diffusers 0.32.2__py3-none-any.whl → 0.33.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +595 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +724 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +727 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/METADATA +21 -4
  384. diffusers-0.33.1.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1234 @@
1
+ # Copyright 2025 The EasyAnimate team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from PIL import Image
23
+ from transformers import (
24
+ BertModel,
25
+ BertTokenizer,
26
+ Qwen2Tokenizer,
27
+ Qwen2VLForConditionalGeneration,
28
+ )
29
+
30
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
31
+ from ...image_processor import VaeImageProcessor
32
+ from ...models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
33
+ from ...pipelines.pipeline_utils import DiffusionPipeline
34
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
35
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ...video_processor import VideoProcessor
38
+ from .pipeline_output import EasyAnimatePipelineOutput
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import EasyAnimateInpaintPipeline
56
+ >>> from diffusers.pipelines.easyanimate.pipeline_easyanimate_inpaint import get_image_to_video_latent
57
+ >>> from diffusers.utils import export_to_video, load_image
58
+
59
+ >>> pipe = EasyAnimateInpaintPipeline.from_pretrained(
60
+ ... "alibaba-pai/EasyAnimateV5.1-12b-zh-InP-diffusers", torch_dtype=torch.bfloat16
61
+ ... )
62
+ >>> pipe.to("cuda")
63
+
64
+ >>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
65
+ >>> validation_image_start = load_image(
66
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
67
+ ... )
68
+
69
+ >>> validation_image_end = None
70
+ >>> sample_size = (448, 576)
71
+ >>> num_frames = 49
72
+ >>> input_video, input_video_mask = get_image_to_video_latent(
73
+ ... [validation_image_start], validation_image_end, num_frames, sample_size
74
+ ... )
75
+
76
+ >>> video = pipe(
77
+ ... prompt,
78
+ ... num_frames=num_frames,
79
+ ... negative_prompt="Twisted body, limb deformities, text subtitles, comics, stillness, ugliness, errors, garbled text.",
80
+ ... height=sample_size[0],
81
+ ... width=sample_size[1],
82
+ ... video=input_video,
83
+ ... mask_video=input_video_mask,
84
+ ... )
85
+ >>> export_to_video(video.frames[0], "output.mp4", fps=8)
86
+ ```
87
+ """
88
+
89
+
90
+ def preprocess_image(image, sample_size):
91
+ """
92
+ Preprocess a single image (PIL.Image, numpy.ndarray, or torch.Tensor) to a resized tensor.
93
+ """
94
+ if isinstance(image, torch.Tensor):
95
+ # If input is a tensor, assume it's in CHW format and resize using interpolation
96
+ image = torch.nn.functional.interpolate(
97
+ image.unsqueeze(0), size=sample_size, mode="bilinear", align_corners=False
98
+ ).squeeze(0)
99
+ elif isinstance(image, Image.Image):
100
+ # If input is a PIL image, resize and convert to numpy array
101
+ image = image.resize((sample_size[1], sample_size[0]))
102
+ image = np.array(image)
103
+ elif isinstance(image, np.ndarray):
104
+ # If input is a numpy array, resize using PIL
105
+ image = Image.fromarray(image).resize((sample_size[1], sample_size[0]))
106
+ image = np.array(image)
107
+ else:
108
+ raise ValueError("Unsupported input type. Expected PIL.Image, numpy.ndarray, or torch.Tensor.")
109
+
110
+ # Convert to tensor if not already
111
+ if not isinstance(image, torch.Tensor):
112
+ image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0 # HWC -> CHW, normalize to [0, 1]
113
+
114
+ return image
115
+
116
+
117
+ def get_image_to_video_latent(validation_image_start, validation_image_end, num_frames, sample_size):
118
+ """
119
+ Generate latent representations for video from start and end images. Inputs can be PIL.Image, numpy.ndarray, or
120
+ torch.Tensor.
121
+ """
122
+ input_video = None
123
+ input_video_mask = None
124
+
125
+ if validation_image_start is not None:
126
+ # Preprocess the starting image(s)
127
+ if isinstance(validation_image_start, list):
128
+ image_start = [preprocess_image(img, sample_size) for img in validation_image_start]
129
+ else:
130
+ image_start = preprocess_image(validation_image_start, sample_size)
131
+
132
+ # Create video tensor from the starting image(s)
133
+ if isinstance(image_start, list):
134
+ start_video = torch.cat(
135
+ [img.unsqueeze(1).unsqueeze(0) for img in image_start],
136
+ dim=2,
137
+ )
138
+ input_video = torch.tile(start_video[:, :, :1], [1, 1, num_frames, 1, 1])
139
+ input_video[:, :, : len(image_start)] = start_video
140
+ else:
141
+ input_video = torch.tile(
142
+ image_start.unsqueeze(1).unsqueeze(0),
143
+ [1, 1, num_frames, 1, 1],
144
+ )
145
+
146
+ # Normalize input video (already normalized in preprocess_image)
147
+
148
+ # Create mask for the input video
149
+ input_video_mask = torch.zeros_like(input_video[:, :1])
150
+ if isinstance(image_start, list):
151
+ input_video_mask[:, :, len(image_start) :] = 255
152
+ else:
153
+ input_video_mask[:, :, 1:] = 255
154
+
155
+ # Handle ending image(s) if provided
156
+ if validation_image_end is not None:
157
+ if isinstance(validation_image_end, list):
158
+ image_end = [preprocess_image(img, sample_size) for img in validation_image_end]
159
+ end_video = torch.cat(
160
+ [img.unsqueeze(1).unsqueeze(0) for img in image_end],
161
+ dim=2,
162
+ )
163
+ input_video[:, :, -len(end_video) :] = end_video
164
+ input_video_mask[:, :, -len(image_end) :] = 0
165
+ else:
166
+ image_end = preprocess_image(validation_image_end, sample_size)
167
+ input_video[:, :, -1:] = image_end.unsqueeze(1).unsqueeze(0)
168
+ input_video_mask[:, :, -1:] = 0
169
+
170
+ elif validation_image_start is None:
171
+ # If no starting image is provided, initialize empty tensors
172
+ input_video = torch.zeros([1, 3, num_frames, sample_size[0], sample_size[1]])
173
+ input_video_mask = torch.ones([1, 1, num_frames, sample_size[0], sample_size[1]]) * 255
174
+
175
+ return input_video, input_video_mask
176
+
177
+
178
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
179
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
180
+ tw = tgt_width
181
+ th = tgt_height
182
+ h, w = src
183
+ r = h / w
184
+ if r > (th / tw):
185
+ resize_height = th
186
+ resize_width = int(round(th / h * w))
187
+ else:
188
+ resize_width = tw
189
+ resize_height = int(round(tw / w * h))
190
+
191
+ crop_top = int(round((th - resize_height) / 2.0))
192
+ crop_left = int(round((tw - resize_width) / 2.0))
193
+
194
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
195
+
196
+
197
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
198
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
199
+ r"""
200
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
201
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
202
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
203
+
204
+ Args:
205
+ noise_cfg (`torch.Tensor`):
206
+ The predicted noise tensor for the guided diffusion process.
207
+ noise_pred_text (`torch.Tensor`):
208
+ The predicted noise tensor for the text-guided diffusion process.
209
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
210
+ A rescale factor applied to the noise predictions.
211
+
212
+ Returns:
213
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
214
+ """
215
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
216
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
217
+ # rescale the results from guidance (fixes overexposure)
218
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
219
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
220
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
221
+ return noise_cfg
222
+
223
+
224
+ # Resize mask information in magvit
225
+ def resize_mask(mask, latent, process_first_frame_only=True):
226
+ latent_size = latent.size()
227
+
228
+ if process_first_frame_only:
229
+ target_size = list(latent_size[2:])
230
+ target_size[0] = 1
231
+ first_frame_resized = F.interpolate(
232
+ mask[:, :, 0:1, :, :], size=target_size, mode="trilinear", align_corners=False
233
+ )
234
+
235
+ target_size = list(latent_size[2:])
236
+ target_size[0] = target_size[0] - 1
237
+ if target_size[0] != 0:
238
+ remaining_frames_resized = F.interpolate(
239
+ mask[:, :, 1:, :, :], size=target_size, mode="trilinear", align_corners=False
240
+ )
241
+ resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
242
+ else:
243
+ resized_mask = first_frame_resized
244
+ else:
245
+ target_size = list(latent_size[2:])
246
+ resized_mask = F.interpolate(mask, size=target_size, mode="trilinear", align_corners=False)
247
+ return resized_mask
248
+
249
+
250
+ ## Add noise to reference video
251
+ def add_noise_to_reference_video(image, ratio=None, generator=None):
252
+ if ratio is None:
253
+ sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
254
+ sigma = torch.exp(sigma).to(image.dtype)
255
+ else:
256
+ sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
257
+
258
+ if generator is not None:
259
+ image_noise = (
260
+ torch.randn(image.size(), generator=generator, dtype=image.dtype, device=image.device)
261
+ * sigma[:, None, None, None, None]
262
+ )
263
+ else:
264
+ image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
265
+ image_noise = torch.where(image == -1, torch.zeros_like(image), image_noise)
266
+ image = image + image_noise
267
+ return image
268
+
269
+
270
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
271
+ def retrieve_timesteps(
272
+ scheduler,
273
+ num_inference_steps: Optional[int] = None,
274
+ device: Optional[Union[str, torch.device]] = None,
275
+ timesteps: Optional[List[int]] = None,
276
+ sigmas: Optional[List[float]] = None,
277
+ **kwargs,
278
+ ):
279
+ r"""
280
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
281
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
282
+
283
+ Args:
284
+ scheduler (`SchedulerMixin`):
285
+ The scheduler to get timesteps from.
286
+ num_inference_steps (`int`):
287
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
288
+ must be `None`.
289
+ device (`str` or `torch.device`, *optional*):
290
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
291
+ timesteps (`List[int]`, *optional*):
292
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
293
+ `num_inference_steps` and `sigmas` must be `None`.
294
+ sigmas (`List[float]`, *optional*):
295
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
296
+ `num_inference_steps` and `timesteps` must be `None`.
297
+
298
+ Returns:
299
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
300
+ second element is the number of inference steps.
301
+ """
302
+ if timesteps is not None and sigmas is not None:
303
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
304
+ if timesteps is not None:
305
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
306
+ if not accepts_timesteps:
307
+ raise ValueError(
308
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
309
+ f" timestep schedules. Please check whether you are using the correct scheduler."
310
+ )
311
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
312
+ timesteps = scheduler.timesteps
313
+ num_inference_steps = len(timesteps)
314
+ elif sigmas is not None:
315
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
316
+ if not accept_sigmas:
317
+ raise ValueError(
318
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
319
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
320
+ )
321
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
322
+ timesteps = scheduler.timesteps
323
+ num_inference_steps = len(timesteps)
324
+ else:
325
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
326
+ timesteps = scheduler.timesteps
327
+ return timesteps, num_inference_steps
328
+
329
+
330
+ class EasyAnimateInpaintPipeline(DiffusionPipeline):
331
+ r"""
332
+ Pipeline for text-to-video generation using EasyAnimate.
333
+
334
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
335
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
336
+
337
+ EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
338
+
339
+ Args:
340
+ vae ([`AutoencoderKLMagvit`]):
341
+ Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
342
+ text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]):
343
+ EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
344
+ tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]):
345
+ A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text.
346
+ transformer ([`EasyAnimateTransformer3DModel`]):
347
+ The EasyAnimate model designed by EasyAnimate Team.
348
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
349
+ A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
350
+ """
351
+
352
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
353
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
354
+
355
+ def __init__(
356
+ self,
357
+ vae: AutoencoderKLMagvit,
358
+ text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel],
359
+ tokenizer: Union[Qwen2Tokenizer, BertTokenizer],
360
+ transformer: EasyAnimateTransformer3DModel,
361
+ scheduler: FlowMatchEulerDiscreteScheduler,
362
+ ):
363
+ super().__init__()
364
+
365
+ self.register_modules(
366
+ vae=vae,
367
+ text_encoder=text_encoder,
368
+ tokenizer=tokenizer,
369
+ transformer=transformer,
370
+ scheduler=scheduler,
371
+ )
372
+
373
+ self.enable_text_attention_mask = (
374
+ self.transformer.config.enable_text_attention_mask
375
+ if getattr(self, "transformer", None) is not None
376
+ else True
377
+ )
378
+ self.vae_spatial_compression_ratio = (
379
+ self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 8
380
+ )
381
+ self.vae_temporal_compression_ratio = (
382
+ self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 4
383
+ )
384
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
385
+ self.mask_processor = VaeImageProcessor(
386
+ vae_scale_factor=self.vae_spatial_compression_ratio,
387
+ do_normalize=False,
388
+ do_binarize=True,
389
+ do_convert_grayscale=True,
390
+ )
391
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
392
+
393
+ # Copied from diffusers.pipelines.easyanimate.pipeline_easyanimate.EasyAnimatePipeline.encode_prompt
394
+ def encode_prompt(
395
+ self,
396
+ prompt: Union[str, List[str]],
397
+ num_images_per_prompt: int = 1,
398
+ do_classifier_free_guidance: bool = True,
399
+ negative_prompt: Optional[Union[str, List[str]]] = None,
400
+ prompt_embeds: Optional[torch.Tensor] = None,
401
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
402
+ prompt_attention_mask: Optional[torch.Tensor] = None,
403
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
404
+ device: Optional[torch.device] = None,
405
+ dtype: Optional[torch.dtype] = None,
406
+ max_sequence_length: int = 256,
407
+ ):
408
+ r"""
409
+ Encodes the prompt into text encoder hidden states.
410
+
411
+ Args:
412
+ prompt (`str` or `List[str]`, *optional*):
413
+ prompt to be encoded
414
+ device: (`torch.device`):
415
+ torch device
416
+ dtype (`torch.dtype`):
417
+ torch dtype
418
+ num_images_per_prompt (`int`):
419
+ number of images that should be generated per prompt
420
+ do_classifier_free_guidance (`bool`):
421
+ whether to use classifier free guidance or not
422
+ negative_prompt (`str` or `List[str]`, *optional*):
423
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
424
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
425
+ less than `1`).
426
+ prompt_embeds (`torch.Tensor`, *optional*):
427
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
428
+ provided, text embeddings will be generated from `prompt` input argument.
429
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
430
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
431
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
432
+ argument.
433
+ prompt_attention_mask (`torch.Tensor`, *optional*):
434
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
435
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
436
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
437
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
438
+ """
439
+ dtype = dtype or self.text_encoder.dtype
440
+ device = device or self.text_encoder.device
441
+
442
+ if prompt is not None and isinstance(prompt, str):
443
+ batch_size = 1
444
+ elif prompt is not None and isinstance(prompt, list):
445
+ batch_size = len(prompt)
446
+ else:
447
+ batch_size = prompt_embeds.shape[0]
448
+
449
+ if prompt_embeds is None:
450
+ if isinstance(prompt, str):
451
+ messages = [
452
+ {
453
+ "role": "user",
454
+ "content": [{"type": "text", "text": prompt}],
455
+ }
456
+ ]
457
+ else:
458
+ messages = [
459
+ {
460
+ "role": "user",
461
+ "content": [{"type": "text", "text": _prompt}],
462
+ }
463
+ for _prompt in prompt
464
+ ]
465
+ text = [
466
+ self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
467
+ ]
468
+
469
+ text_inputs = self.tokenizer(
470
+ text=text,
471
+ padding="max_length",
472
+ max_length=max_sequence_length,
473
+ truncation=True,
474
+ return_attention_mask=True,
475
+ padding_side="right",
476
+ return_tensors="pt",
477
+ )
478
+ text_inputs = text_inputs.to(self.text_encoder.device)
479
+
480
+ text_input_ids = text_inputs.input_ids
481
+ prompt_attention_mask = text_inputs.attention_mask
482
+ if self.enable_text_attention_mask:
483
+ # Inference: Generation of the output
484
+ prompt_embeds = self.text_encoder(
485
+ input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
486
+ ).hidden_states[-2]
487
+ else:
488
+ raise ValueError("LLM needs attention_mask")
489
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
490
+
491
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
492
+
493
+ bs_embed, seq_len, _ = prompt_embeds.shape
494
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
495
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
496
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
497
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
498
+
499
+ # get unconditional embeddings for classifier free guidance
500
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
501
+ if negative_prompt is not None and isinstance(negative_prompt, str):
502
+ messages = [
503
+ {
504
+ "role": "user",
505
+ "content": [{"type": "text", "text": negative_prompt}],
506
+ }
507
+ ]
508
+ else:
509
+ messages = [
510
+ {
511
+ "role": "user",
512
+ "content": [{"type": "text", "text": _negative_prompt}],
513
+ }
514
+ for _negative_prompt in negative_prompt
515
+ ]
516
+ text = [
517
+ self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
518
+ ]
519
+
520
+ text_inputs = self.tokenizer(
521
+ text=text,
522
+ padding="max_length",
523
+ max_length=max_sequence_length,
524
+ truncation=True,
525
+ return_attention_mask=True,
526
+ padding_side="right",
527
+ return_tensors="pt",
528
+ )
529
+ text_inputs = text_inputs.to(self.text_encoder.device)
530
+
531
+ text_input_ids = text_inputs.input_ids
532
+ negative_prompt_attention_mask = text_inputs.attention_mask
533
+ if self.enable_text_attention_mask:
534
+ # Inference: Generation of the output
535
+ negative_prompt_embeds = self.text_encoder(
536
+ input_ids=text_input_ids,
537
+ attention_mask=negative_prompt_attention_mask,
538
+ output_hidden_states=True,
539
+ ).hidden_states[-2]
540
+ else:
541
+ raise ValueError("LLM needs attention_mask")
542
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
543
+
544
+ if do_classifier_free_guidance:
545
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
546
+ seq_len = negative_prompt_embeds.shape[1]
547
+
548
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
549
+
550
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
551
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
552
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device)
553
+
554
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
555
+
556
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
557
+ def prepare_extra_step_kwargs(self, generator, eta):
558
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
559
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
560
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
561
+ # and should be between [0, 1]
562
+
563
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
564
+ extra_step_kwargs = {}
565
+ if accepts_eta:
566
+ extra_step_kwargs["eta"] = eta
567
+
568
+ # check if the scheduler accepts generator
569
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
570
+ if accepts_generator:
571
+ extra_step_kwargs["generator"] = generator
572
+ return extra_step_kwargs
573
+
574
+ def check_inputs(
575
+ self,
576
+ prompt,
577
+ height,
578
+ width,
579
+ negative_prompt=None,
580
+ prompt_embeds=None,
581
+ negative_prompt_embeds=None,
582
+ prompt_attention_mask=None,
583
+ negative_prompt_attention_mask=None,
584
+ callback_on_step_end_tensor_inputs=None,
585
+ ):
586
+ if height % 16 != 0 or width % 16 != 0:
587
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
588
+
589
+ if callback_on_step_end_tensor_inputs is not None and not all(
590
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
591
+ ):
592
+ raise ValueError(
593
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
594
+ )
595
+
596
+ if prompt is not None and prompt_embeds is not None:
597
+ raise ValueError(
598
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
599
+ " only forward one of the two."
600
+ )
601
+ elif prompt is None and prompt_embeds is None:
602
+ raise ValueError(
603
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
604
+ )
605
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
606
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
607
+
608
+ if prompt_embeds is not None and prompt_attention_mask is None:
609
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
610
+
611
+ if negative_prompt is not None and negative_prompt_embeds is not None:
612
+ raise ValueError(
613
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
614
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
615
+ )
616
+
617
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
618
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
619
+
620
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
621
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
622
+ raise ValueError(
623
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
624
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
625
+ f" {negative_prompt_embeds.shape}."
626
+ )
627
+
628
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
629
+ def get_timesteps(self, num_inference_steps, strength, device):
630
+ # get the original timestep using init_timestep
631
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
632
+
633
+ t_start = max(num_inference_steps - init_timestep, 0)
634
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
635
+ if hasattr(self.scheduler, "set_begin_index"):
636
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
637
+
638
+ return timesteps, num_inference_steps - t_start
639
+
640
+ def prepare_mask_latents(
641
+ self,
642
+ mask,
643
+ masked_image,
644
+ batch_size,
645
+ height,
646
+ width,
647
+ dtype,
648
+ device,
649
+ generator,
650
+ do_classifier_free_guidance,
651
+ noise_aug_strength,
652
+ ):
653
+ # resize the mask to latents shape as we concatenate the mask to the latents
654
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
655
+ # and half precision
656
+ if mask is not None:
657
+ mask = mask.to(device=device, dtype=dtype)
658
+ new_mask = []
659
+ bs = 1
660
+ for i in range(0, mask.shape[0], bs):
661
+ mask_bs = mask[i : i + bs]
662
+ mask_bs = self.vae.encode(mask_bs)[0]
663
+ mask_bs = mask_bs.mode()
664
+ new_mask.append(mask_bs)
665
+ mask = torch.cat(new_mask, dim=0)
666
+ mask = mask * self.vae.config.scaling_factor
667
+
668
+ if masked_image is not None:
669
+ masked_image = masked_image.to(device=device, dtype=dtype)
670
+ if self.transformer.config.add_noise_in_inpaint_model:
671
+ masked_image = add_noise_to_reference_video(
672
+ masked_image, ratio=noise_aug_strength, generator=generator
673
+ )
674
+ new_mask_pixel_values = []
675
+ bs = 1
676
+ for i in range(0, masked_image.shape[0], bs):
677
+ mask_pixel_values_bs = masked_image[i : i + bs]
678
+ mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
679
+ mask_pixel_values_bs = mask_pixel_values_bs.mode()
680
+ new_mask_pixel_values.append(mask_pixel_values_bs)
681
+ masked_image_latents = torch.cat(new_mask_pixel_values, dim=0)
682
+ masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
683
+
684
+ # aligning device to prevent device errors when concating it with the latent model input
685
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
686
+ else:
687
+ masked_image_latents = None
688
+
689
+ return mask, masked_image_latents
690
+
691
+ def prepare_latents(
692
+ self,
693
+ batch_size,
694
+ num_channels_latents,
695
+ height,
696
+ width,
697
+ num_frames,
698
+ dtype,
699
+ device,
700
+ generator,
701
+ latents=None,
702
+ video=None,
703
+ timestep=None,
704
+ is_strength_max=True,
705
+ return_noise=False,
706
+ return_video_latents=False,
707
+ ):
708
+ shape = (
709
+ batch_size,
710
+ num_channels_latents,
711
+ (num_frames - 1) // self.vae_temporal_compression_ratio + 1,
712
+ height // self.vae_spatial_compression_ratio,
713
+ width // self.vae_spatial_compression_ratio,
714
+ )
715
+
716
+ if isinstance(generator, list) and len(generator) != batch_size:
717
+ raise ValueError(
718
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
719
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
720
+ )
721
+
722
+ if return_video_latents or (latents is None and not is_strength_max):
723
+ video = video.to(device=device, dtype=dtype)
724
+ bs = 1
725
+ new_video = []
726
+ for i in range(0, video.shape[0], bs):
727
+ video_bs = video[i : i + bs]
728
+ video_bs = self.vae.encode(video_bs)[0]
729
+ video_bs = video_bs.sample()
730
+ new_video.append(video_bs)
731
+ video = torch.cat(new_video, dim=0)
732
+ video = video * self.vae.config.scaling_factor
733
+
734
+ video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1)
735
+ video_latents = video_latents.to(device=device, dtype=dtype)
736
+
737
+ if latents is None:
738
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
739
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
740
+ if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
741
+ latents = noise if is_strength_max else self.scheduler.scale_noise(video_latents, timestep, noise)
742
+ else:
743
+ latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep)
744
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
745
+ if hasattr(self.scheduler, "init_noise_sigma"):
746
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
747
+ else:
748
+ if hasattr(self.scheduler, "init_noise_sigma"):
749
+ noise = latents.to(device)
750
+ latents = noise * self.scheduler.init_noise_sigma
751
+ else:
752
+ latents = latents.to(device)
753
+
754
+ # scale the initial noise by the standard deviation required by the scheduler
755
+ outputs = (latents,)
756
+
757
+ if return_noise:
758
+ outputs += (noise,)
759
+
760
+ if return_video_latents:
761
+ outputs += (video_latents,)
762
+
763
+ return outputs
764
+
765
+ @property
766
+ def guidance_scale(self):
767
+ return self._guidance_scale
768
+
769
+ @property
770
+ def guidance_rescale(self):
771
+ return self._guidance_rescale
772
+
773
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
774
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
775
+ # corresponds to doing no classifier free guidance.
776
+ @property
777
+ def do_classifier_free_guidance(self):
778
+ return self._guidance_scale > 1
779
+
780
+ @property
781
+ def num_timesteps(self):
782
+ return self._num_timesteps
783
+
784
+ @property
785
+ def interrupt(self):
786
+ return self._interrupt
787
+
788
+ @torch.no_grad()
789
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
790
+ def __call__(
791
+ self,
792
+ prompt: Union[str, List[str]] = None,
793
+ num_frames: Optional[int] = 49,
794
+ video: Union[torch.FloatTensor] = None,
795
+ mask_video: Union[torch.FloatTensor] = None,
796
+ masked_video_latents: Union[torch.FloatTensor] = None,
797
+ height: Optional[int] = 512,
798
+ width: Optional[int] = 512,
799
+ num_inference_steps: Optional[int] = 50,
800
+ guidance_scale: Optional[float] = 5.0,
801
+ negative_prompt: Optional[Union[str, List[str]]] = None,
802
+ num_images_per_prompt: Optional[int] = 1,
803
+ eta: Optional[float] = 0.0,
804
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
805
+ latents: Optional[torch.Tensor] = None,
806
+ prompt_embeds: Optional[torch.Tensor] = None,
807
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
808
+ prompt_attention_mask: Optional[torch.Tensor] = None,
809
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
810
+ output_type: Optional[str] = "pil",
811
+ return_dict: bool = True,
812
+ callback_on_step_end: Optional[
813
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
814
+ ] = None,
815
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
816
+ guidance_rescale: float = 0.0,
817
+ strength: float = 1.0,
818
+ noise_aug_strength: float = 0.0563,
819
+ timesteps: Optional[List[int]] = None,
820
+ ):
821
+ r"""
822
+ The call function to the pipeline for generation with HunyuanDiT.
823
+
824
+ Examples:
825
+ prompt (`str` or `List[str]`, *optional*):
826
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
827
+ num_frames (`int`, *optional*):
828
+ Length of the video to be generated in seconds. This parameter influences the number of frames and
829
+ continuity of generated content.
830
+ video (`torch.FloatTensor`, *optional*):
831
+ A tensor representing an input video, which can be modified depending on the prompts provided.
832
+ mask_video (`torch.FloatTensor`, *optional*):
833
+ A tensor to specify areas of the video to be masked (omitted from generation).
834
+ masked_video_latents (`torch.FloatTensor`, *optional*):
835
+ Latents from masked portions of the video, utilized during image generation.
836
+ height (`int`, *optional*):
837
+ The height in pixels of the generated image or video frames.
838
+ width (`int`, *optional*):
839
+ The width in pixels of the generated image or video frames.
840
+ num_inference_steps (`int`, *optional*, defaults to 50):
841
+ The number of denoising steps. More denoising steps usually lead to a higher quality image but slower
842
+ inference time. This parameter is modulated by `strength`.
843
+ guidance_scale (`float`, *optional*, defaults to 5.0):
844
+ A higher guidance scale value encourages the model to generate images closely linked to the text
845
+ `prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`.
846
+ negative_prompt (`str` or `List[str]`, *optional*):
847
+ The prompt or prompts to guide what to exclude in image generation. If not defined, you need to provide
848
+ `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`).
849
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
850
+ The number of images to generate per prompt.
851
+ eta (`float`, *optional*, defaults to 0.0):
852
+ A parameter defined in the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the
853
+ [`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the
854
+ inference process.
855
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
856
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting
857
+ random seeds which helps in making generation deterministic.
858
+ latents (`torch.Tensor`, *optional*):
859
+ A pre-computed latent representation which can be used to guide the generation process.
860
+ prompt_embeds (`torch.Tensor`, *optional*):
861
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
862
+ provided, embeddings are generated from the `prompt` input argument.
863
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
864
+ Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the
865
+ outputs. If not provided, embeddings are generated from the `negative_prompt` argument.
866
+ prompt_attention_mask (`torch.Tensor`, *optional*):
867
+ Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using
868
+ `prompt_embeds`.
869
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
870
+ Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used.
871
+ output_type (`str`, *optional*, defaults to `"latent"`):
872
+ The output format of the generated image. Choose between `PIL.Image` and `np.array` to define how you
873
+ want the results to be formatted.
874
+ return_dict (`bool`, *optional*, defaults to `True`):
875
+ If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned;
876
+ otherwise, a tuple containing the generated images and safety flags will be returned.
877
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`,
878
+ *optional*):
879
+ A callback function (or a list of them) that will be executed at the end of each denoising step,
880
+ allowing for custom processing during generation.
881
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
882
+ Specifies which tensor inputs should be included in the callback function. If not defined, all tensor
883
+ inputs will be passed, facilitating enhanced logging or monitoring of the generation process.
884
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
885
+ Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from
886
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
887
+ strength (`float`, *optional*, defaults to 1.0):
888
+ Affects the overall styling or quality of the generated output. Values closer to 1 usually provide
889
+ direct adherence to prompts.
890
+
891
+ Examples:
892
+ # Example usage of the function for generating images based on prompts.
893
+
894
+ Returns:
895
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
896
+ Returns either a structured output containing generated images and their metadata when `return_dict` is
897
+ `True`, or a simpler tuple, where the first element is a list of generated images and the second
898
+ element indicates if any of them contain "not-safe-for-work" (NSFW) content.
899
+ """
900
+
901
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
902
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
903
+
904
+ # 0. default height and width
905
+ height = int(height // 16 * 16)
906
+ width = int(width // 16 * 16)
907
+
908
+ # 1. Check inputs. Raise error if not correct
909
+ self.check_inputs(
910
+ prompt,
911
+ height,
912
+ width,
913
+ negative_prompt,
914
+ prompt_embeds,
915
+ negative_prompt_embeds,
916
+ prompt_attention_mask,
917
+ negative_prompt_attention_mask,
918
+ callback_on_step_end_tensor_inputs,
919
+ )
920
+ self._guidance_scale = guidance_scale
921
+ self._guidance_rescale = guidance_rescale
922
+ self._interrupt = False
923
+
924
+ # 2. Define call parameters
925
+ if prompt is not None and isinstance(prompt, str):
926
+ batch_size = 1
927
+ elif prompt is not None and isinstance(prompt, list):
928
+ batch_size = len(prompt)
929
+ else:
930
+ batch_size = prompt_embeds.shape[0]
931
+
932
+ device = self._execution_device
933
+ if self.text_encoder is not None:
934
+ dtype = self.text_encoder.dtype
935
+ else:
936
+ dtype = self.transformer.dtype
937
+
938
+ # 3. Encode input prompt
939
+ (
940
+ prompt_embeds,
941
+ negative_prompt_embeds,
942
+ prompt_attention_mask,
943
+ negative_prompt_attention_mask,
944
+ ) = self.encode_prompt(
945
+ prompt=prompt,
946
+ device=device,
947
+ dtype=dtype,
948
+ num_images_per_prompt=num_images_per_prompt,
949
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
950
+ negative_prompt=negative_prompt,
951
+ prompt_embeds=prompt_embeds,
952
+ negative_prompt_embeds=negative_prompt_embeds,
953
+ prompt_attention_mask=prompt_attention_mask,
954
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
955
+ )
956
+
957
+ # 4. set timesteps
958
+ if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
959
+ timesteps, num_inference_steps = retrieve_timesteps(
960
+ self.scheduler, num_inference_steps, device, timesteps, mu=1
961
+ )
962
+ else:
963
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
964
+ timesteps, num_inference_steps = self.get_timesteps(
965
+ num_inference_steps=num_inference_steps, strength=strength, device=device
966
+ )
967
+
968
+ # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
969
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
970
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
971
+ is_strength_max = strength == 1.0
972
+
973
+ if video is not None:
974
+ batch_size, channels, num_frames, height_video, width_video = video.shape
975
+ init_video = self.image_processor.preprocess(
976
+ video.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height_video, width_video),
977
+ height=height,
978
+ width=width,
979
+ )
980
+ init_video = init_video.to(dtype=torch.float32)
981
+ init_video = init_video.reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
982
+ else:
983
+ init_video = None
984
+
985
+ # Prepare latent variables
986
+ num_channels_latents = self.vae.config.latent_channels
987
+ num_channels_transformer = self.transformer.config.in_channels
988
+ return_image_latents = num_channels_transformer == num_channels_latents
989
+
990
+ # 5. Prepare latents.
991
+ latents_outputs = self.prepare_latents(
992
+ batch_size * num_images_per_prompt,
993
+ num_channels_latents,
994
+ height,
995
+ width,
996
+ num_frames,
997
+ dtype,
998
+ device,
999
+ generator,
1000
+ latents,
1001
+ video=init_video,
1002
+ timestep=latent_timestep,
1003
+ is_strength_max=is_strength_max,
1004
+ return_noise=True,
1005
+ return_video_latents=return_image_latents,
1006
+ )
1007
+ if return_image_latents:
1008
+ latents, noise, image_latents = latents_outputs
1009
+ else:
1010
+ latents, noise = latents_outputs
1011
+
1012
+ # 6. Prepare inpaint latents if it needs.
1013
+ if mask_video is not None:
1014
+ if (mask_video == 255).all():
1015
+ mask = torch.zeros_like(latents).to(device, dtype)
1016
+ # Use zero latents if we want to t2v.
1017
+ if self.transformer.config.resize_inpaint_mask_directly:
1018
+ mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype)
1019
+ else:
1020
+ mask_latents = torch.zeros_like(latents).to(device, dtype)
1021
+ masked_video_latents = torch.zeros_like(latents).to(device, dtype)
1022
+
1023
+ mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
1024
+ masked_video_latents_input = (
1025
+ torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
1026
+ )
1027
+ inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype)
1028
+ else:
1029
+ # Prepare mask latent variables
1030
+ batch_size, channels, num_frames, height_video, width_video = mask_video.shape
1031
+ mask_condition = self.mask_processor.preprocess(
1032
+ mask_video.permute(0, 2, 1, 3, 4).reshape(
1033
+ batch_size * num_frames, channels, height_video, width_video
1034
+ ),
1035
+ height=height,
1036
+ width=width,
1037
+ )
1038
+ mask_condition = mask_condition.to(dtype=torch.float32)
1039
+ mask_condition = mask_condition.reshape(batch_size, num_frames, channels, height, width).permute(
1040
+ 0, 2, 1, 3, 4
1041
+ )
1042
+
1043
+ if num_channels_transformer != num_channels_latents:
1044
+ mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1])
1045
+ if masked_video_latents is None:
1046
+ masked_video = (
1047
+ init_video * (mask_condition_tile < 0.5)
1048
+ + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1
1049
+ )
1050
+ else:
1051
+ masked_video = masked_video_latents
1052
+
1053
+ if self.transformer.config.resize_inpaint_mask_directly:
1054
+ _, masked_video_latents = self.prepare_mask_latents(
1055
+ None,
1056
+ masked_video,
1057
+ batch_size,
1058
+ height,
1059
+ width,
1060
+ dtype,
1061
+ device,
1062
+ generator,
1063
+ self.do_classifier_free_guidance,
1064
+ noise_aug_strength=noise_aug_strength,
1065
+ )
1066
+ mask_latents = resize_mask(
1067
+ 1 - mask_condition, masked_video_latents, self.vae.config.cache_mag_vae
1068
+ )
1069
+ mask_latents = mask_latents.to(device, dtype) * self.vae.config.scaling_factor
1070
+ else:
1071
+ mask_latents, masked_video_latents = self.prepare_mask_latents(
1072
+ mask_condition_tile,
1073
+ masked_video,
1074
+ batch_size,
1075
+ height,
1076
+ width,
1077
+ dtype,
1078
+ device,
1079
+ generator,
1080
+ self.do_classifier_free_guidance,
1081
+ noise_aug_strength=noise_aug_strength,
1082
+ )
1083
+
1084
+ mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
1085
+ masked_video_latents_input = (
1086
+ torch.cat([masked_video_latents] * 2)
1087
+ if self.do_classifier_free_guidance
1088
+ else masked_video_latents
1089
+ )
1090
+ inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype)
1091
+ else:
1092
+ inpaint_latents = None
1093
+
1094
+ mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1])
1095
+ mask = F.interpolate(mask, size=latents.size()[-3:], mode="trilinear", align_corners=True).to(
1096
+ device, dtype
1097
+ )
1098
+ else:
1099
+ if num_channels_transformer != num_channels_latents:
1100
+ mask = torch.zeros_like(latents).to(device, dtype)
1101
+ if self.transformer.config.resize_inpaint_mask_directly:
1102
+ mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype)
1103
+ else:
1104
+ mask_latents = torch.zeros_like(latents).to(device, dtype)
1105
+ masked_video_latents = torch.zeros_like(latents).to(device, dtype)
1106
+
1107
+ mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents
1108
+ masked_video_latents_input = (
1109
+ torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents
1110
+ )
1111
+ inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype)
1112
+ else:
1113
+ mask = torch.zeros_like(init_video[:, :1])
1114
+ mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1])
1115
+ mask = F.interpolate(mask, size=latents.size()[-3:], mode="trilinear", align_corners=True).to(
1116
+ device, dtype
1117
+ )
1118
+
1119
+ inpaint_latents = None
1120
+
1121
+ # Check that sizes of mask, masked image and latents match
1122
+ if num_channels_transformer != num_channels_latents:
1123
+ num_channels_mask = mask_latents.shape[1]
1124
+ num_channels_masked_image = masked_video_latents.shape[1]
1125
+ if (
1126
+ num_channels_latents + num_channels_mask + num_channels_masked_image
1127
+ != self.transformer.config.in_channels
1128
+ ):
1129
+ raise ValueError(
1130
+ f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
1131
+ f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1132
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1133
+ f" = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of"
1134
+ " `pipeline.transformer` or your `mask_image` or `image` input."
1135
+ )
1136
+
1137
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1138
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1139
+
1140
+ if self.do_classifier_free_guidance:
1141
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1142
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
1143
+
1144
+ # To latents.device
1145
+ prompt_embeds = prompt_embeds.to(device=device)
1146
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
1147
+
1148
+ # 8. Denoising loop
1149
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1150
+ self._num_timesteps = len(timesteps)
1151
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1152
+ for i, t in enumerate(timesteps):
1153
+ if self.interrupt:
1154
+ continue
1155
+
1156
+ # expand the latents if we are doing classifier free guidance
1157
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1158
+ if hasattr(self.scheduler, "scale_model_input"):
1159
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1160
+
1161
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
1162
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
1163
+ dtype=latent_model_input.dtype
1164
+ )
1165
+
1166
+ # predict the noise residual
1167
+ noise_pred = self.transformer(
1168
+ latent_model_input,
1169
+ t_expand,
1170
+ encoder_hidden_states=prompt_embeds,
1171
+ inpaint_latents=inpaint_latents,
1172
+ return_dict=False,
1173
+ )[0]
1174
+ if noise_pred.size()[1] != self.vae.config.latent_channels:
1175
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
1176
+
1177
+ # perform guidance
1178
+ if self.do_classifier_free_guidance:
1179
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1180
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1181
+
1182
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
1183
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1184
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
1185
+
1186
+ # compute the previous noisy sample x_t -> x_t-1
1187
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1188
+
1189
+ if num_channels_transformer == num_channels_latents:
1190
+ init_latents_proper = image_latents
1191
+ init_mask = mask
1192
+ if i < len(timesteps) - 1:
1193
+ noise_timestep = timesteps[i + 1]
1194
+ if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
1195
+ init_latents_proper = self.scheduler.scale_noise(
1196
+ init_latents_proper, torch.tensor([noise_timestep], noise)
1197
+ )
1198
+ else:
1199
+ init_latents_proper = self.scheduler.add_noise(
1200
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1201
+ )
1202
+
1203
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1204
+
1205
+ if callback_on_step_end is not None:
1206
+ callback_kwargs = {}
1207
+ for k in callback_on_step_end_tensor_inputs:
1208
+ callback_kwargs[k] = locals()[k]
1209
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1210
+
1211
+ latents = callback_outputs.pop("latents", latents)
1212
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1213
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1214
+
1215
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1216
+ progress_bar.update()
1217
+
1218
+ if XLA_AVAILABLE:
1219
+ xm.mark_step()
1220
+
1221
+ if not output_type == "latent":
1222
+ latents = 1 / self.vae.config.scaling_factor * latents
1223
+ video = self.vae.decode(latents, return_dict=False)[0]
1224
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
1225
+ else:
1226
+ video = latents
1227
+
1228
+ # Offload all models
1229
+ self.maybe_free_model_hooks()
1230
+
1231
+ if not return_dict:
1232
+ return (video,)
1233
+
1234
+ return EasyAnimatePipelineOutput(frames=video)