diffusers 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +198 -28
  13. diffusers/loaders/lora_conversion_utils.py +679 -44
  14. diffusers/loaders/lora_pipeline.py +1963 -801
  15. diffusers/loaders/peft.py +169 -84
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +653 -75
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +22 -32
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +409 -49
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +10 -2
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +14 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.1.dist-info/RECORD +0 -550
  387. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,725 @@
1
+ # Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Union
18
+
19
+ import ftfy
20
+ import regex as re
21
+ import torch
22
+ from PIL import Image
23
+ from transformers import AutoTokenizer, UMT5EncoderModel
24
+
25
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
26
+ from ...loaders import WanLoraLoaderMixin
27
+ from ...models import AutoencoderKLWan, WanTransformer3DModel
28
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
29
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
30
+ from ...utils.torch_utils import randn_tensor
31
+ from ...video_processor import VideoProcessor
32
+ from ..pipeline_utils import DiffusionPipeline
33
+ from .pipeline_output import WanPipelineOutput
34
+
35
+
36
+ if is_torch_xla_available():
37
+ import torch_xla.core.xla_model as xm
38
+
39
+ XLA_AVAILABLE = True
40
+ else:
41
+ XLA_AVAILABLE = False
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```python
49
+ >>> import torch
50
+ >>> from diffusers.utils import export_to_video
51
+ >>> from diffusers import AutoencoderKLWan, WanVideoToVideoPipeline
52
+ >>> from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
53
+
54
+ >>> # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
55
+ >>> model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
56
+ >>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
57
+ >>> pipe = WanVideoToVideoPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
58
+ >>> flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P
59
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> prompt = "A robot standing on a mountain top. The sun is setting in the background"
63
+ >>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
64
+ >>> video = load_video(
65
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
66
+ ... )
67
+ >>> output = pipe(
68
+ ... video=video,
69
+ ... prompt=prompt,
70
+ ... negative_prompt=negative_prompt,
71
+ ... height=480,
72
+ ... width=720,
73
+ ... guidance_scale=5.0,
74
+ ... strength=0.7,
75
+ ... ).frames[0]
76
+ >>> export_to_video(output, "output.mp4", fps=16)
77
+ ```
78
+ """
79
+
80
+
81
+ def basic_clean(text):
82
+ text = ftfy.fix_text(text)
83
+ text = html.unescape(html.unescape(text))
84
+ return text.strip()
85
+
86
+
87
+ def whitespace_clean(text):
88
+ text = re.sub(r"\s+", " ", text)
89
+ text = text.strip()
90
+ return text
91
+
92
+
93
+ def prompt_clean(text):
94
+ text = whitespace_clean(basic_clean(text))
95
+ return text
96
+
97
+
98
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
99
+ def retrieve_timesteps(
100
+ scheduler,
101
+ num_inference_steps: Optional[int] = None,
102
+ device: Optional[Union[str, torch.device]] = None,
103
+ timesteps: Optional[List[int]] = None,
104
+ sigmas: Optional[List[float]] = None,
105
+ **kwargs,
106
+ ):
107
+ r"""
108
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
109
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
110
+
111
+ Args:
112
+ scheduler (`SchedulerMixin`):
113
+ The scheduler to get timesteps from.
114
+ num_inference_steps (`int`):
115
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
116
+ must be `None`.
117
+ device (`str` or `torch.device`, *optional*):
118
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
119
+ timesteps (`List[int]`, *optional*):
120
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
121
+ `num_inference_steps` and `sigmas` must be `None`.
122
+ sigmas (`List[float]`, *optional*):
123
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
124
+ `num_inference_steps` and `timesteps` must be `None`.
125
+
126
+ Returns:
127
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
128
+ second element is the number of inference steps.
129
+ """
130
+ if timesteps is not None and sigmas is not None:
131
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
132
+ if timesteps is not None:
133
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
134
+ if not accepts_timesteps:
135
+ raise ValueError(
136
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
137
+ f" timestep schedules. Please check whether you are using the correct scheduler."
138
+ )
139
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
140
+ timesteps = scheduler.timesteps
141
+ num_inference_steps = len(timesteps)
142
+ elif sigmas is not None:
143
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
144
+ if not accept_sigmas:
145
+ raise ValueError(
146
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
147
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
148
+ )
149
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
150
+ timesteps = scheduler.timesteps
151
+ num_inference_steps = len(timesteps)
152
+ else:
153
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ return timesteps, num_inference_steps
156
+
157
+
158
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
159
+ def retrieve_latents(
160
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
161
+ ):
162
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
163
+ return encoder_output.latent_dist.sample(generator)
164
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
165
+ return encoder_output.latent_dist.mode()
166
+ elif hasattr(encoder_output, "latents"):
167
+ return encoder_output.latents
168
+ else:
169
+ raise AttributeError("Could not access latents of provided encoder_output")
170
+
171
+
172
+ class WanVideoToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
173
+ r"""
174
+ Pipeline for video-to-video generation using Wan.
175
+
176
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
177
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
178
+
179
+ Args:
180
+ tokenizer ([`T5Tokenizer`]):
181
+ Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
182
+ specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
183
+ text_encoder ([`T5EncoderModel`]):
184
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
185
+ the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
186
+ transformer ([`WanTransformer3DModel`]):
187
+ Conditional Transformer to denoise the input latents.
188
+ scheduler ([`UniPCMultistepScheduler`]):
189
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
190
+ vae ([`AutoencoderKLWan`]):
191
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
192
+ """
193
+
194
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
195
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
196
+
197
+ def __init__(
198
+ self,
199
+ tokenizer: AutoTokenizer,
200
+ text_encoder: UMT5EncoderModel,
201
+ transformer: WanTransformer3DModel,
202
+ vae: AutoencoderKLWan,
203
+ scheduler: FlowMatchEulerDiscreteScheduler,
204
+ ):
205
+ super().__init__()
206
+
207
+ self.register_modules(
208
+ vae=vae,
209
+ text_encoder=text_encoder,
210
+ tokenizer=tokenizer,
211
+ transformer=transformer,
212
+ scheduler=scheduler,
213
+ )
214
+
215
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
216
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
217
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
218
+
219
+ # Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline._get_t5_prompt_embeds
220
+ def _get_t5_prompt_embeds(
221
+ self,
222
+ prompt: Union[str, List[str]] = None,
223
+ num_videos_per_prompt: int = 1,
224
+ max_sequence_length: int = 226,
225
+ device: Optional[torch.device] = None,
226
+ dtype: Optional[torch.dtype] = None,
227
+ ):
228
+ device = device or self._execution_device
229
+ dtype = dtype or self.text_encoder.dtype
230
+
231
+ prompt = [prompt] if isinstance(prompt, str) else prompt
232
+ prompt = [prompt_clean(u) for u in prompt]
233
+ batch_size = len(prompt)
234
+
235
+ text_inputs = self.tokenizer(
236
+ prompt,
237
+ padding="max_length",
238
+ max_length=max_sequence_length,
239
+ truncation=True,
240
+ add_special_tokens=True,
241
+ return_attention_mask=True,
242
+ return_tensors="pt",
243
+ )
244
+ text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
245
+ seq_lens = mask.gt(0).sum(dim=1).long()
246
+
247
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
248
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
249
+ prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
250
+ prompt_embeds = torch.stack(
251
+ [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
252
+ )
253
+
254
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
255
+ _, seq_len, _ = prompt_embeds.shape
256
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
257
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
258
+
259
+ return prompt_embeds
260
+
261
+ # Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
262
+ def encode_prompt(
263
+ self,
264
+ prompt: Union[str, List[str]],
265
+ negative_prompt: Optional[Union[str, List[str]]] = None,
266
+ do_classifier_free_guidance: bool = True,
267
+ num_videos_per_prompt: int = 1,
268
+ prompt_embeds: Optional[torch.Tensor] = None,
269
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
270
+ max_sequence_length: int = 226,
271
+ device: Optional[torch.device] = None,
272
+ dtype: Optional[torch.dtype] = None,
273
+ ):
274
+ r"""
275
+ Encodes the prompt into text encoder hidden states.
276
+
277
+ Args:
278
+ prompt (`str` or `List[str]`, *optional*):
279
+ prompt to be encoded
280
+ negative_prompt (`str` or `List[str]`, *optional*):
281
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
282
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
283
+ less than `1`).
284
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
285
+ Whether to use classifier free guidance or not.
286
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
287
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
288
+ prompt_embeds (`torch.Tensor`, *optional*):
289
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
290
+ provided, text embeddings will be generated from `prompt` input argument.
291
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
292
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
293
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
294
+ argument.
295
+ device: (`torch.device`, *optional*):
296
+ torch device
297
+ dtype: (`torch.dtype`, *optional*):
298
+ torch dtype
299
+ """
300
+ device = device or self._execution_device
301
+
302
+ prompt = [prompt] if isinstance(prompt, str) else prompt
303
+ if prompt is not None:
304
+ batch_size = len(prompt)
305
+ else:
306
+ batch_size = prompt_embeds.shape[0]
307
+
308
+ if prompt_embeds is None:
309
+ prompt_embeds = self._get_t5_prompt_embeds(
310
+ prompt=prompt,
311
+ num_videos_per_prompt=num_videos_per_prompt,
312
+ max_sequence_length=max_sequence_length,
313
+ device=device,
314
+ dtype=dtype,
315
+ )
316
+
317
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
318
+ negative_prompt = negative_prompt or ""
319
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
320
+
321
+ if prompt is not None and type(prompt) is not type(negative_prompt):
322
+ raise TypeError(
323
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
324
+ f" {type(prompt)}."
325
+ )
326
+ elif batch_size != len(negative_prompt):
327
+ raise ValueError(
328
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
329
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
330
+ " the batch size of `prompt`."
331
+ )
332
+
333
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
334
+ prompt=negative_prompt,
335
+ num_videos_per_prompt=num_videos_per_prompt,
336
+ max_sequence_length=max_sequence_length,
337
+ device=device,
338
+ dtype=dtype,
339
+ )
340
+
341
+ return prompt_embeds, negative_prompt_embeds
342
+
343
+ def check_inputs(
344
+ self,
345
+ prompt,
346
+ negative_prompt,
347
+ height,
348
+ width,
349
+ video=None,
350
+ latents=None,
351
+ prompt_embeds=None,
352
+ negative_prompt_embeds=None,
353
+ callback_on_step_end_tensor_inputs=None,
354
+ ):
355
+ if height % 16 != 0 or width % 16 != 0:
356
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
357
+
358
+ if callback_on_step_end_tensor_inputs is not None and not all(
359
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
360
+ ):
361
+ raise ValueError(
362
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
363
+ )
364
+
365
+ if prompt is not None and prompt_embeds is not None:
366
+ raise ValueError(
367
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
368
+ " only forward one of the two."
369
+ )
370
+ elif negative_prompt is not None and negative_prompt_embeds is not None:
371
+ raise ValueError(
372
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
373
+ " only forward one of the two."
374
+ )
375
+ elif prompt is None and prompt_embeds is None:
376
+ raise ValueError(
377
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
378
+ )
379
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
380
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
381
+ elif negative_prompt is not None and (
382
+ not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
383
+ ):
384
+ raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
385
+
386
+ if video is not None and latents is not None:
387
+ raise ValueError("Only one of `video` or `latents` should be provided")
388
+
389
+ def prepare_latents(
390
+ self,
391
+ video: Optional[torch.Tensor] = None,
392
+ batch_size: int = 1,
393
+ num_channels_latents: int = 16,
394
+ height: int = 480,
395
+ width: int = 832,
396
+ dtype: Optional[torch.dtype] = None,
397
+ device: Optional[torch.device] = None,
398
+ generator: Optional[torch.Generator] = None,
399
+ latents: Optional[torch.Tensor] = None,
400
+ timestep: Optional[torch.Tensor] = None,
401
+ ):
402
+ if isinstance(generator, list) and len(generator) != batch_size:
403
+ raise ValueError(
404
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
405
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
406
+ )
407
+
408
+ num_latent_frames = (
409
+ (video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1)
410
+ )
411
+ shape = (
412
+ batch_size,
413
+ num_channels_latents,
414
+ num_latent_frames,
415
+ height // self.vae_scale_factor_spatial,
416
+ width // self.vae_scale_factor_spatial,
417
+ )
418
+
419
+ if latents is None:
420
+ if isinstance(generator, list):
421
+ init_latents = [
422
+ retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
423
+ ]
424
+ else:
425
+ init_latents = [retrieve_latents(self.vae.encode(vid.unsqueeze(0)), generator) for vid in video]
426
+
427
+ init_latents = torch.cat(init_latents, dim=0).to(dtype)
428
+
429
+ latents_mean = (
430
+ torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1).to(device, dtype)
431
+ )
432
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
433
+ device, dtype
434
+ )
435
+
436
+ init_latents = (init_latents - latents_mean) * latents_std
437
+
438
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
439
+ if hasattr(self.scheduler, "add_noise"):
440
+ latents = self.scheduler.add_noise(init_latents, noise, timestep)
441
+ else:
442
+ latents = self.scheduelr.scale_noise(init_latents, timestep, noise)
443
+ else:
444
+ latents = latents.to(device)
445
+
446
+ return latents
447
+
448
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
449
+ def get_timesteps(self, num_inference_steps, timesteps, strength, device):
450
+ # get the original timestep using init_timestep
451
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
452
+
453
+ t_start = max(num_inference_steps - init_timestep, 0)
454
+ timesteps = timesteps[t_start * self.scheduler.order :]
455
+
456
+ return timesteps, num_inference_steps - t_start
457
+
458
+ @property
459
+ def guidance_scale(self):
460
+ return self._guidance_scale
461
+
462
+ @property
463
+ def do_classifier_free_guidance(self):
464
+ return self._guidance_scale > 1.0
465
+
466
+ @property
467
+ def num_timesteps(self):
468
+ return self._num_timesteps
469
+
470
+ @property
471
+ def current_timestep(self):
472
+ return self._current_timestep
473
+
474
+ @property
475
+ def interrupt(self):
476
+ return self._interrupt
477
+
478
+ @property
479
+ def attention_kwargs(self):
480
+ return self._attention_kwargs
481
+
482
+ @torch.no_grad()
483
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
484
+ def __call__(
485
+ self,
486
+ video: List[Image.Image] = None,
487
+ prompt: Union[str, List[str]] = None,
488
+ negative_prompt: Union[str, List[str]] = None,
489
+ height: int = 480,
490
+ width: int = 832,
491
+ num_inference_steps: int = 50,
492
+ timesteps: Optional[List[int]] = None,
493
+ guidance_scale: float = 5.0,
494
+ strength: float = 0.8,
495
+ num_videos_per_prompt: Optional[int] = 1,
496
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
497
+ latents: Optional[torch.Tensor] = None,
498
+ prompt_embeds: Optional[torch.Tensor] = None,
499
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
500
+ output_type: Optional[str] = "np",
501
+ return_dict: bool = True,
502
+ attention_kwargs: Optional[Dict[str, Any]] = None,
503
+ callback_on_step_end: Optional[
504
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
505
+ ] = None,
506
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
507
+ max_sequence_length: int = 512,
508
+ ):
509
+ r"""
510
+ The call function to the pipeline for generation.
511
+
512
+ Args:
513
+ prompt (`str` or `List[str]`, *optional*):
514
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
515
+ instead.
516
+ height (`int`, defaults to `480`):
517
+ The height in pixels of the generated image.
518
+ width (`int`, defaults to `832`):
519
+ The width in pixels of the generated image.
520
+ num_frames (`int`, defaults to `81`):
521
+ The number of frames in the generated video.
522
+ num_inference_steps (`int`, defaults to `50`):
523
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
524
+ expense of slower inference.
525
+ guidance_scale (`float`, defaults to `5.0`):
526
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
527
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
528
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
529
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
530
+ usually at the expense of lower image quality.
531
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
532
+ The number of images to generate per prompt.
533
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
534
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
535
+ generation deterministic.
536
+ latents (`torch.Tensor`, *optional*):
537
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
538
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
539
+ tensor is generated by sampling using the supplied random `generator`.
540
+ prompt_embeds (`torch.Tensor`, *optional*):
541
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
542
+ provided, text embeddings are generated from the `prompt` input argument.
543
+ output_type (`str`, *optional*, defaults to `"pil"`):
544
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
545
+ return_dict (`bool`, *optional*, defaults to `True`):
546
+ Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
547
+ attention_kwargs (`dict`, *optional*):
548
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
549
+ `self.processor` in
550
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
551
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
552
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
553
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
554
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
555
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
556
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
557
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
558
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
559
+ `._callback_tensor_inputs` attribute of your pipeline class.
560
+ autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
561
+ The dtype to use for the torch.amp.autocast.
562
+
563
+ Examples:
564
+
565
+ Returns:
566
+ [`~WanPipelineOutput`] or `tuple`:
567
+ If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
568
+ the first element is a list with the generated images and the second element is a list of `bool`s
569
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
570
+ """
571
+
572
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
573
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
574
+
575
+ height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
576
+ width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
577
+ num_videos_per_prompt = 1
578
+
579
+ # 1. Check inputs. Raise error if not correct
580
+ self.check_inputs(
581
+ prompt,
582
+ negative_prompt,
583
+ height,
584
+ width,
585
+ video,
586
+ latents,
587
+ prompt_embeds,
588
+ negative_prompt_embeds,
589
+ callback_on_step_end_tensor_inputs,
590
+ )
591
+
592
+ self._guidance_scale = guidance_scale
593
+ self._attention_kwargs = attention_kwargs
594
+ self._current_timestep = None
595
+ self._interrupt = False
596
+
597
+ device = self._execution_device
598
+
599
+ # 2. Define call parameters
600
+ if prompt is not None and isinstance(prompt, str):
601
+ batch_size = 1
602
+ elif prompt is not None and isinstance(prompt, list):
603
+ batch_size = len(prompt)
604
+ else:
605
+ batch_size = prompt_embeds.shape[0]
606
+
607
+ # 3. Encode input prompt
608
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
609
+ prompt=prompt,
610
+ negative_prompt=negative_prompt,
611
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
612
+ num_videos_per_prompt=num_videos_per_prompt,
613
+ prompt_embeds=prompt_embeds,
614
+ negative_prompt_embeds=negative_prompt_embeds,
615
+ max_sequence_length=max_sequence_length,
616
+ device=device,
617
+ )
618
+
619
+ transformer_dtype = self.transformer.dtype
620
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
621
+ if negative_prompt_embeds is not None:
622
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
623
+
624
+ # 4. Prepare timesteps
625
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
626
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
627
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
628
+ self._num_timesteps = len(timesteps)
629
+
630
+ if latents is None:
631
+ video = self.video_processor.preprocess_video(video, height=height, width=width).to(
632
+ device, dtype=torch.float32
633
+ )
634
+
635
+ # 5. Prepare latent variables
636
+ num_channels_latents = self.transformer.config.in_channels
637
+ latents = self.prepare_latents(
638
+ video,
639
+ batch_size * num_videos_per_prompt,
640
+ num_channels_latents,
641
+ height,
642
+ width,
643
+ torch.float32,
644
+ device,
645
+ generator,
646
+ latents,
647
+ latent_timestep,
648
+ )
649
+
650
+ # 6. Denoising loop
651
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
652
+ self._num_timesteps = len(timesteps)
653
+
654
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
655
+ for i, t in enumerate(timesteps):
656
+ if self.interrupt:
657
+ continue
658
+
659
+ self._current_timestep = t
660
+ latent_model_input = latents.to(transformer_dtype)
661
+ timestep = t.expand(latents.shape[0])
662
+
663
+ noise_pred = self.transformer(
664
+ hidden_states=latent_model_input,
665
+ timestep=timestep,
666
+ encoder_hidden_states=prompt_embeds,
667
+ attention_kwargs=attention_kwargs,
668
+ return_dict=False,
669
+ )[0]
670
+
671
+ if self.do_classifier_free_guidance:
672
+ noise_uncond = self.transformer(
673
+ hidden_states=latent_model_input,
674
+ timestep=timestep,
675
+ encoder_hidden_states=negative_prompt_embeds,
676
+ attention_kwargs=attention_kwargs,
677
+ return_dict=False,
678
+ )[0]
679
+ noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
680
+
681
+ # compute the previous noisy sample x_t -> x_t-1
682
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
683
+
684
+ if callback_on_step_end is not None:
685
+ callback_kwargs = {}
686
+ for k in callback_on_step_end_tensor_inputs:
687
+ callback_kwargs[k] = locals()[k]
688
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
689
+
690
+ latents = callback_outputs.pop("latents", latents)
691
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
692
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
693
+
694
+ # call the callback, if provided
695
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
696
+ progress_bar.update()
697
+
698
+ if XLA_AVAILABLE:
699
+ xm.mark_step()
700
+
701
+ self._current_timestep = None
702
+
703
+ if not output_type == "latent":
704
+ latents = latents.to(self.vae.dtype)
705
+ latents_mean = (
706
+ torch.tensor(self.vae.config.latents_mean)
707
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
708
+ .to(latents.device, latents.dtype)
709
+ )
710
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
711
+ latents.device, latents.dtype
712
+ )
713
+ latents = latents / latents_std + latents_mean
714
+ video = self.vae.decode(latents, return_dict=False)[0]
715
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
716
+ else:
717
+ video = latents
718
+
719
+ # Offload all models
720
+ self.maybe_free_model_hooks()
721
+
722
+ if not return_dict:
723
+ return (video,)
724
+
725
+ return WanPipelineOutput(frames=video)