diffusers 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +198 -28
  13. diffusers/loaders/lora_conversion_utils.py +679 -44
  14. diffusers/loaders/lora_pipeline.py +1963 -801
  15. diffusers/loaders/peft.py +169 -84
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +653 -75
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +22 -32
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +409 -49
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +10 -2
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +14 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.1.dist-info/RECORD +0 -550
  387. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,512 @@
1
+ # Copyright 2024 OmniGen team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import LlamaTokenizer
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...models.autoencoders import AutoencoderKL
24
+ from ...models.transformers import OmniGenTransformer2DModel
25
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
26
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
29
+ from .processor_omnigen import OmniGenMultiModalProcessor
30
+
31
+
32
+ if is_torch_xla_available():
33
+ XLA_AVAILABLE = True
34
+ else:
35
+ XLA_AVAILABLE = False
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+ EXAMPLE_DOC_STRING = """
40
+ Examples:
41
+ ```py
42
+ >>> import torch
43
+ >>> from diffusers import OmniGenPipeline
44
+
45
+ >>> pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1-diffusers", torch_dtype=torch.bfloat16)
46
+ >>> pipe.to("cuda")
47
+
48
+ >>> prompt = "A cat holding a sign that says hello world"
49
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
50
+ >>> # Refer to the pipeline documentation for more details.
51
+ >>> image = pipe(prompt, num_inference_steps=50, guidance_scale=2.5).images[0]
52
+ >>> image.save("output.png")
53
+ ```
54
+ """
55
+
56
+
57
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
58
+ def retrieve_timesteps(
59
+ scheduler,
60
+ num_inference_steps: Optional[int] = None,
61
+ device: Optional[Union[str, torch.device]] = None,
62
+ timesteps: Optional[List[int]] = None,
63
+ sigmas: Optional[List[float]] = None,
64
+ **kwargs,
65
+ ):
66
+ r"""
67
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
68
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
69
+
70
+ Args:
71
+ scheduler (`SchedulerMixin`):
72
+ The scheduler to get timesteps from.
73
+ num_inference_steps (`int`):
74
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
75
+ must be `None`.
76
+ device (`str` or `torch.device`, *optional*):
77
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
78
+ timesteps (`List[int]`, *optional*):
79
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
80
+ `num_inference_steps` and `sigmas` must be `None`.
81
+ sigmas (`List[float]`, *optional*):
82
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
83
+ `num_inference_steps` and `timesteps` must be `None`.
84
+
85
+ Returns:
86
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
87
+ second element is the number of inference steps.
88
+ """
89
+ if timesteps is not None and sigmas is not None:
90
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
91
+ if timesteps is not None:
92
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
93
+ if not accepts_timesteps:
94
+ raise ValueError(
95
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
96
+ f" timestep schedules. Please check whether you are using the correct scheduler."
97
+ )
98
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
99
+ timesteps = scheduler.timesteps
100
+ num_inference_steps = len(timesteps)
101
+ elif sigmas is not None:
102
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
103
+ if not accept_sigmas:
104
+ raise ValueError(
105
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
106
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
107
+ )
108
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
109
+ timesteps = scheduler.timesteps
110
+ num_inference_steps = len(timesteps)
111
+ else:
112
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
113
+ timesteps = scheduler.timesteps
114
+ return timesteps, num_inference_steps
115
+
116
+
117
+ class OmniGenPipeline(
118
+ DiffusionPipeline,
119
+ ):
120
+ r"""
121
+ The OmniGen pipeline for multimodal-to-image generation.
122
+
123
+ Reference: https://arxiv.org/pdf/2409.11340
124
+
125
+ Args:
126
+ transformer ([`OmniGenTransformer2DModel`]):
127
+ Autoregressive Transformer architecture for OmniGen.
128
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
129
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
130
+ vae ([`AutoencoderKL`]):
131
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
132
+ tokenizer (`LlamaTokenizer`):
133
+ Text tokenizer of class.
134
+ [LlamaTokenizer](https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaTokenizer).
135
+ """
136
+
137
+ model_cpu_offload_seq = "transformer->vae"
138
+ _optional_components = []
139
+ _callback_tensor_inputs = ["latents"]
140
+
141
+ def __init__(
142
+ self,
143
+ transformer: OmniGenTransformer2DModel,
144
+ scheduler: FlowMatchEulerDiscreteScheduler,
145
+ vae: AutoencoderKL,
146
+ tokenizer: LlamaTokenizer,
147
+ ):
148
+ super().__init__()
149
+
150
+ self.register_modules(
151
+ vae=vae,
152
+ tokenizer=tokenizer,
153
+ transformer=transformer,
154
+ scheduler=scheduler,
155
+ )
156
+ self.vae_scale_factor = (
157
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) is not None else 8
158
+ )
159
+ # OmniGen latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
160
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
161
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
162
+
163
+ self.multimodal_processor = OmniGenMultiModalProcessor(tokenizer, max_image_size=1024)
164
+ self.tokenizer_max_length = (
165
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 120000
166
+ )
167
+ self.default_sample_size = 128
168
+
169
+ def encode_input_images(
170
+ self,
171
+ input_pixel_values: List[torch.Tensor],
172
+ device: Optional[torch.device] = None,
173
+ dtype: Optional[torch.dtype] = None,
174
+ ):
175
+ """
176
+ get the continue embedding of input images by VAE
177
+
178
+ Args:
179
+ input_pixel_values: normlized pixel of input images
180
+ device:
181
+ Returns: torch.Tensor
182
+ """
183
+ device = device or self._execution_device
184
+ dtype = dtype or self.vae.dtype
185
+
186
+ input_img_latents = []
187
+ for img in input_pixel_values:
188
+ img = self.vae.encode(img.to(device, dtype)).latent_dist.sample().mul_(self.vae.config.scaling_factor)
189
+ input_img_latents.append(img)
190
+ return input_img_latents
191
+
192
+ def check_inputs(
193
+ self,
194
+ prompt,
195
+ input_images,
196
+ height,
197
+ width,
198
+ use_input_image_size_as_output,
199
+ callback_on_step_end_tensor_inputs=None,
200
+ ):
201
+ if input_images is not None:
202
+ if len(input_images) != len(prompt):
203
+ raise ValueError(
204
+ f"The number of prompts: {len(prompt)} does not match the number of input images: {len(input_images)}."
205
+ )
206
+ for i in range(len(input_images)):
207
+ if input_images[i] is not None:
208
+ if not all(f"<img><|image_{k + 1}|></img>" in prompt[i] for k in range(len(input_images[i]))):
209
+ raise ValueError(
210
+ f"prompt `{prompt[i]}` doesn't have enough placeholders for the input images `{input_images[i]}`"
211
+ )
212
+
213
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
214
+ logger.warning(
215
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
216
+ )
217
+
218
+ if use_input_image_size_as_output:
219
+ if input_images is None or input_images[0] is None:
220
+ raise ValueError(
221
+ "`use_input_image_size_as_output` is set to True, but no input image was found. If you are performing a text-to-image task, please set it to False."
222
+ )
223
+
224
+ if callback_on_step_end_tensor_inputs is not None and not all(
225
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
226
+ ):
227
+ raise ValueError(
228
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
229
+ )
230
+
231
+ def enable_vae_slicing(self):
232
+ r"""
233
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
234
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
235
+ """
236
+ self.vae.enable_slicing()
237
+
238
+ def disable_vae_slicing(self):
239
+ r"""
240
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
241
+ computing decoding in one step.
242
+ """
243
+ self.vae.disable_slicing()
244
+
245
+ def enable_vae_tiling(self):
246
+ r"""
247
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
248
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
249
+ processing larger images.
250
+ """
251
+ self.vae.enable_tiling()
252
+
253
+ def disable_vae_tiling(self):
254
+ r"""
255
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
256
+ computing decoding in one step.
257
+ """
258
+ self.vae.disable_tiling()
259
+
260
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
261
+ def prepare_latents(
262
+ self,
263
+ batch_size,
264
+ num_channels_latents,
265
+ height,
266
+ width,
267
+ dtype,
268
+ device,
269
+ generator,
270
+ latents=None,
271
+ ):
272
+ if latents is not None:
273
+ return latents.to(device=device, dtype=dtype)
274
+
275
+ shape = (
276
+ batch_size,
277
+ num_channels_latents,
278
+ int(height) // self.vae_scale_factor,
279
+ int(width) // self.vae_scale_factor,
280
+ )
281
+
282
+ if isinstance(generator, list) and len(generator) != batch_size:
283
+ raise ValueError(
284
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
285
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
286
+ )
287
+
288
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
289
+
290
+ return latents
291
+
292
+ @property
293
+ def guidance_scale(self):
294
+ return self._guidance_scale
295
+
296
+ @property
297
+ def num_timesteps(self):
298
+ return self._num_timesteps
299
+
300
+ @property
301
+ def interrupt(self):
302
+ return self._interrupt
303
+
304
+ @torch.no_grad()
305
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
306
+ def __call__(
307
+ self,
308
+ prompt: Union[str, List[str]],
309
+ input_images: Union[PipelineImageInput, List[PipelineImageInput]] = None,
310
+ height: Optional[int] = None,
311
+ width: Optional[int] = None,
312
+ num_inference_steps: int = 50,
313
+ max_input_image_size: int = 1024,
314
+ timesteps: List[int] = None,
315
+ guidance_scale: float = 2.5,
316
+ img_guidance_scale: float = 1.6,
317
+ use_input_image_size_as_output: bool = False,
318
+ num_images_per_prompt: Optional[int] = 1,
319
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
320
+ latents: Optional[torch.Tensor] = None,
321
+ output_type: Optional[str] = "pil",
322
+ return_dict: bool = True,
323
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
324
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
325
+ ):
326
+ r"""
327
+ Function invoked when calling the pipeline for generation.
328
+
329
+ Args:
330
+ prompt (`str` or `List[str]`, *optional*):
331
+ The prompt or prompts to guide the image generation. If the input includes images, need to add
332
+ placeholders `<img><|image_i|></img>` in the prompt to indicate the position of the i-th images.
333
+ input_images (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
334
+ The list of input images. We will replace the "<|image_i|>" in prompt with the i-th image in list.
335
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
336
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
337
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
338
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
339
+ num_inference_steps (`int`, *optional*, defaults to 50):
340
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
341
+ expense of slower inference.
342
+ max_input_image_size (`int`, *optional*, defaults to 1024):
343
+ the maximum size of input image, which will be used to crop the input image to the maximum size
344
+ timesteps (`List[int]`, *optional*):
345
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
346
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
347
+ passed will be used. Must be in descending order.
348
+ guidance_scale (`float`, *optional*, defaults to 2.5):
349
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
350
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
351
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
352
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
353
+ usually at the expense of lower image quality.
354
+ img_guidance_scale (`float`, *optional*, defaults to 1.6):
355
+ Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
356
+ use_input_image_size_as_output (bool, defaults to False):
357
+ whether to use the input image size as the output image size, which can be used for single-image input,
358
+ e.g., image editing task
359
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
360
+ The number of images to generate per prompt.
361
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
362
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
363
+ to make generation deterministic.
364
+ latents (`torch.Tensor`, *optional*):
365
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
366
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
367
+ tensor will ge generated by sampling using the supplied random `generator`.
368
+ output_type (`str`, *optional*, defaults to `"pil"`):
369
+ The output format of the generate image. Choose between
370
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
371
+ return_dict (`bool`, *optional*, defaults to `True`):
372
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
373
+ callback_on_step_end (`Callable`, *optional*):
374
+ A function that calls at the end of each denoising steps during the inference. The function is called
375
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
376
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
377
+ `callback_on_step_end_tensor_inputs`.
378
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
379
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
380
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
381
+ `._callback_tensor_inputs` attribute of your pipeline class.
382
+
383
+ Examples:
384
+
385
+ Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
386
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
387
+ where the first element is a list with the generated images.
388
+ """
389
+
390
+ height = height or self.default_sample_size * self.vae_scale_factor
391
+ width = width or self.default_sample_size * self.vae_scale_factor
392
+ num_cfg = 2 if input_images is not None else 1
393
+ use_img_cfg = True if input_images is not None else False
394
+ if isinstance(prompt, str):
395
+ prompt = [prompt]
396
+ input_images = [input_images]
397
+
398
+ # 1. Check inputs. Raise error if not correct
399
+ self.check_inputs(
400
+ prompt,
401
+ input_images,
402
+ height,
403
+ width,
404
+ use_input_image_size_as_output,
405
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
406
+ )
407
+
408
+ self._guidance_scale = guidance_scale
409
+ self._interrupt = False
410
+
411
+ # 2. Define call parameters
412
+ batch_size = len(prompt)
413
+ device = self._execution_device
414
+
415
+ # 3. process multi-modal instructions
416
+ if max_input_image_size != self.multimodal_processor.max_image_size:
417
+ self.multimodal_processor.reset_max_image_size(max_image_size=max_input_image_size)
418
+ processed_data = self.multimodal_processor(
419
+ prompt,
420
+ input_images,
421
+ height=height,
422
+ width=width,
423
+ use_img_cfg=use_img_cfg,
424
+ use_input_image_size_as_output=use_input_image_size_as_output,
425
+ num_images_per_prompt=num_images_per_prompt,
426
+ )
427
+ processed_data["input_ids"] = processed_data["input_ids"].to(device)
428
+ processed_data["attention_mask"] = processed_data["attention_mask"].to(device)
429
+ processed_data["position_ids"] = processed_data["position_ids"].to(device)
430
+
431
+ # 4. Encode input images
432
+ input_img_latents = self.encode_input_images(processed_data["input_pixel_values"], device=device)
433
+
434
+ # 5. Prepare timesteps
435
+ sigmas = np.linspace(1, 0, num_inference_steps + 1)[:num_inference_steps]
436
+ timesteps, num_inference_steps = retrieve_timesteps(
437
+ self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
438
+ )
439
+ self._num_timesteps = len(timesteps)
440
+
441
+ # 6. Prepare latents
442
+ transformer_dtype = self.transformer.dtype
443
+ if use_input_image_size_as_output:
444
+ height, width = processed_data["input_pixel_values"][0].shape[-2:]
445
+ latent_channels = self.transformer.config.in_channels
446
+ latents = self.prepare_latents(
447
+ batch_size * num_images_per_prompt,
448
+ latent_channels,
449
+ height,
450
+ width,
451
+ torch.float32,
452
+ device,
453
+ generator,
454
+ latents,
455
+ )
456
+
457
+ # 8. Denoising loop
458
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
459
+ for i, t in enumerate(timesteps):
460
+ # expand the latents if we are doing classifier free guidance
461
+ latent_model_input = torch.cat([latents] * (num_cfg + 1))
462
+ latent_model_input = latent_model_input.to(transformer_dtype)
463
+
464
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
465
+ timestep = t.expand(latent_model_input.shape[0])
466
+
467
+ noise_pred = self.transformer(
468
+ hidden_states=latent_model_input,
469
+ timestep=timestep,
470
+ input_ids=processed_data["input_ids"],
471
+ input_img_latents=input_img_latents,
472
+ input_image_sizes=processed_data["input_image_sizes"],
473
+ attention_mask=processed_data["attention_mask"],
474
+ position_ids=processed_data["position_ids"],
475
+ return_dict=False,
476
+ )[0]
477
+
478
+ if num_cfg == 2:
479
+ cond, uncond, img_cond = torch.split(noise_pred, len(noise_pred) // 3, dim=0)
480
+ noise_pred = uncond + img_guidance_scale * (img_cond - uncond) + guidance_scale * (cond - img_cond)
481
+ else:
482
+ cond, uncond = torch.split(noise_pred, len(noise_pred) // 2, dim=0)
483
+ noise_pred = uncond + guidance_scale * (cond - uncond)
484
+
485
+ # compute the previous noisy sample x_t -> x_t-1
486
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
487
+
488
+ if callback_on_step_end is not None:
489
+ callback_kwargs = {}
490
+ for k in callback_on_step_end_tensor_inputs:
491
+ callback_kwargs[k] = locals()[k]
492
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
493
+
494
+ latents = callback_outputs.pop("latents", latents)
495
+
496
+ progress_bar.update()
497
+
498
+ if not output_type == "latent":
499
+ latents = latents.to(self.vae.dtype)
500
+ latents = latents / self.vae.config.scaling_factor
501
+ image = self.vae.decode(latents, return_dict=False)[0]
502
+ image = self.image_processor.postprocess(image, output_type=output_type)
503
+ else:
504
+ image = latents
505
+
506
+ # Offload all models
507
+ self.maybe_free_model_hooks()
508
+
509
+ if not return_dict:
510
+ return (image,)
511
+
512
+ return ImagePipelineOutput(images=image)