diffusers 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +198 -28
  13. diffusers/loaders/lora_conversion_utils.py +679 -44
  14. diffusers/loaders/lora_pipeline.py +1963 -801
  15. diffusers/loaders/peft.py +169 -84
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +653 -75
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +22 -32
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +409 -49
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +10 -2
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +14 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.1.dist-info/RECORD +0 -550
  387. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,684 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import torch
21
+ from transformers import AutoTokenizer, GlmModel
22
+
23
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from ...image_processor import VaeImageProcessor
25
+ from ...loaders import CogView4LoraLoaderMixin
26
+ from ...models import AutoencoderKL, CogView4Transformer2DModel
27
+ from ...pipelines.pipeline_utils import DiffusionPipeline
28
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
29
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
30
+ from ...utils.torch_utils import randn_tensor
31
+ from .pipeline_output import CogView4PipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ EXAMPLE_DOC_STRING = """
44
+ Examples:
45
+ ```python
46
+ >>> import torch
47
+ >>> from diffusers import CogView4Pipeline
48
+
49
+ >>> pipe = CogView4Pipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16)
50
+ >>> pipe.to("cuda")
51
+
52
+ >>> prompt = "A photo of an astronaut riding a horse on mars"
53
+ >>> image = pipe(prompt).images[0]
54
+ >>> image.save("output.png")
55
+ ```
56
+ """
57
+
58
+
59
+ def calculate_shift(
60
+ image_seq_len,
61
+ base_seq_len: int = 256,
62
+ base_shift: float = 0.25,
63
+ max_shift: float = 0.75,
64
+ ) -> float:
65
+ m = (image_seq_len / base_seq_len) ** 0.5
66
+ mu = m * max_shift + base_shift
67
+ return mu
68
+
69
+
70
+ def retrieve_timesteps(
71
+ scheduler,
72
+ num_inference_steps: Optional[int] = None,
73
+ device: Optional[Union[str, torch.device]] = None,
74
+ timesteps: Optional[List[int]] = None,
75
+ sigmas: Optional[List[float]] = None,
76
+ **kwargs,
77
+ ):
78
+ r"""
79
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
80
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
81
+
82
+ Args:
83
+ scheduler (`SchedulerMixin`):
84
+ The scheduler to get timesteps from.
85
+ num_inference_steps (`int`):
86
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
87
+ must be `None`.
88
+ device (`str` or `torch.device`, *optional*):
89
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
90
+ timesteps (`List[int]`, *optional*):
91
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
92
+ `num_inference_steps` and `sigmas` must be `None`.
93
+ sigmas (`List[float]`, *optional*):
94
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
95
+ `num_inference_steps` and `timesteps` must be `None`.
96
+
97
+ Returns:
98
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
99
+ second element is the number of inference steps.
100
+ """
101
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
102
+ accepts_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
103
+
104
+ if timesteps is not None and sigmas is not None:
105
+ if not accepts_timesteps and not accepts_sigmas:
106
+ raise ValueError(
107
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
108
+ f" timestep or sigma schedules. Please check whether you are using the correct scheduler."
109
+ )
110
+ scheduler.set_timesteps(timesteps=timesteps, sigmas=sigmas, device=device, **kwargs)
111
+ timesteps = scheduler.timesteps
112
+ num_inference_steps = len(timesteps)
113
+ elif timesteps is not None and sigmas is None:
114
+ if not accepts_timesteps:
115
+ raise ValueError(
116
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
117
+ f" timestep schedules. Please check whether you are using the correct scheduler."
118
+ )
119
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
120
+ timesteps = scheduler.timesteps
121
+ num_inference_steps = len(timesteps)
122
+ elif timesteps is None and sigmas is not None:
123
+ if not accepts_sigmas:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ else:
132
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
133
+ timesteps = scheduler.timesteps
134
+ return timesteps, num_inference_steps
135
+
136
+
137
+ class CogView4Pipeline(DiffusionPipeline, CogView4LoraLoaderMixin):
138
+ r"""
139
+ Pipeline for text-to-image generation using CogView4.
140
+
141
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
142
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
143
+
144
+ Args:
145
+ vae ([`AutoencoderKL`]):
146
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
147
+ text_encoder ([`GLMModel`]):
148
+ Frozen text-encoder. CogView4 uses [glm-4-9b-hf](https://huggingface.co/THUDM/glm-4-9b-hf).
149
+ tokenizer (`PreTrainedTokenizer`):
150
+ Tokenizer of class
151
+ [PreTrainedTokenizer](https://huggingface.co/docs/transformers/main/en/main_classes/tokenizer#transformers.PreTrainedTokenizer).
152
+ transformer ([`CogView4Transformer2DModel`]):
153
+ A text conditioned `CogView4Transformer2DModel` to denoise the encoded image latents.
154
+ scheduler ([`SchedulerMixin`]):
155
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
156
+ """
157
+
158
+ _optional_components = []
159
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
160
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
161
+
162
+ def __init__(
163
+ self,
164
+ tokenizer: AutoTokenizer,
165
+ text_encoder: GlmModel,
166
+ vae: AutoencoderKL,
167
+ transformer: CogView4Transformer2DModel,
168
+ scheduler: FlowMatchEulerDiscreteScheduler,
169
+ ):
170
+ super().__init__()
171
+
172
+ self.register_modules(
173
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
174
+ )
175
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
176
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
177
+
178
+ def _get_glm_embeds(
179
+ self,
180
+ prompt: Union[str, List[str]] = None,
181
+ max_sequence_length: int = 1024,
182
+ device: Optional[torch.device] = None,
183
+ dtype: Optional[torch.dtype] = None,
184
+ ):
185
+ device = device or self._execution_device
186
+ dtype = dtype or self.text_encoder.dtype
187
+
188
+ prompt = [prompt] if isinstance(prompt, str) else prompt
189
+
190
+ text_inputs = self.tokenizer(
191
+ prompt,
192
+ padding="longest", # not use max length
193
+ max_length=max_sequence_length,
194
+ truncation=True,
195
+ add_special_tokens=True,
196
+ return_tensors="pt",
197
+ )
198
+ text_input_ids = text_inputs.input_ids
199
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
200
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
201
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
202
+ logger.warning(
203
+ "The following part of your input was truncated because `max_sequence_length` is set to "
204
+ f" {max_sequence_length} tokens: {removed_text}"
205
+ )
206
+ current_length = text_input_ids.shape[1]
207
+ pad_length = (16 - (current_length % 16)) % 16
208
+ if pad_length > 0:
209
+ pad_ids = torch.full(
210
+ (text_input_ids.shape[0], pad_length),
211
+ fill_value=self.tokenizer.pad_token_id,
212
+ dtype=text_input_ids.dtype,
213
+ device=text_input_ids.device,
214
+ )
215
+ text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1)
216
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=True).hidden_states[-2]
217
+
218
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
219
+ return prompt_embeds
220
+
221
+ def encode_prompt(
222
+ self,
223
+ prompt: Union[str, List[str]],
224
+ negative_prompt: Optional[Union[str, List[str]]] = None,
225
+ do_classifier_free_guidance: bool = True,
226
+ num_images_per_prompt: int = 1,
227
+ prompt_embeds: Optional[torch.Tensor] = None,
228
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
229
+ device: Optional[torch.device] = None,
230
+ dtype: Optional[torch.dtype] = None,
231
+ max_sequence_length: int = 1024,
232
+ ):
233
+ r"""
234
+ Encodes the prompt into text encoder hidden states.
235
+
236
+ Args:
237
+ prompt (`str` or `List[str]`, *optional*):
238
+ prompt to be encoded
239
+ negative_prompt (`str` or `List[str]`, *optional*):
240
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
241
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
242
+ less than `1`).
243
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
244
+ Whether to use classifier free guidance or not.
245
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
246
+ Number of images that should be generated per prompt. torch device to place the resulting embeddings on
247
+ prompt_embeds (`torch.Tensor`, *optional*):
248
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
249
+ provided, text embeddings will be generated from `prompt` input argument.
250
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
251
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
252
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
253
+ argument.
254
+ device: (`torch.device`, *optional*):
255
+ torch device
256
+ dtype: (`torch.dtype`, *optional*):
257
+ torch dtype
258
+ max_sequence_length (`int`, defaults to `1024`):
259
+ Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
260
+ """
261
+ device = device or self._execution_device
262
+
263
+ prompt = [prompt] if isinstance(prompt, str) else prompt
264
+ if prompt is not None:
265
+ batch_size = len(prompt)
266
+ else:
267
+ batch_size = prompt_embeds.shape[0]
268
+
269
+ if prompt_embeds is None:
270
+ prompt_embeds = self._get_glm_embeds(prompt, max_sequence_length, device, dtype)
271
+
272
+ seq_len = prompt_embeds.size(1)
273
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
274
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
275
+
276
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
277
+ negative_prompt = negative_prompt or ""
278
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
279
+
280
+ if prompt is not None and type(prompt) is not type(negative_prompt):
281
+ raise TypeError(
282
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
283
+ f" {type(prompt)}."
284
+ )
285
+ elif batch_size != len(negative_prompt):
286
+ raise ValueError(
287
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
288
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
289
+ " the batch size of `prompt`."
290
+ )
291
+
292
+ negative_prompt_embeds = self._get_glm_embeds(negative_prompt, max_sequence_length, device, dtype)
293
+
294
+ seq_len = negative_prompt_embeds.size(1)
295
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
296
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
297
+
298
+ return prompt_embeds, negative_prompt_embeds
299
+
300
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
301
+ if latents is not None:
302
+ return latents.to(device)
303
+
304
+ shape = (
305
+ batch_size,
306
+ num_channels_latents,
307
+ int(height) // self.vae_scale_factor,
308
+ int(width) // self.vae_scale_factor,
309
+ )
310
+ if isinstance(generator, list) and len(generator) != batch_size:
311
+ raise ValueError(
312
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
313
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
314
+ )
315
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
316
+ return latents
317
+
318
+ def check_inputs(
319
+ self,
320
+ prompt,
321
+ height,
322
+ width,
323
+ negative_prompt,
324
+ callback_on_step_end_tensor_inputs,
325
+ prompt_embeds=None,
326
+ negative_prompt_embeds=None,
327
+ ):
328
+ if height % 16 != 0 or width % 16 != 0:
329
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
330
+
331
+ if callback_on_step_end_tensor_inputs is not None and not all(
332
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
333
+ ):
334
+ raise ValueError(
335
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
336
+ )
337
+ if prompt is not None and prompt_embeds is not None:
338
+ raise ValueError(
339
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
340
+ " only forward one of the two."
341
+ )
342
+ elif prompt is None and prompt_embeds is None:
343
+ raise ValueError(
344
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
345
+ )
346
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
347
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
348
+
349
+ if prompt is not None and negative_prompt_embeds is not None:
350
+ raise ValueError(
351
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
352
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
353
+ )
354
+
355
+ if negative_prompt is not None and negative_prompt_embeds is not None:
356
+ raise ValueError(
357
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
358
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
359
+ )
360
+
361
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
362
+ if prompt_embeds.shape[0] != negative_prompt_embeds.shape[0]:
363
+ raise ValueError(
364
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same batch size when passed directly, but"
365
+ f" got: `prompt_embeds` {prompt_embeds.shape} and `negative_prompt_embeds`"
366
+ f" {negative_prompt_embeds.shape}."
367
+ )
368
+ if prompt_embeds.shape[-1] != negative_prompt_embeds.shape[-1]:
369
+ raise ValueError(
370
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same dimension when passed directly, but"
371
+ f" got: `prompt_embeds` {prompt_embeds.shape} and `negative_prompt_embeds`"
372
+ f" {negative_prompt_embeds.shape}."
373
+ )
374
+
375
+ @property
376
+ def guidance_scale(self):
377
+ return self._guidance_scale
378
+
379
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
380
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
381
+ # corresponds to doing no classifier free guidance.
382
+ @property
383
+ def do_classifier_free_guidance(self):
384
+ return self._guidance_scale > 1
385
+
386
+ @property
387
+ def num_timesteps(self):
388
+ return self._num_timesteps
389
+
390
+ @property
391
+ def attention_kwargs(self):
392
+ return self._attention_kwargs
393
+
394
+ @property
395
+ def current_timestep(self):
396
+ return self._current_timestep
397
+
398
+ @property
399
+ def interrupt(self):
400
+ return self._interrupt
401
+
402
+ @torch.no_grad()
403
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
404
+ def __call__(
405
+ self,
406
+ prompt: Optional[Union[str, List[str]]] = None,
407
+ negative_prompt: Optional[Union[str, List[str]]] = None,
408
+ height: Optional[int] = None,
409
+ width: Optional[int] = None,
410
+ num_inference_steps: int = 50,
411
+ timesteps: Optional[List[int]] = None,
412
+ sigmas: Optional[List[float]] = None,
413
+ guidance_scale: float = 5.0,
414
+ num_images_per_prompt: int = 1,
415
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
416
+ latents: Optional[torch.FloatTensor] = None,
417
+ prompt_embeds: Optional[torch.FloatTensor] = None,
418
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
419
+ original_size: Optional[Tuple[int, int]] = None,
420
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
421
+ output_type: str = "pil",
422
+ return_dict: bool = True,
423
+ attention_kwargs: Optional[Dict[str, Any]] = None,
424
+ callback_on_step_end: Optional[
425
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
426
+ ] = None,
427
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
428
+ max_sequence_length: int = 1024,
429
+ ) -> Union[CogView4PipelineOutput, Tuple]:
430
+ """
431
+ Function invoked when calling the pipeline for generation.
432
+
433
+ Args:
434
+ prompt (`str` or `List[str]`, *optional*):
435
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
436
+ negative_prompt (`str` or `List[str]`, *optional*):
437
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
438
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
439
+ less than `1`).
440
+ height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
441
+ The height in pixels of the generated image. If not provided, it is set to 1024.
442
+ width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
443
+ The width in pixels of the generated image. If not provided it is set to 1024.
444
+ num_inference_steps (`int`, *optional*, defaults to `50`):
445
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
446
+ expense of slower inference.
447
+ timesteps (`List[int]`, *optional*):
448
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
449
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
450
+ passed will be used. Must be in descending order.
451
+ sigmas (`List[float]`, *optional*):
452
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
453
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
454
+ will be used.
455
+ guidance_scale (`float`, *optional*, defaults to `5.0`):
456
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
457
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
458
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
459
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
460
+ usually at the expense of lower image quality.
461
+ num_images_per_prompt (`int`, *optional*, defaults to `1`):
462
+ The number of images to generate per prompt.
463
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
464
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
465
+ to make generation deterministic.
466
+ latents (`torch.FloatTensor`, *optional*):
467
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
468
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
469
+ tensor will ge generated by sampling using the supplied random `generator`.
470
+ prompt_embeds (`torch.FloatTensor`, *optional*):
471
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
472
+ provided, text embeddings will be generated from `prompt` input argument.
473
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
474
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
475
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
476
+ argument.
477
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
478
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
479
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
480
+ explained in section 2.2 of
481
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
482
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
483
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
484
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
485
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
486
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
487
+ output_type (`str`, *optional*, defaults to `"pil"`):
488
+ The output format of the generate image. Choose between
489
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
490
+ return_dict (`bool`, *optional*, defaults to `True`):
491
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
492
+ of a plain tuple.
493
+ attention_kwargs (`dict`, *optional*):
494
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
495
+ `self.processor` in
496
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
497
+ callback_on_step_end (`Callable`, *optional*):
498
+ A function that calls at the end of each denoising steps during the inference. The function is called
499
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
500
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
501
+ `callback_on_step_end_tensor_inputs`.
502
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
503
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
504
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
505
+ `._callback_tensor_inputs` attribute of your pipeline class.
506
+ max_sequence_length (`int`, defaults to `224`):
507
+ Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
508
+
509
+ Examples:
510
+
511
+ Returns:
512
+ [`~pipelines.cogview4.pipeline_CogView4.CogView4PipelineOutput`] or `tuple`:
513
+ [`~pipelines.cogview4.pipeline_CogView4.CogView4PipelineOutput`] if `return_dict` is True, otherwise a
514
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
515
+ """
516
+
517
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
518
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
519
+
520
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
521
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
522
+
523
+ original_size = original_size or (height, width)
524
+ target_size = (height, width)
525
+
526
+ # Check inputs. Raise error if not correct
527
+ self.check_inputs(
528
+ prompt,
529
+ height,
530
+ width,
531
+ negative_prompt,
532
+ callback_on_step_end_tensor_inputs,
533
+ prompt_embeds,
534
+ negative_prompt_embeds,
535
+ )
536
+ self._guidance_scale = guidance_scale
537
+ self._attention_kwargs = attention_kwargs
538
+ self._current_timestep = None
539
+ self._interrupt = False
540
+
541
+ # Default call parameters
542
+ if prompt is not None and isinstance(prompt, str):
543
+ batch_size = 1
544
+ elif prompt is not None and isinstance(prompt, list):
545
+ batch_size = len(prompt)
546
+ else:
547
+ batch_size = prompt_embeds.shape[0]
548
+
549
+ device = self._execution_device
550
+
551
+ # Encode input prompt
552
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
553
+ prompt,
554
+ negative_prompt,
555
+ self.do_classifier_free_guidance,
556
+ num_images_per_prompt=num_images_per_prompt,
557
+ prompt_embeds=prompt_embeds,
558
+ negative_prompt_embeds=negative_prompt_embeds,
559
+ max_sequence_length=max_sequence_length,
560
+ device=device,
561
+ )
562
+
563
+ # Prepare latents
564
+ latent_channels = self.transformer.config.in_channels
565
+ latents = self.prepare_latents(
566
+ batch_size * num_images_per_prompt,
567
+ latent_channels,
568
+ height,
569
+ width,
570
+ torch.float32,
571
+ device,
572
+ generator,
573
+ latents,
574
+ )
575
+
576
+ # Prepare additional timestep conditions
577
+ original_size = torch.tensor([original_size], dtype=prompt_embeds.dtype, device=device)
578
+ target_size = torch.tensor([target_size], dtype=prompt_embeds.dtype, device=device)
579
+ crops_coords_top_left = torch.tensor([crops_coords_top_left], dtype=prompt_embeds.dtype, device=device)
580
+
581
+ original_size = original_size.repeat(batch_size * num_images_per_prompt, 1)
582
+ target_size = target_size.repeat(batch_size * num_images_per_prompt, 1)
583
+ crops_coords_top_left = crops_coords_top_left.repeat(batch_size * num_images_per_prompt, 1)
584
+
585
+ # Prepare timesteps
586
+ image_seq_len = ((height // self.vae_scale_factor) * (width // self.vae_scale_factor)) // (
587
+ self.transformer.config.patch_size**2
588
+ )
589
+ timesteps = (
590
+ np.linspace(self.scheduler.config.num_train_timesteps, 1.0, num_inference_steps)
591
+ if timesteps is None
592
+ else np.array(timesteps)
593
+ )
594
+ timesteps = timesteps.astype(np.int64).astype(np.float32)
595
+ sigmas = timesteps / self.scheduler.config.num_train_timesteps if sigmas is None else sigmas
596
+ mu = calculate_shift(
597
+ image_seq_len,
598
+ self.scheduler.config.get("base_image_seq_len", 256),
599
+ self.scheduler.config.get("base_shift", 0.25),
600
+ self.scheduler.config.get("max_shift", 0.75),
601
+ )
602
+ timesteps, num_inference_steps = retrieve_timesteps(
603
+ self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu
604
+ )
605
+ self._num_timesteps = len(timesteps)
606
+
607
+ # Denoising loop
608
+ transformer_dtype = self.transformer.dtype
609
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
610
+
611
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
612
+ for i, t in enumerate(timesteps):
613
+ if self.interrupt:
614
+ continue
615
+
616
+ self._current_timestep = t
617
+ latent_model_input = latents.to(transformer_dtype)
618
+
619
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
620
+ timestep = t.expand(latents.shape[0])
621
+
622
+ noise_pred_cond = self.transformer(
623
+ hidden_states=latent_model_input,
624
+ encoder_hidden_states=prompt_embeds,
625
+ timestep=timestep,
626
+ original_size=original_size,
627
+ target_size=target_size,
628
+ crop_coords=crops_coords_top_left,
629
+ attention_kwargs=attention_kwargs,
630
+ return_dict=False,
631
+ )[0]
632
+
633
+ # perform guidance
634
+ if self.do_classifier_free_guidance:
635
+ noise_pred_uncond = self.transformer(
636
+ hidden_states=latent_model_input,
637
+ encoder_hidden_states=negative_prompt_embeds,
638
+ timestep=timestep,
639
+ original_size=original_size,
640
+ target_size=target_size,
641
+ crop_coords=crops_coords_top_left,
642
+ attention_kwargs=attention_kwargs,
643
+ return_dict=False,
644
+ )[0]
645
+
646
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
647
+ else:
648
+ noise_pred = noise_pred_cond
649
+
650
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
651
+
652
+ # call the callback, if provided
653
+ if callback_on_step_end is not None:
654
+ callback_kwargs = {}
655
+ for k in callback_on_step_end_tensor_inputs:
656
+ callback_kwargs[k] = locals()[k]
657
+ callback_outputs = callback_on_step_end(self, i, self.scheduler.sigmas[i], callback_kwargs)
658
+ latents = callback_outputs.pop("latents", latents)
659
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
660
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
661
+
662
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
663
+ progress_bar.update()
664
+
665
+ if XLA_AVAILABLE:
666
+ xm.mark_step()
667
+
668
+ self._current_timestep = None
669
+
670
+ if not output_type == "latent":
671
+ latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
672
+ image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
673
+ else:
674
+ image = latents
675
+
676
+ image = self.image_processor.postprocess(image, output_type=output_type)
677
+
678
+ # Offload all models
679
+ self.maybe_free_model_hooks()
680
+
681
+ if not return_dict:
682
+ return (image,)
683
+
684
+ return CogView4PipelineOutput(images=image)