
232
|
+
bias=True,
|
233
|
+
cross_attention_dim=None,
|
234
|
+
out_bias=True,
|
235
|
+
processor=WanAttnProcessor2_0(),
|
236
|
+
)
|
237
|
+
|
238
|
+
# 2. Cross-attention
|
239
|
+
self.attn2 = Attention(
|
240
|
+
query_dim=dim,
|
241
|
+
heads=num_heads,
|
242
|
+
kv_heads=num_heads,
|
243
|
+
dim_head=dim // num_heads,
|
244
|
+
qk_norm=qk_norm,
|
245
|
+
eps=eps,
|
246
|
+
bias=True,
|
247
|
+
cross_attention_dim=None,
|
248
|
+
out_bias=True,
|
249
|
+
added_kv_proj_dim=added_kv_proj_dim,
|
250
|
+
added_proj_bias=True,
|
251
|
+
processor=WanAttnProcessor2_0(),
|
252
|
+
)
|
253
|
+
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
254
|
+
|
255
|
+
# 3. Feed-forward
|
256
|
+
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
|
257
|
+
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
|
258
|
+
|
259
|
+
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
260
|
+
|
261
|
+
def forward(
|
262
|
+
self,
|
263
|
+
hidden_states: torch.Tensor,
|
264
|
+
encoder_hidden_states: torch.Tensor,
|
265
|
+
temb: torch.Tensor,
|
266
|
+
rotary_emb: torch.Tensor,
|
267
|
+
) -> torch.Tensor:
|
268
|
+
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
|
269
|
+
self.scale_shift_table + temb.float()
|
270
|
+
).chunk(6, dim=1)
|
271
|
+
|
272
|
+
# 1. Self-attention
|
273
|
+
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
|
274
|
+
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb)
|
275
|
+
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
|
276
|
+
|
277
|
+
# 2. Cross-attention
|
278
|
+
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
|
279
|
+
attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
280
|
+
hidden_states = hidden_states + attn_output
|
281
|
+
|
282
|
+
# 3. Feed-forward
|
283
|
+
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
|
284
|
+
hidden_states
|
285
|
+
)
|
286
|
+
ff_output = self.ffn(norm_hidden_states)
|
287
|
+
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
|
288
|
+
|
289
|
+
return hidden_states
|
290
|
+
|
291
|
+
|
292
|
+
class WanTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
293
|
+
r"""
|
294
|
+
A Transformer model for video-like data used in the Wan model.
|
295
|
+
|
296
|
+
Args:
|
297
|
+
patch_size (`Tuple[int]`, defaults to `(1, 2, 2)`):
|
298
|
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch).
|
299
|
+
num_attention_heads (`int`, defaults to `40`):
|
300
|
+
Fixed length for text embeddings.
|
301
|
+
attention_head_dim (`int`, defaults to `128`):
|
302
|
+
The number of channels in each head.
|
303
|
+
in_channels (`int`, defaults to `16`):
|
304
|
+
The number of channels in the input.
|
305
|
+
out_channels (`int`, defaults to `16`):
|
306
|
+
The number of channels in the output.
|
307
|
+
text_dim (`int`, defaults to `512`):
|
308
|
+
Input dimension for text embeddings.
|
309
|
+
freq_dim (`int`, defaults to `256`):
|
310
|
+
Dimension for sinusoidal time embeddings.
|
311
|
+
ffn_dim (`int`, defaults to `13824`):
|
312
|
+
Intermediate dimension in feed-forward network.
|
313
|
+
num_layers (`int`, defaults to `40`):
|
314
|
+
The number of layers of transformer blocks to use.
|
315
|
+
window_size (`Tuple[int]`, defaults to `(-1, -1)`):
|
316
|
+
Window size for local attention (-1 indicates global attention).
|
317
|
+
cross_attn_norm (`bool`, defaults to `True`):
|
318
|
+
Enable cross-attention normalization.
|
319
|
+
qk_norm (`bool`, defaults to `True`):
|
320
|
+
Enable query/key normalization.
|
321
|
+
eps (`float`, defaults to `1e-6`):
|
322
|
+
Epsilon value for normalization layers.
|
323
|
+
add_img_emb (`bool`, defaults to `False`):
|
324
|
+
Whether to use img_emb.
|
325
|
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
326
|
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
327
|
+
"""
|
328
|
+
|
329
|
+
_supports_gradient_checkpointing = True
|
330
|
+
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
|
331
|
+
_no_split_modules = ["WanTransformerBlock"]
|
332
|
+
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
|
333
|
+
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
|
334
|
+
|
335
|
+
@register_to_config
|
336
|
+
def __init__(
|
337
|
+
self,
|
338
|
+
patch_size: Tuple[int] = (1, 2, 2),
|
339
|
+
num_attention_heads: int = 40,
|
340
|
+
attention_head_dim: int = 128,
|
341
|
+
in_channels: int = 16,
|
342
|
+
out_channels: int = 16,
|
343
|
+
text_dim: int = 4096,
|
344
|
+
freq_dim: int = 256,
|
345
|
+
ffn_dim: int = 13824,
|
346
|
+
num_layers: int = 40,
|
347
|
+
cross_attn_norm: bool = True,
|
348
|
+
qk_norm: Optional[str] = "rms_norm_across_heads",
|
349
|
+
eps: float = 1e-6,
|
350
|
+
image_dim: Optional[int] = None,
|
351
|
+
added_kv_proj_dim: Optional[int] = None,
|
352
|
+
rope_max_seq_len: int = 1024,
|
353
|
+
) -> None:
|
354
|
+
super().__init__()
|
355
|
+
|
356
|
+
inner_dim = num_attention_heads * attention_head_dim
|
357
|
+
out_channels = out_channels or in_channels
|
358
|
+
|
359
|
+
# 1. Patch & position embedding
|
360
|
+
self.rope = WanRotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
|
361
|
+
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
|
362
|
+
|
363
|
+
# 2. Condition embeddings
|
364
|
+
# image_embedding_dim=1280 for I2V model
|
365
|
+
self.condition_embedder = WanTimeTextImageEmbedding(
|
366
|
+
dim=inner_dim,
|
367
|
+
time_freq_dim=freq_dim,
|
368
|
+
time_proj_dim=inner_dim * 6,
|
369
|
+
text_embed_dim=text_dim,
|
370
|
+
image_embed_dim=image_dim,
|
371
|
+
)
|
372
|
+
|
373
|
+
# 3. Transformer blocks
|
374
|
+
self.blocks = nn.ModuleList(
|
375
|
+
[
|
376
|
+
WanTransformerBlock(
|
377
|
+
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
|
378
|
+
)
|
379
|
+
for _ in range(num_layers)
|
380
|
+
]
|
381
|
+
)
|
382
|
+
|
383
|
+
# 4. Output norm & projection
|
384
|
+
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
|
385
|
+
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
|
386
|
+
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
|
387
|
+
|
388
|
+
self.gradient_checkpointing = False
|
389
|
+
|
390
|
+
def forward(
|
391
|
+
self,
|
392
|
+
hidden_states: torch.Tensor,
|
393
|
+
timestep: torch.LongTensor,
|
394
|
+
encoder_hidden_states: torch.Tensor,
|
395
|
+
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
396
|
+
return_dict: bool = True,
|
397
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
398
|
+
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
399
|
+
if attention_kwargs is not None:
|
400
|
+
attention_kwargs = attention_kwargs.copy()
|
401
|
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
402
|
+
else:
|
403
|
+
lora_scale = 1.0
|
404
|
+
|
405
|
+
if USE_PEFT_BACKEND:
|
406
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
407
|
+
scale_lora_layers(self, lora_scale)
|
408
|
+
else:
|
409
|
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
410
|
+
logger.warning(
|
411
|
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
412
|
+
)
|
413
|
+
|
414
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
415
|
+
p_t, p_h, p_w = self.config.patch_size
|
416
|
+
post_patch_num_frames = num_frames // p_t
|
417
|
+
post_patch_height = height // p_h
|
418
|
+
post_patch_width = width // p_w
|
419
|
+
|
420
|
+
rotary_emb = self.rope(hidden_states)
|
421
|
+
|
422
|
+
hidden_states = self.patch_embedding(hidden_states)
|
423
|
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
424
|
+
|
425
|
+
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
|
426
|
+
timestep, encoder_hidden_states, encoder_hidden_states_image
|
427
|
+
)
|
428
|
+
timestep_proj = timestep_proj.unflatten(1, (6, -1))
|
429
|
+
|
430
|
+
if encoder_hidden_states_image is not None:
|
431
|
+
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
|
432
|
+
|
433
|
+
# 4. Transformer blocks
|
434
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
435
|
+
for block in self.blocks:
|
436
|
+
hidden_states = self._gradient_checkpointing_func(
|
437
|
+
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb
|
438
|
+
)
|
439
|
+
else:
|
440
|
+
for block in self.blocks:
|
441
|
+
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb)
|
442
|
+
|
443
|
+
# 5. Output norm, projection & unpatchify
|
444
|
+
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
|
445
|
+
|
446
|
+
# Move the shift and scale tensors to the same device as hidden_states.
|
447
|
+
# When using multi-GPU inference via accelerate these will be on the
|
448
|
+
# first device rather than the last device, which hidden_states ends up
|
449
|
+
# on.
|
450
|
+
shift = shift.to(hidden_states.device)
|
451
|
+
scale = scale.to(hidden_states.device)
|
452
|
+
|
453
|
+
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
|
454
|
+
hidden_states = self.proj_out(hidden_states)
|
455
|
+
|
456
|
+
hidden_states = hidden_states.reshape(
|
457
|
+
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
|
458
|
+
)
|
459
|
+
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
460
|
+
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
461
|
+
|
462
|
+
if USE_PEFT_BACKEND:
|
463
|
+
# remove `lora_scale` from each PEFT layer
|
464
|
+
unscale_lora_layers(self, lora_scale)
|
465
|
+
|
466
|
+
if not return_dict:
|
467
|
+
return (output,)
|
468
|
+
|
469
|
+
return Transformer2DModelOutput(sample=output)
|
@@ -71,6 +71,8 @@ class UNet1DModel(ModelMixin, ConfigMixin):
|
|
71
71
|
Experimental feature for using a UNet without upsampling.
|
72
72
|
"""
|
73
73
|
|
74
|
+
_skip_layerwise_casting_patterns = ["norm"]
|
75
|
+
|
74
76
|
@register_to_config
|
75
77
|
def __init__(
|
76
78
|
self,
|
@@ -223,7 +225,7 @@ class UNet1DModel(ModelMixin, ConfigMixin):
|
|
223
225
|
|
224
226
|
timestep_embed = self.time_proj(timesteps)
|
225
227
|
if self.config.use_timestep_embedding:
|
226
|
-
timestep_embed = self.time_mlp(timestep_embed)
|
228
|
+
timestep_embed = self.time_mlp(timestep_embed.to(sample.dtype))
|
227
229
|
else:
|
228
230
|
timestep_embed = timestep_embed[..., None]
|
229
231
|
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
|
@@ -58,7 +58,7 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
58
58
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
|
59
59
|
Tuple of downsample block types.
|
60
60
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
|
61
|
-
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `
|
61
|
+
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `None`.
|
62
62
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
|
63
63
|
Tuple of upsample block types.
|
64
64
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
|
@@ -90,6 +90,7 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
90
90
|
"""
|
91
91
|
|
92
92
|
_supports_gradient_checkpointing = True
|
93
|
+
_skip_layerwise_casting_patterns = ["norm"]
|
93
94
|
|
94
95
|
@register_to_config
|
95
96
|
def __init__(
|
@@ -103,6 +104,7 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
103
104
|
freq_shift: int = 0,
|
104
105
|
flip_sin_to_cos: bool = True,
|
105
106
|
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
107
|
+
mid_block_type: Optional[str] = "UNetMidBlock2D",
|
106
108
|
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
107
109
|
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
108
110
|
layers_per_block: int = 2,
|
@@ -194,19 +196,22 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
194
196
|
self.down_blocks.append(down_block)
|
195
197
|
|
196
198
|
# mid
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
199
|
+
if mid_block_type is None:
|
200
|
+
self.mid_block = None
|
201
|
+
else:
|
202
|
+
self.mid_block = UNetMidBlock2D(
|
203
|
+
in_channels=block_out_channels[-1],
|
204
|
+
temb_channels=time_embed_dim,
|
205
|
+
dropout=dropout,
|
206
|
+
resnet_eps=norm_eps,
|
207
|
+
resnet_act_fn=act_fn,
|
208
|
+
output_scale_factor=mid_block_scale_factor,
|
209
|
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
210
|
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
211
|
+
resnet_groups=norm_num_groups,
|
212
|
+
attn_groups=attn_norm_num_groups,
|
213
|
+
add_attention=add_attention,
|
214
|
+
)
|
210
215
|
|
211
216
|
# up
|
212
217
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
@@ -235,7 +240,6 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
235
240
|
dropout=dropout,
|
236
241
|
)
|
237
242
|
self.up_blocks.append(up_block)
|
238
|
-
prev_output_channel = output_channel
|
239
243
|
|
240
244
|
# out
|
241
245
|
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
@@ -243,10 +247,6 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
243
247
|
self.conv_act = nn.SiLU()
|
244
248
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
245
249
|
|
246
|
-
def _set_gradient_checkpointing(self, module, value=False):
|
247
|
-
if hasattr(module, "gradient_checkpointing"):
|
248
|
-
module.gradient_checkpointing = value
|
249
|
-
|
250
250
|
def forward(
|
251
251
|
self,
|
252
252
|
sample: torch.Tensor,
|
@@ -322,7 +322,8 @@ class UNet2DModel(ModelMixin, ConfigMixin):
|
|
322
322
|
down_block_res_samples += res_samples
|
323
323
|
|
324
324
|
# 4. mid
|
325
|
-
|
325
|
+
if self.mid_block is not None:
|
326
|
+
sample = self.mid_block(sample, emb)
|
326
327
|
|
327
328
|
# 5. up
|
328
329
|
skip_sample = None
|