diffusers 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +198 -28
  13. diffusers/loaders/lora_conversion_utils.py +679 -44
  14. diffusers/loaders/lora_pipeline.py +1963 -801
  15. diffusers/loaders/peft.py +169 -84
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +653 -75
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +22 -32
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +409 -49
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +10 -2
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +14 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.1.dist-info/RECORD +0 -550
  387. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,804 @@
1
+ # Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...image_processor import PipelineImageInput
24
+ from ...loaders import HunyuanVideoLoraLoaderMixin
25
+ from ...models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from ...utils.torch_utils import randn_tensor
29
+ from ...video_processor import VideoProcessor
30
+ from ..pipeline_utils import DiffusionPipeline
31
+ from .pipeline_output import HunyuanVideoPipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```python
47
+ >>> import torch
48
+ >>> from diffusers import HunyuanSkyreelsImageToVideoPipeline, HunyuanVideoTransformer3DModel
49
+ >>> from diffusers.utils import load_image, export_to_video
50
+
51
+ >>> model_id = "hunyuanvideo-community/HunyuanVideo"
52
+ >>> transformer_model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
53
+ >>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
54
+ ... transformer_model_id, torch_dtype=torch.bfloat16
55
+ ... )
56
+ >>> pipe = HunyuanSkyreelsImageToVideoPipeline.from_pretrained(
57
+ ... model_id, transformer=transformer, torch_dtype=torch.float16
58
+ ... )
59
+ >>> pipe.vae.enable_tiling()
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
63
+ >>> negative_prompt = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
64
+ >>> image = load_image(
65
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
66
+ ... )
67
+
68
+ >>> output = pipe(
69
+ ... image=image,
70
+ ... prompt=prompt,
71
+ ... negative_prompt=negative_prompt,
72
+ ... num_inference_steps=30,
73
+ ... true_cfg_scale=6.0,
74
+ ... guidance_scale=1.0,
75
+ ... ).frames[0]
76
+ >>> export_to_video(output, "output.mp4", fps=15)
77
+ ```
78
+ """
79
+
80
+
81
+ DEFAULT_PROMPT_TEMPLATE = {
82
+ "template": (
83
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
84
+ "1. The main content and theme of the video."
85
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
86
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
87
+ "4. background environment, light, style and atmosphere."
88
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
89
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
90
+ ),
91
+ "crop_start": 95,
92
+ }
93
+
94
+
95
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
96
+ def retrieve_timesteps(
97
+ scheduler,
98
+ num_inference_steps: Optional[int] = None,
99
+ device: Optional[Union[str, torch.device]] = None,
100
+ timesteps: Optional[List[int]] = None,
101
+ sigmas: Optional[List[float]] = None,
102
+ **kwargs,
103
+ ):
104
+ r"""
105
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
106
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
107
+
108
+ Args:
109
+ scheduler (`SchedulerMixin`):
110
+ The scheduler to get timesteps from.
111
+ num_inference_steps (`int`):
112
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
113
+ must be `None`.
114
+ device (`str` or `torch.device`, *optional*):
115
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
116
+ timesteps (`List[int]`, *optional*):
117
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
118
+ `num_inference_steps` and `sigmas` must be `None`.
119
+ sigmas (`List[float]`, *optional*):
120
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
121
+ `num_inference_steps` and `timesteps` must be `None`.
122
+
123
+ Returns:
124
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
125
+ second element is the number of inference steps.
126
+ """
127
+ if timesteps is not None and sigmas is not None:
128
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
129
+ if timesteps is not None:
130
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
131
+ if not accepts_timesteps:
132
+ raise ValueError(
133
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
134
+ f" timestep schedules. Please check whether you are using the correct scheduler."
135
+ )
136
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
137
+ timesteps = scheduler.timesteps
138
+ num_inference_steps = len(timesteps)
139
+ elif sigmas is not None:
140
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
141
+ if not accept_sigmas:
142
+ raise ValueError(
143
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
144
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
145
+ )
146
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
147
+ timesteps = scheduler.timesteps
148
+ num_inference_steps = len(timesteps)
149
+ else:
150
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
151
+ timesteps = scheduler.timesteps
152
+ return timesteps, num_inference_steps
153
+
154
+
155
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
156
+ def retrieve_latents(
157
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
158
+ ):
159
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
160
+ return encoder_output.latent_dist.sample(generator)
161
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
162
+ return encoder_output.latent_dist.mode()
163
+ elif hasattr(encoder_output, "latents"):
164
+ return encoder_output.latents
165
+ else:
166
+ raise AttributeError("Could not access latents of provided encoder_output")
167
+
168
+
169
+ class HunyuanSkyreelsImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
170
+ r"""
171
+ Pipeline for image-to-video generation using HunyuanVideo.
172
+
173
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
174
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
175
+
176
+ Args:
177
+ text_encoder ([`LlamaModel`]):
178
+ [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
179
+ tokenizer (`LlamaTokenizer`):
180
+ Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
181
+ transformer ([`HunyuanVideoTransformer3DModel`]):
182
+ Conditional Transformer to denoise the encoded image latents.
183
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
184
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
185
+ vae ([`AutoencoderKLHunyuanVideo`]):
186
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
187
+ text_encoder_2 ([`CLIPTextModel`]):
188
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
189
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
190
+ tokenizer_2 (`CLIPTokenizer`):
191
+ Tokenizer of class
192
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
193
+ """
194
+
195
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
196
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
197
+
198
+ def __init__(
199
+ self,
200
+ text_encoder: LlamaModel,
201
+ tokenizer: LlamaTokenizerFast,
202
+ transformer: HunyuanVideoTransformer3DModel,
203
+ vae: AutoencoderKLHunyuanVideo,
204
+ scheduler: FlowMatchEulerDiscreteScheduler,
205
+ text_encoder_2: CLIPTextModel,
206
+ tokenizer_2: CLIPTokenizer,
207
+ ):
208
+ super().__init__()
209
+
210
+ self.register_modules(
211
+ vae=vae,
212
+ text_encoder=text_encoder,
213
+ tokenizer=tokenizer,
214
+ transformer=transformer,
215
+ scheduler=scheduler,
216
+ text_encoder_2=text_encoder_2,
217
+ tokenizer_2=tokenizer_2,
218
+ )
219
+
220
+ self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
221
+ self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
222
+ self.vae_scaling_factor = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.476986
223
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
224
+
225
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline._get_llama_prompt_embeds
226
+ def _get_llama_prompt_embeds(
227
+ self,
228
+ prompt: Union[str, List[str]],
229
+ prompt_template: Dict[str, Any],
230
+ num_videos_per_prompt: int = 1,
231
+ device: Optional[torch.device] = None,
232
+ dtype: Optional[torch.dtype] = None,
233
+ max_sequence_length: int = 256,
234
+ num_hidden_layers_to_skip: int = 2,
235
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
236
+ device = device or self._execution_device
237
+ dtype = dtype or self.text_encoder.dtype
238
+
239
+ prompt = [prompt] if isinstance(prompt, str) else prompt
240
+ batch_size = len(prompt)
241
+
242
+ prompt = [prompt_template["template"].format(p) for p in prompt]
243
+
244
+ crop_start = prompt_template.get("crop_start", None)
245
+ if crop_start is None:
246
+ prompt_template_input = self.tokenizer(
247
+ prompt_template["template"],
248
+ padding="max_length",
249
+ return_tensors="pt",
250
+ return_length=False,
251
+ return_overflowing_tokens=False,
252
+ return_attention_mask=False,
253
+ )
254
+ crop_start = prompt_template_input["input_ids"].shape[-1]
255
+ # Remove <|eot_id|> token and placeholder {}
256
+ crop_start -= 2
257
+
258
+ max_sequence_length += crop_start
259
+ text_inputs = self.tokenizer(
260
+ prompt,
261
+ max_length=max_sequence_length,
262
+ padding="max_length",
263
+ truncation=True,
264
+ return_tensors="pt",
265
+ return_length=False,
266
+ return_overflowing_tokens=False,
267
+ return_attention_mask=True,
268
+ )
269
+ text_input_ids = text_inputs.input_ids.to(device=device)
270
+ prompt_attention_mask = text_inputs.attention_mask.to(device=device)
271
+
272
+ prompt_embeds = self.text_encoder(
273
+ input_ids=text_input_ids,
274
+ attention_mask=prompt_attention_mask,
275
+ output_hidden_states=True,
276
+ ).hidden_states[-(num_hidden_layers_to_skip + 1)]
277
+ prompt_embeds = prompt_embeds.to(dtype=dtype)
278
+
279
+ if crop_start is not None and crop_start > 0:
280
+ prompt_embeds = prompt_embeds[:, crop_start:]
281
+ prompt_attention_mask = prompt_attention_mask[:, crop_start:]
282
+
283
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
284
+ _, seq_len, _ = prompt_embeds.shape
285
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
286
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
287
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
288
+ prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
289
+
290
+ return prompt_embeds, prompt_attention_mask
291
+
292
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline._get_clip_prompt_embeds
293
+ def _get_clip_prompt_embeds(
294
+ self,
295
+ prompt: Union[str, List[str]],
296
+ num_videos_per_prompt: int = 1,
297
+ device: Optional[torch.device] = None,
298
+ dtype: Optional[torch.dtype] = None,
299
+ max_sequence_length: int = 77,
300
+ ) -> torch.Tensor:
301
+ device = device or self._execution_device
302
+ dtype = dtype or self.text_encoder_2.dtype
303
+
304
+ prompt = [prompt] if isinstance(prompt, str) else prompt
305
+ batch_size = len(prompt)
306
+
307
+ text_inputs = self.tokenizer_2(
308
+ prompt,
309
+ padding="max_length",
310
+ max_length=max_sequence_length,
311
+ truncation=True,
312
+ return_tensors="pt",
313
+ )
314
+
315
+ text_input_ids = text_inputs.input_ids
316
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
317
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
318
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
319
+ logger.warning(
320
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
321
+ f" {max_sequence_length} tokens: {removed_text}"
322
+ )
323
+
324
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
325
+
326
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
327
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
328
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
329
+
330
+ return prompt_embeds
331
+
332
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline.encode_prompt
333
+ def encode_prompt(
334
+ self,
335
+ prompt: Union[str, List[str]],
336
+ prompt_2: Union[str, List[str]] = None,
337
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
338
+ num_videos_per_prompt: int = 1,
339
+ prompt_embeds: Optional[torch.Tensor] = None,
340
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
341
+ prompt_attention_mask: Optional[torch.Tensor] = None,
342
+ device: Optional[torch.device] = None,
343
+ dtype: Optional[torch.dtype] = None,
344
+ max_sequence_length: int = 256,
345
+ ):
346
+ if prompt_embeds is None:
347
+ prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
348
+ prompt,
349
+ prompt_template,
350
+ num_videos_per_prompt,
351
+ device=device,
352
+ dtype=dtype,
353
+ max_sequence_length=max_sequence_length,
354
+ )
355
+
356
+ if pooled_prompt_embeds is None:
357
+ if prompt_2 is None:
358
+ prompt_2 = prompt
359
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
360
+ prompt,
361
+ num_videos_per_prompt,
362
+ device=device,
363
+ dtype=dtype,
364
+ max_sequence_length=77,
365
+ )
366
+
367
+ return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask
368
+
369
+ # Copied from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video.HunyuanVideoPipeline.check_inputs
370
+ def check_inputs(
371
+ self,
372
+ prompt,
373
+ prompt_2,
374
+ height,
375
+ width,
376
+ prompt_embeds=None,
377
+ callback_on_step_end_tensor_inputs=None,
378
+ prompt_template=None,
379
+ ):
380
+ if height % 16 != 0 or width % 16 != 0:
381
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
382
+
383
+ if callback_on_step_end_tensor_inputs is not None and not all(
384
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
385
+ ):
386
+ raise ValueError(
387
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
388
+ )
389
+
390
+ if prompt is not None and prompt_embeds is not None:
391
+ raise ValueError(
392
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
393
+ " only forward one of the two."
394
+ )
395
+ elif prompt_2 is not None and prompt_embeds is not None:
396
+ raise ValueError(
397
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
398
+ " only forward one of the two."
399
+ )
400
+ elif prompt is None and prompt_embeds is None:
401
+ raise ValueError(
402
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
403
+ )
404
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
405
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
406
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
407
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
408
+
409
+ if prompt_template is not None:
410
+ if not isinstance(prompt_template, dict):
411
+ raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
412
+ if "template" not in prompt_template:
413
+ raise ValueError(
414
+ f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
415
+ )
416
+
417
+ def prepare_latents(
418
+ self,
419
+ image: torch.Tensor,
420
+ batch_size: int,
421
+ num_channels_latents: int = 32,
422
+ height: int = 544,
423
+ width: int = 960,
424
+ num_frames: int = 97,
425
+ dtype: Optional[torch.dtype] = None,
426
+ device: Optional[torch.device] = None,
427
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
428
+ latents: Optional[torch.Tensor] = None,
429
+ ) -> torch.Tensor:
430
+ if isinstance(generator, list) and len(generator) != batch_size:
431
+ raise ValueError(
432
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
433
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
434
+ )
435
+
436
+ image = image.unsqueeze(2) # [B, C, 1, H, W]
437
+ if isinstance(generator, list):
438
+ image_latents = [
439
+ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
440
+ ]
441
+ else:
442
+ image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image]
443
+
444
+ image_latents = torch.cat(image_latents, dim=0).to(dtype) * self.vae_scaling_factor
445
+
446
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
447
+ latent_height, latent_width = height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial
448
+ shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
449
+ padding_shape = (batch_size, num_channels_latents, num_latent_frames - 1, latent_height, latent_width)
450
+
451
+ latents_padding = torch.zeros(padding_shape, dtype=dtype, device=device)
452
+ image_latents = torch.cat([image_latents, latents_padding], dim=2)
453
+
454
+ if latents is None:
455
+ latents = randn_tensor(shape, generator=generator, dtype=dtype, device=device)
456
+ else:
457
+ latents = latents.to(dtype=dtype, device=device)
458
+
459
+ return latents, image_latents
460
+
461
+ def enable_vae_slicing(self):
462
+ r"""
463
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
464
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
465
+ """
466
+ self.vae.enable_slicing()
467
+
468
+ def disable_vae_slicing(self):
469
+ r"""
470
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
471
+ computing decoding in one step.
472
+ """
473
+ self.vae.disable_slicing()
474
+
475
+ def enable_vae_tiling(self):
476
+ r"""
477
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
478
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
479
+ processing larger images.
480
+ """
481
+ self.vae.enable_tiling()
482
+
483
+ def disable_vae_tiling(self):
484
+ r"""
485
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
486
+ computing decoding in one step.
487
+ """
488
+ self.vae.disable_tiling()
489
+
490
+ @property
491
+ def guidance_scale(self):
492
+ return self._guidance_scale
493
+
494
+ @property
495
+ def num_timesteps(self):
496
+ return self._num_timesteps
497
+
498
+ @property
499
+ def attention_kwargs(self):
500
+ return self._attention_kwargs
501
+
502
+ @property
503
+ def current_timestep(self):
504
+ return self._current_timestep
505
+
506
+ @property
507
+ def interrupt(self):
508
+ return self._interrupt
509
+
510
+ @torch.no_grad()
511
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
512
+ def __call__(
513
+ self,
514
+ image: PipelineImageInput,
515
+ prompt: Union[str, List[str]] = None,
516
+ prompt_2: Union[str, List[str]] = None,
517
+ negative_prompt: Union[str, List[str]] = None,
518
+ negative_prompt_2: Union[str, List[str]] = None,
519
+ height: int = 544,
520
+ width: int = 960,
521
+ num_frames: int = 97,
522
+ num_inference_steps: int = 50,
523
+ sigmas: List[float] = None,
524
+ true_cfg_scale: float = 6.0,
525
+ guidance_scale: float = 1.0,
526
+ num_videos_per_prompt: Optional[int] = 1,
527
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
528
+ latents: Optional[torch.Tensor] = None,
529
+ prompt_embeds: Optional[torch.Tensor] = None,
530
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
531
+ prompt_attention_mask: Optional[torch.Tensor] = None,
532
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
533
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
534
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
535
+ output_type: Optional[str] = "pil",
536
+ return_dict: bool = True,
537
+ attention_kwargs: Optional[Dict[str, Any]] = None,
538
+ callback_on_step_end: Optional[
539
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
540
+ ] = None,
541
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
542
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
543
+ max_sequence_length: int = 256,
544
+ ):
545
+ r"""
546
+ The call function to the pipeline for generation.
547
+
548
+ Args:
549
+ prompt (`str` or `List[str]`, *optional*):
550
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
551
+ instead.
552
+ prompt_2 (`str` or `List[str]`, *optional*):
553
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
554
+ will be used instead.
555
+ negative_prompt (`str` or `List[str]`, *optional*):
556
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
557
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
558
+ not greater than `1`).
559
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
560
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
561
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
562
+ height (`int`, defaults to `720`):
563
+ The height in pixels of the generated image.
564
+ width (`int`, defaults to `1280`):
565
+ The width in pixels of the generated image.
566
+ num_frames (`int`, defaults to `129`):
567
+ The number of frames in the generated video.
568
+ num_inference_steps (`int`, defaults to `50`):
569
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
570
+ expense of slower inference.
571
+ sigmas (`List[float]`, *optional*):
572
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
573
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
574
+ will be used.
575
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
576
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
577
+ guidance_scale (`float`, defaults to `6.0`):
578
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
579
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
580
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
581
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
582
+ usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
583
+ CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
584
+ not applied.
585
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
586
+ The number of images to generate per prompt.
587
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
588
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
589
+ generation deterministic.
590
+ latents (`torch.Tensor`, *optional*):
591
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
592
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
593
+ tensor is generated by sampling using the supplied random `generator`.
594
+ prompt_embeds (`torch.Tensor`, *optional*):
595
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
596
+ provided, text embeddings are generated from the `prompt` input argument.
597
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
598
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
599
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
600
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
601
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
602
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
603
+ argument.
604
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
605
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
606
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
607
+ input argument.
608
+ output_type (`str`, *optional*, defaults to `"pil"`):
609
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
610
+ return_dict (`bool`, *optional*, defaults to `True`):
611
+ Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
612
+ attention_kwargs (`dict`, *optional*):
613
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
614
+ `self.processor` in
615
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
616
+ clip_skip (`int`, *optional*):
617
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
618
+ the output of the pre-final layer will be used for computing the prompt embeddings.
619
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
620
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
621
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
622
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
623
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
624
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
625
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
626
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
627
+ `._callback_tensor_inputs` attribute of your pipeline class.
628
+
629
+ Examples:
630
+
631
+ Returns:
632
+ [`~HunyuanVideoPipelineOutput`] or `tuple`:
633
+ If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
634
+ where the first element is a list with the generated images and the second element is a list of `bool`s
635
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
636
+ """
637
+
638
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
639
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
640
+
641
+ # 1. Check inputs. Raise error if not correct
642
+ self.check_inputs(
643
+ prompt,
644
+ prompt_2,
645
+ height,
646
+ width,
647
+ prompt_embeds,
648
+ callback_on_step_end_tensor_inputs,
649
+ prompt_template,
650
+ )
651
+
652
+ has_neg_prompt = negative_prompt is not None or (
653
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
654
+ )
655
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
656
+
657
+ self._guidance_scale = guidance_scale
658
+ self._attention_kwargs = attention_kwargs
659
+ self._current_timestep = None
660
+ self._interrupt = False
661
+
662
+ device = self._execution_device
663
+
664
+ # 2. Define call parameters
665
+ if prompt is not None and isinstance(prompt, str):
666
+ batch_size = 1
667
+ elif prompt is not None and isinstance(prompt, list):
668
+ batch_size = len(prompt)
669
+ else:
670
+ batch_size = prompt_embeds.shape[0]
671
+
672
+ # 3. Encode input prompt
673
+ transformer_dtype = self.transformer.dtype
674
+ prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
675
+ prompt=prompt,
676
+ prompt_2=prompt_2,
677
+ prompt_template=prompt_template,
678
+ num_videos_per_prompt=num_videos_per_prompt,
679
+ prompt_embeds=prompt_embeds,
680
+ pooled_prompt_embeds=pooled_prompt_embeds,
681
+ prompt_attention_mask=prompt_attention_mask,
682
+ device=device,
683
+ max_sequence_length=max_sequence_length,
684
+ )
685
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
686
+ prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
687
+ pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
688
+
689
+ if do_true_cfg:
690
+ negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt(
691
+ prompt=negative_prompt,
692
+ prompt_2=negative_prompt_2,
693
+ prompt_template=prompt_template,
694
+ num_videos_per_prompt=num_videos_per_prompt,
695
+ prompt_embeds=negative_prompt_embeds,
696
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
697
+ prompt_attention_mask=negative_prompt_attention_mask,
698
+ device=device,
699
+ max_sequence_length=max_sequence_length,
700
+ )
701
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
702
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
703
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
704
+
705
+ # 4. Prepare timesteps
706
+ sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
707
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
708
+
709
+ # 5. Prepare latent variables
710
+ vae_dtype = self.vae.dtype
711
+ image = self.video_processor.preprocess(image, height=height, width=width).to(device, vae_dtype)
712
+ num_channels_latents = self.transformer.config.in_channels // 2
713
+ latents, image_latents = self.prepare_latents(
714
+ image,
715
+ batch_size * num_videos_per_prompt,
716
+ num_channels_latents,
717
+ height,
718
+ width,
719
+ num_frames,
720
+ torch.float32,
721
+ device,
722
+ generator,
723
+ latents,
724
+ )
725
+ latent_image_input = image_latents.to(transformer_dtype)
726
+
727
+ # 6. Prepare guidance condition
728
+ guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
729
+
730
+ # 7. Denoising loop
731
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
732
+ self._num_timesteps = len(timesteps)
733
+
734
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
735
+ for i, t in enumerate(timesteps):
736
+ if self.interrupt:
737
+ continue
738
+
739
+ self._current_timestep = t
740
+ latent_model_input = latents.to(transformer_dtype)
741
+ latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1)
742
+
743
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
744
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
745
+
746
+ noise_pred = self.transformer(
747
+ hidden_states=latent_model_input,
748
+ timestep=timestep,
749
+ encoder_hidden_states=prompt_embeds,
750
+ encoder_attention_mask=prompt_attention_mask,
751
+ pooled_projections=pooled_prompt_embeds,
752
+ guidance=guidance,
753
+ attention_kwargs=attention_kwargs,
754
+ return_dict=False,
755
+ )[0]
756
+
757
+ if do_true_cfg:
758
+ neg_noise_pred = self.transformer(
759
+ hidden_states=latent_model_input,
760
+ timestep=timestep,
761
+ encoder_hidden_states=negative_prompt_embeds,
762
+ encoder_attention_mask=negative_prompt_attention_mask,
763
+ pooled_projections=negative_pooled_prompt_embeds,
764
+ guidance=guidance,
765
+ attention_kwargs=attention_kwargs,
766
+ return_dict=False,
767
+ )[0]
768
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
769
+
770
+ # compute the previous noisy sample x_t -> x_t-1
771
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
772
+
773
+ if callback_on_step_end is not None:
774
+ callback_kwargs = {}
775
+ for k in callback_on_step_end_tensor_inputs:
776
+ callback_kwargs[k] = locals()[k]
777
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
778
+
779
+ latents = callback_outputs.pop("latents", latents)
780
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
781
+
782
+ # call the callback, if provided
783
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
784
+ progress_bar.update()
785
+
786
+ if XLA_AVAILABLE:
787
+ xm.mark_step()
788
+
789
+ self._current_timestep = None
790
+
791
+ if not output_type == "latent":
792
+ latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
793
+ video = self.vae.decode(latents, return_dict=False)[0]
794
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
795
+ else:
796
+ video = latents
797
+
798
+ # Offload all models
799
+ self.maybe_free_model_hooks()
800
+
801
+ if not return_dict:
802
+ return (video,)
803
+
804
+ return HunyuanVideoPipelineOutput(frames=video)